Skip to main content

Home/ Dr. Goodyear/ Group items tagged impairment

Rss Feed Group items tagged

Nathan Goodyear

Toxicity of the spike protein of COVID-19 is a redox shift phenomenon: A novel therapeu... - 0 views

  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • ...88 more annotations...
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • most diseases display a form of anabolism due to mitochondrial impairment
  • most diseases display a form of anabolism due to mitochondrial impairment
  • most diseases display a form of anabolism due to mitochondrial impairment
  • infection by Covid-19 follows a similar pattern
  • chronic inflammation
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • infection by Covid-19 follows a similar pattern
  • unrelenting anabolism leads to the cytokine storm,
  • unrelenting anabolism leads to the cytokine storm,
  • unrelenting anabolism leads to the cytokine storm,
  • chronic inflammation
  • chronic inflammation
  • infection by Covid-19 follows a similar pattern
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • direct consequence of redox iMeBalance, itself a consequence of decreased energy yield by the mitochondria
  • direct consequence of redox iMeBalance, itself a consequence of decreased energy yield by the mitochondria
  • mitochondrial dysfunction and increased levels of lactate, which are important characteristics of metabolic shift and Warburg effect in many diseases
  • mitochondrial dysfunction and increased levels of lactate, which are important characteristics of metabolic shift and Warburg effect in many diseases
  • increased lactate dehydrogenase activity (LDH) was observed in COVID-19 patients
  • increased lactate dehydrogenase activity (LDH) was observed in COVID-19 patients
  • almost every disease presents an increased anabolism
  • almost every disease presents an increased anabolism
  • cell division is the most sophisticated way to release entropy
  • cell division is the most sophisticated way to release entropy
    • Nathan Goodyear
       
      Wow
    • Nathan Goodyear
       
      Wow
  • transition from catabolism to anabolism is driven by a redox shift
  • transition from catabolism to anabolism is driven by a redox shift
  • viral spike protein binds to ACE2 receptor of the host cell [22,23].
  • redox signaling plays an important role in regulating immune function and inflammation, and disruptions in this signaling can lead to excessive cytokine production and immune system activation
  • Aging is associated with a poor control of the redox balance
  • thiol/disulfide homeostasis
  • reduced extracellular environment in the elderly and the increased susceptibility to Covid-19 infection
  • reduced extracellular environment in the elderly and the increased susceptibility to Covid-19 infection
  • Redox signaling tightly modulates the inflammatory response and oxidative stress has been reported in acute Covid-19
  • People at high risk are the elderly, patients suffering from metabolic syndrome such as obesity, or those suffering from chronic diseases such as cancer or inflammation
  • COVID-19 patients with severe disease have higher levels of oxidative stress markers and lower antioxidant levels
  • oxidative stress can activate the NLRP3 inflammasome, which is a protein complex that plays a key role in the cytokine storm
  • inflammation leads to the formation of ROS and RNS, while redox iMeBalance results in cellular damage, which in turn triggers an inflammatory response
  • persistently elevated mtROS triggers endothelial dysfunction and inflammation, which results in a vicious loop involving ROS, inflammation, and mitochondrial dysfunction
  • Damaged mitochondria releasing ROS induce inflammation via the NLRP3 inflammasome
  • Damaged mitochondria releasing ROS induce inflammation via the NLRP3 inflammasome
  • reduced environment during the cytokine storm
  • IL-2 is highly up-regulated in Covid-19 patients [37], and IL-2 is known to significantly stimulate the generation of NO in patients
  • Nitric acid is also the key mediator of IL-2-induced hypotension and vascular leak syndrome
  • mitochondrial dysfunction has been linked to the pathogenesis of Covid-19
  • mitochondrial dysfunction triggered by SARS-CoV-2 leads to damage to the mitochondria
  • mitochondrial dysfunction triggered by SARS-CoV-2 leads to damage to the mitochondria
  • As catabolism is decreased, entropy is released through anabolism
  • Elevated levels of lactate, a characteristic of the Warburg effect, were also reported in the high-risk Covid-19
  • elevated levels of ventricular lactic acid consistent with oxidative stress
  • A decrease of ΔΨm is implicated in several inflammation-related diseases
  • decrease in ΔΨm in leucocytes from Covid-19 patients
  • vaccinated with RNA or DNA vaccines triggering the synthesis of the viral spike protein in human cells
  • viral reactivation in varicella-zoster virus [55] or hepatitis [56], coagulopathy and resulting stroke and myocarditis following both DNA-based vaccines [57] and RNA-based vaccines
  • Covid-19, mitochondrial impairment
  • characteristic of the Warburg effect is present in almost every disease and appears to be a central feature in most of the hallmarks of cancer
  • inflammation, mitochondrial dysfunction and increased lactate concentrations in the extracellular fluid
  • In Covid-19, like any inflammation, there is a metabolic rewiring where cells rely on glycolysis
  • As the mitochondria are impaired, the infected cell cannot catabolize efficiently. It will release lactic acid in the blood stream
    • Nathan Goodyear
       
      Mitochondrial impairment
  • Striking similarities are seen between cancer, Alzheimer's disease and Covid-19, all related to the Warburg effect
  • Cancer, inflammation, Alzheimer's, and Parkinson's diseases share a common peculiarity, the inability of the cell to export entropy outside the body in the harmless form of heat
    • Nathan Goodyear
       
      Entropy: lack of order or predictability; gradual decline into disorder.
  • MEB relieves the Warburg effect [87], improves memory [77], is active in the treatment of depressive episodes [79,80] and reduces the importance of ischemic strokes
  • MEB relieves the Warburg effect [87], improves memory [77], is active in the treatment of depressive episodes [79,80] and reduces the importance of ischemic strokes
  • MEB has been shown to inhibit SARS-Cov-2 replication in vitro
  • MEB has been shown to inhibit SARS-Cov-2 replication in vitro
  • It has been shown that Covid-19-patients treated with MEB, have a significant reduction in hospital stay duration and mortality
  • MeB is an acceptor-donor molecule
  • MeB + can take a pair of electrons (of H atoms) and MeBH can release this pair easily, so that MeB is partially recycled like a catalyst
  • MeB acts as an electron bridge between a donor (FADH2, FMNH, NADH) and an acceptor (complex IV of ETC or oxygen itself)
  • As a coenzyme of pyruvate dehydrogenase (PDH), alpha-lipoic acid (ALA) initiates the formation of acetyl-CoA to feed the TCA cycle
  • ALA enhances the catabolism of carbon. cycle and therefore may reduce the Warburg effect and consequently, lactate production
  • Methylene Blue plays a similar role after the TCA cycle, by carrying electrons to complex IV of the electron transport chain
  • Drugs such as lipoic acid and MeB, which target the metabolism, decrease the redox shift by increasing catabolism
Nathan Goodyear

LRRK2 G2019S Impairs Chaperone-Mediated Autophagy in Neurons (S13.003) -- Kuo et al. 80... - 0 views

  •  
    impaired auto destruction process leads to the Lewy bodies found in Parkinson's disease.
Nathan Goodyear

Metabolic management of brain cancer - 0 views

  • Glutamine is a major metabolic fuel for both brain tumor cells and tumor-associated macrophages (TAMs)
  • the malignant phenotype of brain tumor cells that survive radiotherapy is often greater than that of the cells from the original tumor.
  • Conventional chemotherapy has faired little better than radiation therapy for the long-term management of malignant brain cancer
  • ...37 more annotations...
  • most conventional radiation and brain cancer chemotherapies can enhance glioma energy metabolism and invasive properties, which would contribute to tumor recurrence and reduced patient survival [34].
  • We contend that all cancer regardless of tissue or cellular origin is a disease of abnormal energy metabolism
  • complex disease phenotypes can be managed through self-organizing networks that display system wide dynamics involving oxidative and non-oxidative (substrate level) phosphorylation
  • As long as brain tumors are provided a physiological environment conducive for their energy needs they will survive; when this environment is restricted or abruptly changed they will either grow slower, growth arrest, or perish [8] and [19]
  • New information also suggests that ketones are toxic to some human tumor cells and that ketones and ketogenic diets might restrict availability of glutamine to tumor cells [68], [69] and [70].
  • The success in dealing with environmental stress and disease is therefore dependent on the integrated action of all cells in the organism
  • Tumor cells survive in hypoxic environments not because they have inherited genes making them more fit or adaptable than normal cells, but because they have damaged mitochondria and have thus acquired the ability to derive energy largely through substrate level phosphorylation
  • Cancer cells survive and multiply only in physiological environments that provide fuels (mostly glucose and glutamine) subserving their requirement for substrate level phosphorylation
  • Integrity of the inner mitochondrial membrane is necessary for ketone body metabolism since β-hydroxybutyrate dehydrogenase, which catalyzes the first step in the metabolism of β-OHB to acetoacetate, interacts with cardiolipin and other phospholipids in the inner membrane
  • the mitochondria of many gliomas and most tumors for that matter are dysfunctional
  • Cardiolipin is essential for efficient oxidative energy production and mitochondrial function
  • Any genetic or environmental alteration in the content or composition of cardiolipin will compromise energy production through oxidative phosphorylation
  • The Crabtree effect involves the inhibition of respiration by high levels of glucose
  • the Warburg effect involves elevated glycolysis from impaired oxidative phosphorylation
  • the Crabtree effect can be reversible, the Warburg effect is largely irreversible because its origin is with permanently damaged mitochondria
  • The continued production of lactic acid in the presence of oxygen is the metabolic hallmark of most cancers and is referred to as aerobic glycolysis or the Warburg effect
  • We recently described how the retrograde signaling system could induce changes in oncogenes and tumor suppressor genes to facilitate tumor cell survival following mitochondrial damage [48].
  • In addition to glycolysis, glutamine can also increase ATP production under hypoxic conditions through substrate level phosphorylation in the TCA cycle after its metabolism to α-ketoglutarate
  • mitochondrial lipid abnormalities, which alter electron transport activities, can account in large part for the Warburg effect
  • targeting both glucose and glutamine metabolism could be effective for managing most cancers including brain cancer
  • The bulk of experimental evidence indicates that mitochondria are dysfunctional in tumors and incapable of generating sufficient ATP through oxidative phosphorylation
  • Cardiolipin defects in tumor cells are also associated with reduced activities of several enzymes of the mitochondrial electron transport chain making it unlikely that tumor cells with cardiolipin abnormalities can generate adequate energy through oxidative phosphorylation
  • The Crabtree effect involves the inhibition of respiration by high levels of glucose
  • Warburg effect involves elevated glycolysis from impaired oxidative phosphorylation
  • TCA cycle substrate level phosphorylation could therefore become another source of ATP production in tumor cells with impairments in oxidative phosphorylation
  • Caloric restriction, which lowers glucose and elevates ketone bodies [63] and [64], improves mitochondrial respiratory function and glutathione redox state in normal cells
  • DR naturally inhibits glycolysis and tumor growth by lowering circulating glucose levels, while at the same time, enhancing the health and vitality of normal cells and tissues through ketone body metabolism
  • DR is anti-angiogenic
  • DR also reduces angiogenesis in prostate and breast cancer
  • We suggest that apoptosis resistance arises largely from enhanced substrate level phosphorylation of tumor cells and to the genes associated with elevated glycolysis and glutaminolysis, e.g., c-Myc, Hif-1a, etc, which inhibit apoptosis
  • Modern medicine has not looked favorably on diet therapies for managing complex diseases especially when well-established procedures for acceptable clinical practice are available, regardless of how ineffective these procedures might be in managing the disease
  • More than 60 years of clinical research indicates that such approaches are largely ineffective in extending survival or improving quality of life
  • The process is rooted in the well-established scientific principle that tumor cells are largely dependent on substrate level phosphorylation for their survival and growth
  • Glucose and glutamine drive substrate level phosphorylation
  • targeting the glycolytically active tumor cells that produce pro-cachexia molecules, restricted diet therapies can potentially reduce tumor cachexia
  • It is important to recognize, however, that “more is not better” with respect to the ketogenic diet
  • Blood glucose ranges between 3.0 and 3.5 mM (55–65 mg/dl) and β-OHB ranges between 4 and 7 mM should be effective for tumor management
  •  
    Dr Seyfriend presents his metabolic approach to the treatment of brain cancer.
Nathan Goodyear

Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in... - 0 views

  •  
    in this study, children with autism found to have detoxification impairment.  Particularily here, methylation disruption and glutathione depletion.
Nathan Goodyear

Cortisol Metabolism in Human Obesity: Impaired Cortisone→Cortisol Conversion ... - 0 views

  •  
    impaired cortisone to cortisol found in obese individuals.  This occurred through a decrease in 11beta-HSD type 1 activity.
Nathan Goodyear

JAMA Network | Archives of Neurology | Damage to Lipids, Proteins, DNA, and RNA in Mild... - 0 views

  •  
    oxidative damage found to be present in early Alzheimer's disease.  This early mild cognitive impairment is the time for treatment to delay disease progression.  As this study points out, most studies up to this point have been done on individuals with late Alzheimer's disease.  This show that oxidative damage plays a prominent role in disease development.  This study found oxidative damage through several markers: lipid peroxides,isoprostanes, 8-hydroxy-2-deoxyguanosine...
Nathan Goodyear

Lower-But-Normal Serum TSH level Is Associated With the Development or Progression of C... - 0 views

  •  
    This study points to an association between a low-normal TSH and cognitive decline in the elderly.  An association is not causative, but functional hypothyroidism does result in cognitive impairment, so the association would logically fit.  The results of this study do as well.
Nathan Goodyear

Higher dietary fructose is associated with impaired hepatic adenosine triphosphate home... - 0 views

  •  
    uric acid used as marker for impaired ATP production in those with high fructose intake.
Nathan Goodyear

Ginsenoside Rg3 Alleviates Lipopolysaccharide-Induced Learning and Memory Impairments b... - 0 views

  •  
    Rat model induced inflammatory reaction in brain via LPS injection.  The result was impaired memory.  RG3 from panax ginseng was shown to reduce inflammation, TNF-alpha, IL-1beta, cox-2, thus improving memory and cognitive function.
Nathan Goodyear

Diet-induced obesity and low testosterone increase neuroinflammation and impair neural ... - 0 views

  • both obesity and low testosterone are also risk factors for neural dysfunction, including cognitive impairment [58–61] and development of AD
  • Levels of obesity and testosterone are often inversely correlated
  • diet-induced obesity causes significant metabolic disturbances and impairs central and peripheral nervous systems.
  • ...23 more annotations...
  • both obesity and low testosterone are linked with promotion of inflammatory pathways [70–72] and exert harmful actions on the central [73–75] and peripheral [29,76] nervous systems
  • In general, obesity-related changes were worsened by low testosterone and improved by testosterone treatment; however, this relationship was not statistically significant in several instances. Further, our data suggest that a common pathway that may contribute to obesity and testosterone effects is regulation of inflammation
  • fasting blood glucose levels were independently and additively increased by GDX-induced testosterone depletion and high-fat diet
  • testosterone treatment significantly reduced fasting glucose under both the normal and high-fat diets, demonstrating potential therapeutic efficacy of testosterone supplementation
  • fasting insulin, insulin resistance (HOMA index), and glucose tolerance, low testosterone tended to exacerbate and or testosterone treatment improved outcomes.
  • testosterone status did not significantly affect body weight
  • testosterone’s effects likely do not indicate an indirect result on adiposity but rather regulatory action(s) on other aspects of metabolic homeostasis
  • Prior work in rodents has shown diet-induced obesity induces insulin resistance in rat brain [63] and that testosterone replacement improves insulin sensitivity in obese rats [64]. Our findings are consistent with the human literature, which indicates that (i) testosterone levels are inversely correlated to insulin resistance and T2D in healthy [30,65] as well as obese men [66], and (ii) androgen therapy can improve some metabolic measures in overweight men with low testosterone
  • it has been shown that TNFα has inhibitory effects on neuron survival, differentiation, and neurite outgrowth
  • Our data demonstrate that low testosterone and obesity independently increased cerebrocortical mRNA levels of both TNFα and IL-1β
  • Testosterone status also affected metabolic and neural measures
  • many beneficial effects of testosterone, including inhibition of proinflammatory cytokine expression
  • neuroprotection [80,81], are dependent upon androgen receptors, the observed effects of testosterone in this study may involve androgen receptor activation
  • testosterone can be converted by the enzyme aromatase into estradiol, which is also known to exert anti-inflammatory [82] and neuroprotective [83] actions
  • glia are the primary sources of proinflammatory molecules in the CNS
  • poorer survival of neurons grown on glia from mice maintained on high-fat diet
  • Since testosterone can affect glial function [86] and improve neuronal growth and survival [87–89], it was unexpected that testosterone status exhibited rather modest effects on neural health indices with the only significant response being an increase in survival in the testosterone-treated, high-fat diet group
  • significantly increased expression of TNFα and IL-1β in glia cultures derived from obese mice
  • testosterone treatment significantly lowered TNFα and IL-1β expression to near basal levels even in obese mice, indicating a protective benefit of testosterone across diet conditions
  • IL-1β treatment has been shown to induce synapse loss and inhibit differentiation of neurons
  • Testosterone status and diet-induced obesity were associated with significant regulation of macrophage infiltration
  • testosterone prevented and/or restored thermal nociception in both diet groups
  • a possible mechanism by which obesity and testosterone levels may affect the health of both CNS and PNS
  •  
    Study points to obesity and low Testosterone contribution of neuroinflammation.  No effect of body weight was seen with TRT.  This animal model found similar positive effects of TRT in insulin sensitivity.  Obesity and low T increase inflammatory cytokine production: this study found an increase in TNF-alpha and IL-1beta and TRT reduced TNF-alpha and IL-1beta to near base-line.  Testosterone is neuroprotective and this study reviewed the small volume of evaded that pointed to benefit from estradiol.  Testosterone's effect on glial survival was positive but not significant.  Obesity and low T were found to be associated with increased macrophage infiltration in the PNS with increased TNF-alpha and IL-1beta.   Testosterone therapy improved peripheral neuropathy via its positive effects on nocicieption.
Nathan Goodyear

Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carniti... - 0 views

  •  
    Meta-analysis of 21 studies on acetyl Carnitine finds improvement with mild cognitive impairment and/or prevention of cognitive deterioration.
Nathan Goodyear

Low Vitamin D Impairs Strength Recovery After Anterior Cruciate Ligament Surgery - 0 views

  •  
    vitamin D deficiency impairs healing of surgical repaired ACL injuries.
Nathan Goodyear

PLOS ONE: Depletion of Brain Docosahexaenoic Acid Impairs Recovery from Traumatic Brain... - 0 views

  • The polyunsaturated fatty acids linoleic (LA, 18:2n-6) and linolenic acid (LNA, 18:3n-3) are essential fatty acids that cannot be synthesized by the body.
  • LNA serves as the precursor for long chain omega-3 fatty acids such as docosahexaenoic acid (DHA) while LA is converted into long chain omega-6 fatty acids such as arachidonic acid (AA)
  • DHA and AA are abundantly found in the brain, where these are stored mainly in membrane phospholipids
  • ...10 more annotations...
  • DHA has been shown to increase neurite outgrowth and synaptogenesis, and promotes glutamatergic neurotransmission through increase in glutamate receptor subunit expression
  • DHA has been shown to be converted to anti-inflammatory, proresolving and neuroprotective mediators, such as resolvins [7] and protectins
  • AA is converted by cyclooxygenases into 2-series prostaglandins and 4-series leukotrienes, most of which exert pro-inflammatory effects
  • Supplementation of DHA exerts neuroprotective effects and has been reported to afford protection from diffuse axonal injury [11] and mixed brain injury [12] as well
  • severe depletion of membrane DHA in the brain renders mice significantly more susceptible to TBI and impairs recovery following the injury
  • Omega-3 fatty acids may serve as nutraceutical agents and precondition the brain to make it more resilient to injury
  • it can be suggested that enriching DHA in the brain may be prophylactic and protective against brain injury
  • severe DHA deficiency in the brain impairs functional recovery from TBI in terms of vestibulo-motor and cognitive deficits
  • DHA deficiency further elevates TBI-induced production of SBDPs
  • less neurons were found around the injury site of DHA deficient brain after TBI compared to the omega-3 fatty acid adequate group
  •  
    mouse study finds prolonged recovery in DHA deficient mice compared to controls.
Nathan Goodyear

Impaired clearance, not overproduction of toxic proteins, may underlie Alzheimer's dise... - 0 views

  •  
    Impaired clearance, not overproduction of toxic proteins, may underlie Alzheimer's disease
Nathan Goodyear

Systemic Inflammation Is Associated with MCI and Its Subtypes: The Sydney Memory and Ag... - 0 views

  • point to a discrete impact of systemic inflammation on cognition.
  •  
    inflammation leads to cognitive impairment
Nathan Goodyear

Metabolic biomarkers of increased oxidative stress... [Am J Clin Nutr. 2004] - PubMed r... - 0 views

  • children with autism had significantly lower baseline plasma concentrations of methionine, SAM, homocysteine, cystathionine, cysteine, and total glutathione and significantly higher concentrations of SAH, adenosine, and oxidized glutathione
  • This metabolic profile is consistent with impaired capacity for methylation (significantly lower ratio of SAM to SAH) and increased oxidative stress (significantly lower redox ratio of reduced glutathione to oxidized glutathione) in children with autism
  • increased vulnerability to oxidative stress and a decreased capacity for methylation may contribute to the development and clinical manifestation of autism.
  •  
    detoxification impairment and the markers to assess it in children with ASD
Nathan Goodyear

Testosterone Treatment of Men With Mild Cognitive Impairment and Lo... - PubMed - NCBI - 0 views

  •  
    small study finds limited improvement in cognition in men with low T and mild Cognitive impairment.  Little application from this study.
Nathan Goodyear

PLOS ONE: Alcohol Ingestion Impairs Maximal Post-Exercise Rates of Myofibrillar Protein... - 0 views

  •  
    makes sense.  Alcohol impairs recovery from exercise--specifically protein synthesis.
Nathan Goodyear

Leptin and Androgens in Male Obesity: Evidence for Leptin Contribution to Reduced Andro... - 0 views

  • in male obesity basal and LH-stimulated androgen levels are reduced and inversely correlated with circulating leptin
  • functional leptin receptors are present in rodent Leydig cells
  • it is conceivable that in males high leptin concentrations may have a direct inhibitory effect(s) on Leydig cell function.
  • ...18 more annotations...
  • insulin is an important inhibitor of the synthesis of SHBG
  • no correlation between leptin and SHBG levels
  • SHBG reduction in obesity is a minor determinant of lowered androgen levels
  • SHBG can explain only up to 3% of the correlation
  • testicular T de novo production is impaired in obese men and that leptin seems to be the best hormonal predictor of this blunted response to LH stimulation
  • The low basal 17-OH-P levels found in massively obese men are consistent with a global impairment of Leydig cell steroidogenic function in this group of subjects.
  • These findings indicate that obese men have a FM-related defect in the enzymatic conversion of 17-OH-P to T, which is revealed by hCG stimulation.
  • Other studies have investigated the adrenal function in male obesity and have shown that basal cortisol and 17-OH-progesterone levels tend to decrease with the increase in the degree of obesity
  • High E2 can inhibit the expression and activity of the 17,20-lyase and may be responsible for this steroidogenic lesion
  • However, stimulated E2 levels were not higher in the obese than in controls, excluding the fact that the lower androgen response was due to an increased aromatization of T to E2 and that estrogens have a major role in the observed defect of 17,20-lyase activity in obese men.
  • the percentage increase in the 17-OH-progesterone to T molar ratio paralleled the increase in leptin levels of obese men
  • Multiple regression analysis indicated that the best hormonal predictor of the obesity-related reduction in T and FT basal levels and androgen changes after hCG stimulation was serum leptin concentration
  • insulin has no negative influences on androgen production in obese men
  • insulin is known to have stimulatory actions on T production that have been demonstrated in obese and normal weight men (57) and in Leydig cells in culture
  • the negative correlation between insulin and basal T can be partly explained by the inhibitory action of insulin on SHBG production
  • hypogonadal men have higher circulating leptin levels compared with hypogonadal patients under effective androgen substitution therapy
  • The impaired androgen response to LH stimulus was due to a defect in the enzymatic conversion of 17-OH-progesterone to T, which was disclosed by a leptin-related increase in 17-OH-progesterone to T ratio
  • Estrogens, which are inhibitory modulators of LH pulsatility and bioactivity
  •  
    Leptin appears to be a good marker of low Testosterone.  This study proposes that the mechanism of action is potentially 2 fold: first, a decrease in LH release by leptin (kisspeptin?) and 2nd, a directed decrease in Testosterone production by the leydig cells in the testes.
Nathan Goodyear

Stuck at the bench: Potential natural neuroprotective compounds for concussion - 0 views

  • Long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are highly enriched in neuronal synaptosomal plasma membranes and vesicles
  • The predominant CNS polyunsaturated fatty acid is DHA
  • effective supplementation and/or increased ingestion of dietary sources rich in EPA and DHA, such as cold-water fish species and fish oil, may help improve a multitude of neuronal functions, including long-term potentiation and cognition.
  • ...45 more annotations...
  • multiple preclinical studies have suggested that DHA and/or EPA supplementation may have potential benefit through a multitude of diverse, but complementary mechanisms
  • pre-injury dietary supplementation with fish oil effectively reduces post-traumatic elevations in protein oxidation
  • The benefits of pre-traumatic DHA supplementation have not only been independently confirmed,[150] but DHA supplementation has been shown to significantly reduce the number of swollen, disconnected and injured axons when administered following traumatic brain injury.
  • DHA has provided neuroprotection in experimental models of both focal and diffuse traumatic brain injury
  • potential mechanisms of neuroprotection, in addition to DHA and EPA's well-established anti-oxidant and anti-inflammatory properties
  • Despite abundant laboratory evidence supporting its neuroprotective effects in experimental models, the role of dietary DHA and/or EPA supplementation in human neurological diseases remains uncertain
  • Several population-based, observational studies have suggested that increased dietary fish and/or omega-3 polyunsaturated fatty acid consumption may reduce risk for ischemic stroke in several populations
  • Randomized control trials have also demonstrated significant reductions in ischemic stroke recurrence,[217] relative risk for ischemic stroke,[2] and reduced incidence of both symptomatic vasospasm and mortality following subarachnoid hemorrhage
  • Clinical trials in Alzheimer's disease have also been largely ineffective
  • The clinical evidence thus far appears equivocal
  • curcumin has gained much attention from Western researchers for its potential therapeutic benefits in large part due to its potent anti-oxidant[128,194,236] and anti-inflammatory properties
  • Curcumin is highly lipophilic and crosses the blood-brain barrier enabling it to exert a multitude of different established neuroprotective effects
  • in the context of TBI, a series of preclinical studies have suggested that pre-traumatic and post-traumatic curcumin supplementation may bolster the brain's resilience to injury and serve as a valuable therapeutic option
  • Curcumin may confer significant neuroprotection because of its ability to act on multiple deleterious post-traumatic, molecular cascades
  • studies demonstrated that both pre- and post-traumatic curcumin administration resulted in a significant reduction of neuroinflammation via inhibition of the pro-inflammatory molecules interleukin 1β and nuclear factor kappa B (NFκB)
  • no human studies have been conducted with respect to the effects of curcumin administration on the treatment of TBI, subarachnoid or intracranial hemorrhage, epilepsy or stroke
  • studies have demonstrated that resveratrol treatment reduces brain edema and lesion volume, as well as improves neurobehavioral functional performance following TBI
  • green tea consumption or supplementation with its derivatives may bolster cognitive function acutely and may slow cognitive decline
  • At least one population based study, though, did demonstrate that increased green tea consumption was associated with a reduced risk for Parkinson's disease independent of total caffeine intake
  • a randomized, placebo-controlled trial demonstrated that administration of green tea extract and L-theanine, over 16 weeks of treatment, improved indices of memory and brain theta wave activity on electroencephalography, suggesting greater cognitive alertness
  • Other animal studies have also demonstrated that theanine, another important component of green tea extract, exerts a multitude of neuroprotective benefits in experimental models of ischemic stroke,[63,97] Alzheimer's disease,[109] and Parkinson's disease
  • Theanine, like EGCG, contains multiple mechanisms of neuroprotective action including protection from excitotoxic injury[97] and inhibition of inflammation
  • potent anti-oxidant EGCG which is capable of crossing the blood-nerve and blood-brain barrier,
  • Epigallocatechin-3-gallate also displays neuroprotective properties
  • More recent research has suggested that vitamin D supplementation and the prevention of vitamin D deficiency may serve valuable roles in the treatment of TBI and may represents an important and necessary neuroprotective adjuvant for post-TBI progesterone therapy
  • Progesterone is one of the few agents to demonstrate significant reductions in mortality following TBI in human patients in preliminary trials
  • in vitro and in vivo studies have suggested that vitamin D supplementation with progesterone administration may significantly enhance neuroprotection
  • Vitamin D deficiency may increase inflammatory damage and behavioral impairment following experimental injury and attenuate the protective effects of post-traumatic progesterone treatment.[37]
  • emerging evidence has suggested that daily intravenous administration of vitamin E following TBI significantly decreases mortality and improves patient outcomes
  • high dose vitamin C administration following injury stabilized or reduced peri-lesional edema and infarction in the majority of patients receiving post-injury treatment
  • it has been speculated that combined vitamin C and E therapy may potentiate CNS anti-oxidation and act synergistically with regards to neuroprotection
  • one prospective human study has found that combined intake of vitamin C and E displays significant treatment interaction and reduces the risk of stroke
  • Pycnogenol has demonstrated the ability to slow or reduce the pathological processes associated with Alzheimer's disease
  • Pcynogenol administration, in a clinical study of elderly patients, led to improved cognition and reductions in markers of lipid peroxidase
  • One other point of consideration is that in neurodegenerative disease states like Alzheimer's disease and Parkinson's disease, where there are high levels of reactive oxygen species generation, vitamin E can tend to become oxidized itself. For maximal effectiveness and to maintain its anti-oxidant capacity, vitamin E must be given in conjunction with other anti-oxidants like vitamin C or flavonoids
  • These various factors might account for the null effects of alpha-tocopherol supplementation in patients with MCI and Alzheimer's disease
  • preliminary results obtained in a pediatric population have suggested that post-traumatic oral creatine administration (0.4 g/kg) given within four hours of traumatic brain injury and then daily thereafter, may improve both acute and long-term outcomes
  • Acutely, post-traumatic creatine administration seemed to reduce duration of post-traumatic amnesia, length of time spent in the intensive care unit, and duration of intubation
  • At three and six months post-injury, subjects in the creatine treatment group demonstrated improvement on indices of self care, communication abilities, locomotion, sociability, personality or behavior and cognitive function when compared to untreated controls
  • patients in the creatine-treatment group were less likely to experience headaches, dizziness and fatigue over six months of follow-up
  • CNS creatine is derived from both its local biosynthesis from the essential amino acids methionine, glycine and arginine
  • Studies of patients with CNS creatine deficiency and/or murine models with genetic ablation of creatine kinase have consistently demonstrated significant neurological impairment in the absence of proper creatine, phosphocreatine, or creatine kinase function; thus highlighting its functional importance
  • chronic dosing may partially reverse neurological impairments in human CNS creatine deficiency syndromes
  • Several studies have suggested that creatine supplementation may also reduce oxidative DNA damage and brain glutamate levels in Huntington disease patients
  • Another study highlighted that creatine supplementation marginally improved indices of mood and reduced the need for increased dopaminergic therapy in patients with Parkinson's disease
  •  
    great review of natural therapies in the treatment of concussions
1 - 20 of 163 Next › Last »
Showing 20 items per page