Skip to main content

Home/ Dr. Goodyear/ Group items tagged LH

Rss Feed Group items tagged

Nathan Goodyear

Hypothalamic-Pituitary-Testicular Axis Disruptions in Older Men Are Differentially Link... - 0 views

  • 0.4–2% annual decline
  • the age trend in free T was more substantial (−1.3% per annum)
  • The core hormonal pattern with increasing age is suggestive of incipient primary testicular dysfunction with maintained total T and progressively blunted free T associated with higher LH.
  • ...16 more annotations...
  • Obesity was associated with progressively lower total and free T independent of the simultaneous decrease in SHBG.
  • our data highlight the fact that LH was unchanged or even lower in older men in the face of lower T in obesity, suggesting that there may be a failure at the hypothalamic-pituitary level.
  • a change in BMI from nonobese to obese may be equivalent to a 15 yr fall in T.
  • This pattern supports the hypothesis that different underlying mechanisms influence the functions of the HPT axis: age predominantly affects testicular function, whereas obesity impairs hypothalamic/pituitary function.
  • the effects of aging on testicular function can be moderated by increased LH compensation for many decades
  • obesity impairs hypothalamic/pituitary function independent of age, arguably an adaptive response for which there should be no compensatory mechanism.
  • the concurrent but opposite (and separate) effects of obesity and age on SHBG
  • SHBG was negatively associated with increasing strata of obesity
  • Obesity is associated with insulin resistance (28), and the increased circulating insulin inhibits hepatic SHBG synthesis
  • the SHBG increase with age may be related to relative IGF-I deficiency (27), although this has not been directly proven.
  • Obesity is associated with peripheral and central insulin resistance (30) and proinflammatory cytokine production (TNFα and IL-6) from adipocytes (31) and central nervous system endocannibinoid release (32), all of which are potential candidates for abrogating hypothalamic endocrine and downstream reproductive axis functions.
    • Nathan Goodyear
       
      The HPA axis effect may be the result of inflammation.
  • The relationship between obesity and T can be bidirectional: low T may be the cause rather than consequence of obesity
  • chronic alcohol abuse is known to suppress LH (40), our data showed no significant association among the three hormones or SHBG and alcohol intake.
  • increase in total T in smokers occurs through a primary increase in SHBG with a compensatory rise in LH
  • the effects of obesity (BMI or waist circumference) was by far the most important determinant of variance in total T, whereas age per se was important for SHBG, LH, and free T with comorbidity and smoking being comparatively minor contributors
  • It is noteworthy that these predisposing lifestyle and health factors are modifiable. This implies that the apparent age-related decline in T may constitute a barometer of health and thus be potentially preventable and/or reversible.
  •  
    Age induced decline in Testosterone is more associated with a decline in leydig cell function and thus elevated LH will be associated.  In contrast, obesity is more of a HPA axis disruption and thus LH may be normal to low.  The pulse amplitude is decrease.  No change in pulse frequency is noted.   With obesity, a decline in TT and fT was independent of SHBG. Aging is associated with a greater decrease in fT versus TT.
Nathan Goodyear

Induction of Testicular Aromatization by Luteinizing Hormone in Mature Rats - 0 views

  •  
    very interesting study in rats.  LH induced a dose-dependent increase in testicular estrogen production through aromatase activity.  Yes, LH stimulates the leydig cells to produce testosterone, but there is a point at which LH will actually increase aromatase activity and thus estrogen production at the testicular level.
Nathan Goodyear

Leptin and Androgens in Male Obesity: Evidence for Leptin Contribution to Reduced Andro... - 0 views

  • in male obesity basal and LH-stimulated androgen levels are reduced and inversely correlated with circulating leptin
  • functional leptin receptors are present in rodent Leydig cells
  • it is conceivable that in males high leptin concentrations may have a direct inhibitory effect(s) on Leydig cell function.
  • ...18 more annotations...
  • insulin is an important inhibitor of the synthesis of SHBG
  • no correlation between leptin and SHBG levels
  • SHBG reduction in obesity is a minor determinant of lowered androgen levels
  • SHBG can explain only up to 3% of the correlation
  • testicular T de novo production is impaired in obese men and that leptin seems to be the best hormonal predictor of this blunted response to LH stimulation
  • The low basal 17-OH-P levels found in massively obese men are consistent with a global impairment of Leydig cell steroidogenic function in this group of subjects.
  • These findings indicate that obese men have a FM-related defect in the enzymatic conversion of 17-OH-P to T, which is revealed by hCG stimulation.
  • Other studies have investigated the adrenal function in male obesity and have shown that basal cortisol and 17-OH-progesterone levels tend to decrease with the increase in the degree of obesity
  • High E2 can inhibit the expression and activity of the 17,20-lyase and may be responsible for this steroidogenic lesion
  • However, stimulated E2 levels were not higher in the obese than in controls, excluding the fact that the lower androgen response was due to an increased aromatization of T to E2 and that estrogens have a major role in the observed defect of 17,20-lyase activity in obese men.
  • the percentage increase in the 17-OH-progesterone to T molar ratio paralleled the increase in leptin levels of obese men
  • Multiple regression analysis indicated that the best hormonal predictor of the obesity-related reduction in T and FT basal levels and androgen changes after hCG stimulation was serum leptin concentration
  • insulin has no negative influences on androgen production in obese men
  • insulin is known to have stimulatory actions on T production that have been demonstrated in obese and normal weight men (57) and in Leydig cells in culture
  • the negative correlation between insulin and basal T can be partly explained by the inhibitory action of insulin on SHBG production
  • hypogonadal men have higher circulating leptin levels compared with hypogonadal patients under effective androgen substitution therapy
  • The impaired androgen response to LH stimulus was due to a defect in the enzymatic conversion of 17-OH-progesterone to T, which was disclosed by a leptin-related increase in 17-OH-progesterone to T ratio
  • Estrogens, which are inhibitory modulators of LH pulsatility and bioactivity
  •  
    Leptin appears to be a good marker of low Testosterone.  This study proposes that the mechanism of action is potentially 2 fold: first, a decrease in LH release by leptin (kisspeptin?) and 2nd, a directed decrease in Testosterone production by the leydig cells in the testes.
Nathan Goodyear

Ibuprofen alters human testicular physiology to produce a state of compensated hypogona... - 0 views

  • The levels of LH in the ibuprofen group had increased by 23% after 14 d of administration
  • This increase was even more pronounced at 44 d, at 33%
  • We found an 18% decrease (P = 0.056) in the ibuprofen group compared with the placebo group after 14 d (Fig. 1A) and a 23% decrease (P = 0.02) after 44 d (Fig. 1C). Taken together, these in vivo data suggest that ibuprofen induced a state of compensated hypogonadism during the trial, which occurred as early as 14 d and was maintained until the end of the trial at 44 d
  • ...27 more annotations...
  • We first investigated testosterone production after 24 and 48 h of ibuprofen exposure to assess its effects on Leydig cell steroidogenesis. Inhibition of testosterone levels was significant and dose-dependent (β = −0.405, P = 0.01 at 24 h and β = −0.664, P < 0.0001 at 48 h) (Fig. 2A) and was augmented over time
  • The AMH data show that the hypogonadism affected not only Leydig cells but also Sertoli cells and also occurred as early as 14 d of administration
  • Sertoli cell activity showed that AMH levels decreased significantly with ibuprofen administration, by 9% (P = 0.02) after 14 d (Fig. 1B) and by 7% (P = 0.05) after 44 d compared with the placebo group
  • Examination of the effect of ibuprofen exposure on both the ∆4 and ∆5 steroid pathways (Fig. 2B) showed that it generally inhibited all steroids from pregnenolone down to testosterone and 17β-estradiol; the production of each steroid measured decreased at doses of 10−5–10−4 M. Under control conditions, production of androstenediol and dehydroepiandrosterone (DHEA) was below the limit of detection except in one experiment with DHEA
  • Measuring the mRNA expression of genes involved in steroidogenesis in vitro showed that ibuprofen had a profound inhibitory effect on the expression of these genes (Fig. 3 B–D), consistent with that seen above in our ex vivo organ model. Taken together, these data examining effects on the endocrine cells confirm that ibuprofen-induced changes in the transcriptional machinery were the likely reason for the inhibition of steroidogenesis.
  • Suppression of gene expression concerned the initial conversion of cholesterol to the final testosterone synthesis. Hence, expression of genes involved in cholesterol transport to the Leydig cell mitochondria was impaired
  • A previous study reported androsterone levels decreased by 63% among men receiving 400 mg of ibuprofen every 6 h for 4 wk
  • We next examined the gene expression involved in testicular steroidogenesis ex vivo and found that levels of expression of every gene that we studied except CYP19A1 decreased after exposure for 48 h compared with controls
  • the changes in gene expression indicate that the transcriptional machinery behind the endocrine action of Leydig cells was most likely impaired by ibuprofen exposure.
  • Together, these data show that ibuprofen also directly impairs Sertoli cell function ex vivo by inhibiting transcription
  • ibuprofen use in men led to (i) elevation of LH; (ii) a decreased testosterone/LH ratio and, to a lesser degree, a decreased inhibin B/FSH ratio; and (iii) a reduction in the levels of the Sertoli cell hormone AMH
  • The decrease in the free testosterone/LH ratio resulted primarily from the increased LH levels, revealing that testicular responsiveness to gonadotropins likely declined during the ibuprofen exposure. Our data from the ex vivo experiments support this notion, indicating that the observed elevation in LH resulted from ibuprofen’s direct antiandrogenic action
  • AMH levels were consistently suppressed by ibuprofen both in vivo and ex vivo, indicating that this hormone is uncoupled from gonadotropins in adult men. The ibuprofen suppression of AMH further demonstrated that the analgesic targeted not only the Leydig cells but also the Sertoli cells, a feature encountered not only in the human adult testis but also in the fetal testis
  • ibuprofen displayed broad transcription-repression abilities involving steroidogenesis, peptide hormones, and prostaglandin synthesis
  • a chemical compound, through its effects on the signaling compounds, can result in changes in the testis at gene level, resulting in perturbations at higher physiological levels in the adult human
  • The analgesics acetaminophen/paracetamol and ibuprofen have previously been shown to inhibit the postexercise response in muscles by repressing transcription
  • Previous ex vivo studies on adult testis have indeed pointed to an antiandrogenicity, only on Leydig cells, of phthalates (41), aspirin, indomethacin (42), and bisphenol A (BPA) and its analogs
  • ibuprofen’s effects were not restricted to Leydig and Sertoli cells, as data showed that the expression of genes in peritubular cells was also affected
  • short-term exposure
  • In the clinical setting, compromised Leydig cell function resulting in increased insensitivity to LH is defined as compensated hypogonadism (4), an entity associated with all-cause mortality
  • compensated hypogonadic men present with an increased likelihood of reproductive, cognitive, and physical symptoms
  • an inverse relationship was recently reported between endurance exercise training and male sexual libido
  • AMH concentrations are lower in seminal plasma from patients with azoospermia than from men with normal sperm levels
  • inhibin B is a key clinical marker of reproductive health (32). The function of AMH, also secreted by Sertoli cells, and its regulation through FSH remain unclear in men
  • the striking dual effect of ibuprofen observed here on both Leydig and Sertoli cells makes this NSAID the chemical compound, of all the chemical classes considered, with the broadest endocrine-disturbing properties identified so far in men.
  • after administration of 600 mg of ibuprofen to healthy volunteers
  • 14 d or at the last day of administration at 44 d
  •  
    ibuprofen alters genetic expression that results in decreased Testosterone production.
Nathan Goodyear

LPS-Induced Inflammation Potentiates the IL-1-Mediated Reduction of LH Secretion from t... - 0 views

  •  
    IL-1beta reduced GNRH and LH production at the level of the Hypothalamus and the Pituitary respectively. What is interesting in this animal model is that greater LH suppression at the pituitary was found to occur in those animals with prior LPS exposure--priming??
Nathan Goodyear

Evaluation of the hypothalamic-pituitary-gonadal a... [Andrology. 2013] - PubMed - NCBI - 0 views

  •  
    Increasing glucose levels associated with declining LH pulses in men with type II diabetes.  This is one proposed mechanism for low T in men.  There has been great debate about if Low T was in part the cause of Diabetes or an effect of diabetes.  This proposes that low T is due to a decreased LH pulse as a result of rising glucose.
Nathan Goodyear

Short-Term Aromatase-Enzyme Blockade Unmasks Impaired Feedback Adaptations in Luteinizi... - 0 views

  • administration of a potent and selective aromatase antagonist reduces estradiol and elevates mean LH concentrations equivalently in young and older men. The low estrogen-feedback state in elderly men unmasks diminished incremental LH pulse amplitude and area; absence of further acceleration of LH pulse frequency; impaired regulation of the orderliness of LH release; and reduced testosterone to SHBG ratios
  •  
    estrogen decreases testosterone production
Nathan Goodyear

Life events are positively associated with luteinizin... [Stress. 2014] - PubMed - NCBI - 0 views

  •  
    Elevated Cortisol, life events as this study refers to, is associated with low Testosterone.  The authors found a positive association of cortisol with LH.  The result is elevated cortisol, low Testosterone, increased LH.
Nathan Goodyear

Testosterone and glucose metabolism in men: current concepts and controversies - 0 views

    • Nathan Goodyear
       
      80% of E2 production in men, that will cause low T in men, comes from SQ adiposity.  This leads to increase in visceral adiposity.
  • Only 5% of men with type 2 diabetes have elevated LH levels (Dhindsa et al. 2004, 2011). This is consistent with recent findings that the inhibition of the gonadal axis predominantly takes place in the hypothalamus, especially with more severe obesity
  • Metabolic factors, such as leptin, insulin (via deficiency or resistance) and ghrelin are believed to act at the ventromedial and arcuate nuclei of the hypothalamus to inhibit gonadotropin-releasing hormone (GNRH) secretion
  • ...32 more annotations...
  • kisspeptin has emerged as one of the most potent secretagogues of GNRH release
  • Consistent with the hypothesis that obesity-mediated inhibition of kisspeptin signalling contributes to the suppression of the HPT axis, infusion of a bioactive kisspeptin fragment has been recently shown to robustly increase LH pulsatility, LH levels and circulating testosterone in hypotestosteronaemic men with type 2 diabetes
  • Figure 4
  • Interestingly, a recent 16-week study of experimentally induced hypogonadism in healthy men with graded testosterone add-back either with or without concomitant aromatase inhibitor treatment has in fact suggested that low oestradiol (but not low testosterone) may be responsible for the hypogonadism-associated increase in total body and intra-abdominal fat mass
    • Nathan Goodyear
       
      This does not fit with the research on receptors, specifically estrogen receptors.  These studies that the authors are referencing are looking at "circulating" levels, not tissue levels.
  • A smaller study with a similar experimental design found that acute testosterone withdrawal reduced insulin sensitivity independent of body weight, whereas oestradiol withdrawal had no effects
  • Obesity and dysglycaemia and associated comorbidities such as obstructive sleep apnoea (Hoyos et al. 2012b) are important contributors to the suppression of the HPT axis
  • This is supported by observational studies showing that weight gain and development of diabetes accelerate the age-related decline in testosterone
  • Weight loss can reactivate the hypothalamic–pituitary–testicular axis
  • The hypothalamic–pituitary–testicular axis remains responsive to treatment with aromatase inhibitors or selective oestrogen receptor modulators in obese men
  • Kisspeptin treatment increases LH secretion, pulse frequency and circulating testosterone levels in hypotestosteronaemic men with type 2 diabetes
  • Several observational and randomised studies reviewed in Grossmann (2011) have shown that weight loss, whether by diet or surgery, leads to substantial increases in testosterone, especially in morbidly obese men
  • This suggests that weight loss can lead to genuine reactivation of the gonadal axis by reversal of obesity-associated hypothalamic suppression
  • There is pre-clinical and observational evidence that chronic hyperglycaemia can inhibit the HPT axis
  • in those men in whom glycaemic control worsened, testosterone decreased
  • successful weight loss combined with optimisation of glycaemic control may be sufficient to normalise circulating testosterone levels in the majority of such men
  • weight loss, optimisation of diabetic control and assiduous care of comorbidities should remain the first-line approach.
    • Nathan Goodyear
       
      This obviously goes against marketing-based medicine
  • In part, the discrepant results may be due to the fact men in the Vigen cohort (Vigen et al. 2013) had a higher burden of comorbidities. Given that one (Basaria et al. 2010), but not all (Srinivas-Shankar et al. 2010), RCTs in men with a similarly high burden of comorbidities reported an increase in cardiovascular events in men randomised to testosterone treatment (see section on Testosterone therapy: potential risks below) (Basaria et al. 2010), testosterone should be used with caution in frail men with multiple comorbidities
  • The retrospective, non-randomised and non-blinded design of these studies (Shores et al. 2012, Muraleedharan et al. 2013, Vigen et al. 2013) leaves open the possibility for residual confounding and multiple other sources of bias. These have been elegantly summarised by Wu (2012).
  • Effects of testosterone therapy on body composition were metabolically favourable with modest decreases in fat mass and increases in lean body mass
  • This suggests that testosterone has limited effects on glucose metabolism in relatively healthy men with only mildly reduced testosterone.
  • it is conceivable that testosterone treatment may have more significant effects on glucose metabolism in uncontrolled diabetes, akin to what has generally been shown for conventional anti-diabetic medications.
  • the evidence from controlled studies show that testosterone therapy consistently reduces fat mass and increases lean body mass, but inconsistently decreases insulin resistance.
  • Interestingly, testosterone therapy does not consistently improve glucose metabolism despite a reduction in fat mass and an increase in lean mass
  • the majority of RCTs (recently reviewed in Ng Tang Fui et al. (2013a)) showed that testosterone therapy does not reduce visceral fat
    • Nathan Goodyear
       
      visceral and abdominal adiposity are biologically different and thus the risks associated with the two are different.
    • Nathan Goodyear
       
      yet low T is associated with an increase in visceral adiposity--confusing!
  • testosterone therapy decreases SHBG
  • testosterone is inversely associated with total cholesterol, LDL cholesterol and triglyceride (Tg) levels, but positively associated with HDL cholesterol levels, even if adjusted for confounders
  • Although observational studies show a consistent association of low testosterone with adverse lipid profiles, whether testosterone therapy exerts beneficial effects on lipid profiles is less clear
  • Whereas testosterone-induced decreases in total cholesterol, LDL cholesterol and Lpa are expected to reduce cardiovascular risk, testosterone also decreases the levels of the cardio-protective HDL cholesterol. Therefore, the net effect of testosterone therapy on cardiovascular risk remains uncertain.
  • data have not shown evidence that testosterone causes prostate cancer, or that it makes subclinical prostate cancer grow
  • compared with otherwise healthy young men with organic androgen deficiency, there may be increased risks in older, obese men because of comorbidities and of decreased testosterone clearance
  • recent evidence that fat accumulation may be oestradiol-, rather than testosterone-dependent
Nathan Goodyear

Hormonal Modulation in Aging Patients with Erectile Dysfunction and Metabolic Syndrome - 0 views

  • Hypogonadism and MetS are strongly associated [12, 13, 16], having even been demonstrated that with the increasing number of MetS parameters there is a proportional raise in the incidence of hypogonadism
  • increasing number of MetS components is inversely associated with T levels
  • the presence of MetS did not prove to be a significant determinant of hypogonadism, as it did not lead to a decline in T levels, in MetS patients with already established hypogonadism, the increasing number of MetS features was associated with further decline in T
  • ...15 more annotations...
  • In the setting of MetS, hypertriglyceridemia and increased WC have been reported as the most important determinants of hypogonadism
  • recent literature consistently associates obesity not only with higher risk of hypogonadism [4, 6, 27] but also with lower T levels
  • Visceral adiposity has been particularly related with reduction of T and SHBG levels (independent of other metabolic disorders)
  • WC was one of the MetS parameters with the greatest influence in T levels decrease, presenting itself as a strong risk factor for hypogonadism development
  • MetS-related T decline was not accompanied by an increase in pituitary LH levels, suggesting impairment in gonadotropin secretion
  • The molecules behind this smoothing compensatory effect of GnRH/LH are still unknown, but estrogens and insulin, as well as leptin, TNF-α, and other adipokines, were proposed candidates
  • fat stores undertake an increase aromatization of androgens, therefore raising estrogen levels [9, 15], which in turn decrease LH secretion
  • our data contradicts the concept that estradiol exerts a negative feedback on hypothalamic GnRH secretion
  • taking into account that high estradiol levels have already been described as the only abnormality in a subset of patients with ED, the hypothesis that the later might not only be caused by androgen deficiency is becoming increasingly evident
  • it has been reported that the chronic exposure to phosphodiesterase type 5 inhibitors (PDE5i), widely used for the treatment of ED, may influence serum estradiol levels
  • thyroid disorders (specially hyperthyroidism) have been related to ED and hypogonadism, and so must be considered in a sexual-dysfunction setting
  • It is clear from the current literature that collecting a more thorough hormonal panel might be a wise approach to further uncover hormonal relations
    • Nathan Goodyear
       
      outstanding point.  This hits to the point that Low T is the effect not the cause.
  • We concluded that in ED patients with hypogonadism and MetS, the attenuated response of HPG axis (normal or low LH levels) might not always be due to an underlying adiposity-dependent estrogen-raising effect.
  • our findings indicate that ED, aging, and estradiol might have a stronger connection than what is currently described in the literature.
  • this study underlines the importance of the collection of a full hormonal panel in ED men
  •  
    low T strongly associated with metabolic syndrome in men.
Nathan Goodyear

Thieme E-Journals - Hormone and Metabolic Research / Abstract - 0 views

  •  
    small study, but males with pancreatic cancer were found to have higher levels of FSH (p < 0.01), LH and oestradiol (p < 0.001) and lower levels of progesterone (p < 0.01) and testosterone (p < 0.05) than the controls. Female patients with pancreatic cancer were found to have higher levels of oestradiol (p < 0.001) and lower levels of LH, FSH and progesterone.  Though cause and effect is not known, the expression of ER alpha in pancreatic cancer is known and the inflammatory and pro-growth signal of ER alpha is known, thus heavy stimulation would be unwise.
Nathan Goodyear

Kisspeptin-10 Is a Potent Stimulator of LH and Increases Pulse Frequency in Men - 0 views

  • Kisspeptin, a hypothalamic neuropeptide
  • has recently emerged as a key central regulator of GnRH secretion
  •  
    Kisspeptin increases LH pulse frequency and pluse amplititude; the result is an increase in Testosterone secretion.
Nathan Goodyear

Many LH peaks are needed to physiologically stimulate testosterone secretion: modulatio... - 0 views

  •  
    multiple LH peaks, 3-4 needed per day to stimulate Testosterone secretion
Nathan Goodyear

Testosterone and glucose metabolism in men: current concepts and controversies - 1 views

  • Around 50% of ageing, obese men presenting to the diabetes clinic have lowered testosterone levels relative to reference ranges based on healthy young men
  • The absence of high-level evidence in this area is illustrated by the Endocrine Society testosterone therapy in men with androgen deficiency clinical practice guidelines (Bhasin et al. 2010), which are appropriate for, but not specific to men with metabolic disorders. All 32 recommendations made in these guidelines are based on either very low or low quality evidence.
  • A key concept relates to making a distinction between replacement and pharmacological testosterone therapy
  • ...59 more annotations...
  • The presence of symptoms was more closely linked to increasing age than to testosterone levels
  • Findings similar to type 2 diabetes were reported for men with the metabolic syndrome, which were associated with reductions in total testosterone of −2.2 nmol/l (95% CI −2.41 to 1.94) and in free testosterone
  • low testosterone is more predictive of the metabolic syndrome in lean men
  • Cross-sectional studies uniformly show that 30–50% of men with type 2 diabetes have lowered circulating testosterone levels, relative to references based on healthy young men
  • In a recent cross-sectional study of 240 middle-aged men (mean age 54 years) with either type 2 diabetes, type 1 diabetes or without diabetes (Ng Tang Fui et al. 2013b), increasing BMI and age were dominant drivers of low total and free testosterone respectively.
  • both diabetes and the metabolic syndrome are associated with a modest reduction in testosterone, in magnitude comparable with the effect of 10 years of ageing
  • In a cross-sectional study of 490 men with type 2 diabetes, there was a strong independent association of low testosterone with anaemia
  • In men, low testosterone is a marker of poor health, and may improve our ability to predict risk
    • Nathan Goodyear
       
      probably the most important point made in this article
  • low testosterone identifies men with an adverse metabolic phenotype
  • Diabetic men with low testosterone are significantly more likely to be obese or insulin resistant
  • increased inflammation, evidenced by higher CRP levels
  • Bioavailable but not free testosterone was independently predictive of mortality
  • It remains possible that low testosterone is a consequence of insulin resistance, or simply a biomarker, co-existing because of in-common risk factors.
  • In prospective studies, reviewed in detail elsewhere (Grossmann et al. 2010) the inverse association of low testosterone with metabolic syndrome or diabetes is less consistent for free testosterone compared with total testosterone
  • In a study from the Framingham cohort, SHBG but not testosterone was prospectively and independently associated with incident metabolic syndrome
  • low SHBG (Ding et al. 2009) but not testosterone (Haring et al. 2013) with an increased risk of future diabetes
  • In cross-sectional studies of men with (Grossmann et al. 2008) and without (Bonnet et al. 2013) diabetes, SHBG but not testosterone was inversely associated with worse glycaemic control
  • SHBG may have biological actions beyond serving as a carrier protein for and regulator of circulating sex steroids
  • In men with diabetes, free testosterone, if measured by gold standard equilibrium dialysis (Dhindsa et al. 2004), is reduced
    • Nathan Goodyear
       
      expensive, laborious process filled with variables
  • Low free testosterone remains inversely associated with insulin resistance, independent of SHBG (Grossmann et al. 2008). This suggests that the low testosterone–dysglycaemia association is not solely a consequence of low SHBG.
  • Experimental evidence reviewed below suggests that visceral adipose tissue is an important intermediate (rather than a confounder) in the inverse association of testosterone with insulin resistance and metabolic disorders.
  • testosterone promotes the commitment of pluripotent stem cells into the myogenic lineage and inhibits their differentiation into adipocytes
  • testosterone regulates the metabolic functions of mature adipocytes (Xu et al. 1991, Marin et al. 1995) and myocytes (Pitteloud et al. 2005) in ways that reduce insulin resistance.
  • Pre-clinical evidence (reviewed in Rao et al. (2013)) suggests that at the cellular level, testosterone may improve glucose metabolism by modulating the expression of the glucose-transported Glut4 and the insulin receptor, as well as by regulating key enzymes involved in glycolysis.
  • More recently testosterone has been shown to protect murine pancreatic β cells against glucotoxicity-induced apoptosis
  • Interestingly, a reciprocal feedback also appears to exist, given that not only chronic (Cameron et al. 1990, Allan 2013) but also, as shown more recently (Iranmanesh et al. 2012, Caronia et al. 2013), acute hyperglycaemia can lower testosterone levels.
  • There is also evidence that testosterone regulates insulin sensitivity directly and acutely
  • In men with prostate cancer commencing androgen deprivation therapy, both total as well as, although not in all studies (Smith 2004), visceral fat mass increases (Hamilton et al. 2011) within 3 months
  • More prolonged (&gt;12 months) androgen deprivation therapy has been associated with increased risk of diabetes in several large observational registry studies
  • Testosterone has also been shown to reduce the concentration of pro-inflammatory cytokines in some, but not all studies, reviewed recently in Kelly &amp; Jones (2013). It is not know whether this effect is independent of testosterone-induced changes in body composition.
  • the observations discussed in this section suggest that it is the decrease in testosterone that causes insulin resistance and diabetes. One important caveat remains: the strongest evidence that low testosterone is the cause rather than consequence of insulin resistance comes from men with prostate cancer (Grossmann &amp; Zajac 2011a) or biochemical castration, and from mice lacking the androgen receptor.
  • Several large prospective studies have shown that weight gain or development of type 2 diabetes is major drivers of the age-related decline in testosterone levels
  • there is increasing evidence that healthy ageing by itself is generally not associated with marked reductions in testosterone
  • Circulating testosterone, on an average 30%, is lower in obese compared with lean men
  • increased visceral fat is an important component in the association of low testosterone and insulin resistance
  • The vast majority of men with metabolic disorders have functional gonadal axis suppression with modest reductions in testosterone levels
  • obesity is a dominant risk factor
  • men with Klinefelter syndrome have an increased risk of metabolic disorders. Interestingly, greater body fat mass is already present before puberty
  • Only 5% of men with type 2 diabetes have elevated LH levels
  • inhibition of the gonadal axis predominantly takes place in the hypothalamus, especially with more severe obesity
  • Metabolic factors, such as leptin, insulin (via deficiency or resistance) and ghrelin are believed to act at the ventromedial and arcuate nuclei of the hypothalamus to inhibit gonadotropin-releasing hormone (GNRH) secretion from GNRH neurons situated in the preoptic area
  • kisspeptin has emerged as one of the most potent secretagogues of GNRH release
  • hypothesis that obesity-mediated inhibition of kisspeptin signalling contributes to the suppression of the HPT axis, infusion of a bioactive kisspeptin fragment has been recently shown to robustly increase LH pulsatility, LH levels and circulating testosterone in hypotestosteronaemic men with type 2 diabetes
  • A smaller study with a similar experimental design found that acute testosterone withdrawal reduced insulin sensitivity independent of body weight, whereas oestradiol withdrawal had no effects
  • suppression of the diabesity-associated HPT axis is functional, and may hence be reversible
  • Obesity and dysglycaemia and associated comorbidities such as obstructive sleep apnoea (Hoyos et al. 2012b) are important contributors to the suppression of the HPT axis
  • weight gain and development of diabetes accelerate the age-related decline in testosterone
  • Modifiable risk factors such as obesity and co-morbidities are more strongly associated with a decline in circulating testosterone levels than age alone
  • 55% of symptomatic androgen deficiency reverted to a normal testosterone or an asymptomatic state after 8-year follow-up, suggesting that androgen deficiency is not a stable state
  • Weight loss can reactivate the hypothalamic–pituitary–testicular axis
  • Leptin treatment resolves hypogonadism in leptin-deficient men
  • The hypothalamic–pituitary–testicular axis remains responsive to treatment with aromatase inhibitors or selective oestrogen receptor modulators in obese men
  • Kisspeptin treatment increases LH secretion, pulse frequency and circulating testosterone levels in hypotestosteronaemic men with type 2 diabetes
  • change in BMI was associated with the change in testosterone (Corona et al. 2013a,b).
  • weight loss can lead to genuine reactivation of the gonadal axis by reversal of obesity-associated hypothalamic suppression
  • There is pre-clinical and observational evidence that chronic hyperglycaemia can inhibit the HPT axis
  • in men who improved their glycaemic control over time, testosterone levels increased. By contrast, in those men in whom glycaemic control worsened, testosterone decreased
  • testosterone levels should be measured after successful weight loss to identify men with an insufficient rise in their testosterone levels. Such men may have HPT axis pathology unrelated to their obesity, which will require appropriate evaluation and management.
  •  
    Article discusses the expanding evidence of low T and Metabolic syndrome.
Nathan Goodyear

Europa : CORDIS : Search : Simple search : Exploitable Results - 0 views

  •  
    Interesting cohort of Danish and Finnish men.  What is interesting is that in both groups, men born earlier in the 20th century were found to have higher testosterone levels.  As the year of birth advanced, there were declines in Testosterone, LH, and higher SHBG.
Nathan Goodyear

Journal of Endocrinological Investigation - 0 views

  •  
    Testosterone levels fluctuate seasonally, with the peak production in the fall of the year.  Contrast that with LH, with it's peak in the spring of the year.  This study found that men with Klinefelter's syndrome had only seasonal fluctuations of testosterone, suggesting a testicular independent role.  This is a small study.  
Nathan Goodyear

Dietary zinc deficiency alters 5 alpha-reduction and ... [J Nutr. 1996] - PubMed - NCBI - 0 views

  •  
    Zinc deficiency associated with low 5-alpha reductase activity and increased aromatase activity.  Additionally, low zinc was associated with decreased LH and testosterone levels in male rats.
Nathan Goodyear

Vitamin D is associated with testosterone and hypogonadism in Chinese men: Results from... - 0 views

  • lower 25(OH)D level was significantly associated with lower total T, E2, SHBG, LH and FSH levels after adjusting for age, residence area, economic status and current smoker
  • association between 25(OH)D status and hypogonadism in Chinese men and confirms that this relationship is present in a large population
  • VDR knockout mutant mice showed gonadal insufficiencies
  • ...6 more annotations...
  • High LH and FSH levels in the male mice indicated hypergonadotropic hypogonadism
  • Another mouse study reported a tendency towards low testosterone/LH ratio and Leydig cell hyperplasia in VDR null mice
  • The serum testosterone levels could increase to normal values in vitamin D-deficient rats replete with vitamin D
  • VDR knockout mice had decreased sperm count, reduced sperm motility, and histological abnormality of the testis
  • vitamin D supplementation increases testosterone levels in non-diabetic subjects
  • The data from the European Male Ageing Study [9] indicated that 25(OH)D is positively associated with total T
  •  
    Study of 713 Chinese men finds a correlation between low vitamin D and low total Testosterone.
Nathan Goodyear

Reproductive toxicologic evaluations of Bulbine natalensis Baker stem extract in albino... - 0 views

  •  
    Bulbine natalensis Baker stem extract found to increase LH and Testosterone in wistar rats in 7 days at doses of 25 to 50 mg/kg; this effect was not found at 100 mg/kg.  The result was an increase in testes size, rate of mating, libido, and fertility.
Nathan Goodyear

Differential Regulation of Gonadotropin Secretion by Testosterone in the Human Male: Ab... - 0 views

  •  
    In men, Testosterone is shown to provide negative feedback on LH; but FSH is primarily regulated by estradiol.
1 - 20 of 81 Next › Last »
Showing 20 items per page