Skip to main content

Home/ Dr. Goodyear/ Group items tagged modification

Rss Feed Group items tagged

Nathan Goodyear

Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-bli... - 0 views

  •  
    small pilot study finds that synbiotics, probiotics and prebiotics, + lifestyle modifications work better than lifestyle modifications alone in NAFLD.
Nathan Goodyear

Obesity - Effects of Lifestyle Changes to Reduce Risks of Diabetes and Associated Cardi... - 0 views

  •  
    Lifestyle changes are the most effective therapy in Diabetes development.  These include, diet modification, weight loss, and exercise.
Nathan Goodyear

JAMA Network | JAMA: The Journal of the American Medical Association | Low-Fat Dietary ... - 0 views

  •  
    The women's health initiative dietary modification trial of almost 50,000 women found no association between a low fat diet and a reduction of colorectal cancer.  Translation: a low fat diet does not lower the risk of colorectal cancer.
Nathan Goodyear

Estradiol, Tamoxifen, and Flaxseed A... [J Clin Endocrinol Metab. 2012] - PubMed - NCBI - 0 views

  •  
    Tamoxifen and more importantly, flaxseed increases endogenous IL-1Ra that is a known inhibitor of the pro-inflammatory cytokines IL-1alpha and IL-1beta. These pro-inflammatory cytokines are associated with breast cancer.  Conclusion: diet modification can effect inflammatory cytokines associated with breast cancer.  This should be explored as true preventative therapies for women. This study also found a positive association with estradiol and IL-1Beta in breast tissue and SC fat; inversely associated with IL-Ra in the breast.
Nathan Goodyear

An integrative analysis reveals coordinated reprogramming of the epigenome and the tran... - 0 views

  • contribution to the training response of the epigenome as a mediator between genes and environment
  • Differential DNA methylation was predominantly observed in enhancers, gene bodies and intergenic regions and less in CpG islands or promoters
  • highly consistent and associated modifications in methylation and expression, concordant with observed health-enhancing phenotypic adaptations, are induced by a physiological stimulus
  • ...34 more annotations...
  • The health benefits following exercise training are elicited by gene expression changes in skeletal muscle, which are fundamental to the remodeling process
  • there is increasing evidence that more short-term environmental factors can influence DNA methylation
  • dietary factors have the potency to alter the degree of DNA methylation in different tissues, 9,10 including skeletal muscle
  • In one study, a single bout of endurance-type exercise was shown to affect methylation at a few promoter CpG sites
  • In the context of diabetes, exercise training has been shown to affect genome-wide methylation pattern in skeletal muscle,13 as well as in adipose tissue.
  • physiological stressors can indeed affect DNA methylation
  • training intervention reshapes the epigenome and induces significant changes in DNA methylation
  • the findings from this tightly controlled human study strongly suggest that the regulation and maintenance of exercise training adaptation is to a large degree associated to epigenetic changes, especially in regulatory enhancer regions
  • Endurance training [after training (T2) vs. before training (T1)] induced significant (false discovery rate, FDR< 0.05) methylation changes at 4919 sites across the genome in the trained leg
  • identified 4076 differentially expressed genes
  • a complementary approach revealed that over 600 CpG sites correlated to the increase in citrate synthase activity, an objective measure of training response (Figure S4 and Dataset S14). This might imply that some of these sites could influence the degree of training response.
  • As expected by a physiological environmental trigger on adult tissue, the observed effect size on DNA methylation was small in comparison to disease states such as cancer
  • a preferential localization outside of CpG Islands/Shelves/Shores
  • endurance training especially influences enhancers
  • negative correlation was more prominent for probes in promoter/5′UTR/1st exon regions, while gene bodies had a stronger peak of positive correlation
  • The significant changes in DNA methylation, that primarily occurred in enhancer regions, were to a large extent associated with relevant changes in gene expression
  • The main findings of this study were that 3 months of endurance training in healthy human volunteers induced significant methylation changes at almost 5000 sites across the genome and significant differential expression of approximately 4000 genes
  • DMPs that increased in methylation were mainly associated to structural remodeling of the muscle and glucose metabolism, while the DMPs with decreased methylation were associated to inflammatory/immunological processes and transcriptional regulation
  • This suggests that the changes in methylation seen with training were not a random effect across the genome but rather a controlled process that likely contributes to skeletal muscle adaptation to endurance training
  • Correlation of the changes in DNA methylation to the changes in gene expression showed that the majority of significant methylation/expression pairs were found in the groups representing either increases in expression with a concomitant decrease in methylation or vice versa
  • The fraction of genes showing both significant decrease in methylation and upregulation was 7.5% of the DEGs or 2.3% of all genes detected in muscle tissue with at least one measured DNA methylation position. Correspondingly, 7.0% of the DEGs or 2.1% of all genes showed both significant increase in methylation and downregulation
  • we show that DNA methylation changes are associated to gene expression changes in roughly 20% of unique genes that significantly changed with training
  • Examples of structural genes include COL4A1, COL4A2 and LAMA4. These genes have also been identified as important for differences in responsiveness to endurance training
  • methylation status could be part of the mechanism behind variable training response
  • Among the metabolic genes, MDH1 catalyzes the reversible oxidation of malate to oxaloacetate, utilizing the NAD/NADH cofactor system in the citric acid cycle and NDUFA8 plays an important role in transferring electrons from NADH to the respiratory chain
  • PPP1R12A,
  • In the present study, methylation predominantly changed in enhancer regions with enrichment for binding motifs for different transcription factors suggesting that enhancer methylation may be highly relevant also in exercise biology
  • Of special interest in the biology of endurance training may be that MRFs, through binding to the PGC-1α core promoter, can regulate this well-studied co-factor for mitochondrial biogenesis
  • That endurance training led to an increased methylation in enhancer regions containing motifs for the MRFs and MEFs is somewhat counterintuitive since it should lead to the repression of the action of the above discussed transcription factors
  • decrease with training in this study, including CDCH15, MYH3, TNNT2, RYR1 and SH3GLB1
  • expression of MEF2A itself decreased with training
  • this study demonstrates that the transcriptional alterations in skeletal muscle in response to a long-term endurance exercise intervention are coupled to DNA methylation changes
  • We suggest that the training-induced coordinated epigenetic reprogramming mainly targets enhancer regions, thus contributing to differences in individual response to lifestyle interventions
  • a physiological health-enhancing stimulus can induce highly consistent modifications in DNA methylation that are associated to gene expression changes concordant with observed phenotypic adaptations
  •  
    Exercise alters gene expression via methylation--the power of epigenetics.  Interestingly, the majority of the methylation was outside the CPG island regions.  This 3 month study found methylation of 5,000 sites across the genome resulting in altered expression of apps 4,000 genes.  The altered muscle changes of the endurance training was linked to DNA methylation changes.
harshitatyagi

Can Keto Diet Lead You To Positive Pregnancy Results - 0 views

  •  
    A keto diet with its modification can reduce the challenges of infertility. And make the couple's fertility so they can relieve their abandoned dream of being a parent again.
Nathan Goodyear

Distribution and Posttranslational Modification of Synaptic ERα in the Adult ... - 1 views

  •  
    estrogen receptors are transported to the cell membrane after production in the rat hippocampus.  The membrane receptors have the same origin as the intracellular receptors.
Nathan Goodyear

Lifestyle modification increases serum testosterone level and decrease central blood pr... - 0 views

  •  
    study finds aerobic exercise increased Testosterone levels in obese men.
Nathan Goodyear

Alzheimer's disease--synergistic effects of ... [J Neural Transm. 1998] - PubMed - NCBI - 0 views

  • AGEs are protein modifications that contribute to the formation of the histopathological and biochemical hallmarks of AD: amyloid plaques, neurofibrillary tangles and activated microglia
  •  
    good review of understanding of how poor glucose control, oxidative stress result in AGE and Alzheimer's disease.
Nathan Goodyear

JAMA Network | JAMA: The Journal of the American Medical Association | Low-Fat Dietary ... - 0 views

  •  
    large study of 50,000 postmenopausal women found no significant reduction in CVD with a low fat diet.  The mean dietary time period was 8 years.
Nathan Goodyear

Nutrition & Metabolism | Full text | Fructose, insulin resistance, and metabolic dyslip... - 0 views

  • For thousands of years humans consumed fructose amounting to 16–20 grams per day
  • daily consumptions amounting to 85–100 grams of fructose per day
  • Of key importance is the ability of fructose to by-pass the main regulatory step of glycolysis, the conversion of glucose-6-phosphate to fructose 1,6-bisphosphate, controlled by phosphofructokinase
  • ...29 more annotations...
  • Thus, while glucose metabolism is negatively regulated by phosphofructokinase, fructose can continuously enter the glycolytic pathway. Therefore, fructose can uncontrollably produce glucose, glycogen, lactate, and pyruvate, providing both the glycerol and acyl portions of acyl-glycerol molecules. These particular substrates, and the resultant excess energy flux due to unregulated fructose metabolism, will promote the over-production of TG (reviewed in [53]).
  • Glycemic excursions and insulin responses were reduced by 66% and 65%, respectively, in the fructose-consuming subjects
  • reduction in circulating leptin both in the short and long-term as well as a 30% reduction in ghrelin (an orexigenic gastroenteric hormone) in the fructose group compared to the glucose group.
  • A prolonged elevation of TG was also seen in the high fructose subjects
  • Both fat and fructose consumption usually results in low leptin concentrations which, in turn, leads to overeating in populations consuming energy from these particular macronutrients
  • Chronic fructose consumption reduces adiponectin responses, contributing to insulin resistance
  • A definite relationship has also been found between metabolic syndrome and hyperhomocysteinemia
  • the liver takes up dietary fructose rapidly where it can be converted to glycerol-3-phosphate. This substrate favours esterification of unbound FFA to form the TG
  • Fructose stimulates TG production, but impairs removal, creating the known dyslipidemic profile
  • the effects of fructose in promoting TG synthesis are independent of insulinemia
  • Although fructose does not appear to acutely increase insulin levels, chronic exposure seems to indirectly cause hyperinsulinemia and obesity through other mechanisms. One proposed mechanism involves GLUT5
  • If FFA are not removed from tissues, as occurs in fructose fed insulin resistant models, there is an increased energy and FFA flux that leads to the increased secretion of TG
  • In these scenarios, where there is excess hepatic fatty acid uptake, synthesis and secretion, 'input' of fats in the liver exceed 'outputs', and hepatic steatosis occurs
  • Carbohydrate induced hypertriglycerolemia results from a combination of both TG overproduction, and inadequate TG clearance
  • fructose-induced metabolic dyslipidemia is usually accompanied by whole body insulin resistance [100] and reduced hepatic insulin sensitivity
  • Excess VLDL secretion has been shown to deliver increased fatty acids and TG to muscle and other tissues, further inducing insulin resistance
  • the metabolic effects of fructose occur through rapid utilization in the liver due to the bypassing of the regulatory phosphofructokinase step in glycolysis. This in turn causes activation of pyruvate dehydrogenase, and subsequent modifications favoring esterification of fatty acids, again leading to increased VLDL secretion
  • High fructose diets can have a hypertriglyceridemic and pro-oxidant effect
  • Oxidative stress has often been implicated in the pathology of insulin resistance induced by fructose feeding
  • Administration of alpha-lipoic acid (LA) has been shown to prevent these changes, and improve insulin sensitivity
  • LA treatment also prevents several deleterious effects of fructose feeding: the increases in cholesterol, TG, activity of lipogenic enzymes, and VLDL secretion
  • Fructose has also been implicated in reducing PPARα levels
  • PPARα is a ligand activated nuclear hormone receptor that is responsible for inducing mitochondrial and peroxisomal β-oxidation
  • decreased PPARα expression can result in reduced oxidation, leading to cellular lipid accumulation
  • fructose diets altered the structure and function of VLDL particles causing and increase in the TG: protein ratio
  • LDL particle size has been found to be inversely related to TG concentration
  • therefore the higher TG results in a smaller, denser, more atherogenic LDL particle, which contributes to the morbidity of the metabolic disorders associated with insulin resistance
  • High fructose, which stimulates VLDL secretion, may initiate the cycle that results in metabolic syndrome long before type 2 diabetes and obesity develop
  • A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, disturbs normal hepatic carbohydrate metabolism leading to two major consequences (Figure 2): perturbations in glucose metabolism and glucose uptake pathways, and a significantly enhanced rate of de novo lipogenesis and TG synthesis, driven by the high flux of glycerol and acyl portions of TG molecules coming from fructose catabolism
  •  
    Fructose and metabolic syndrome.  Good discussion of the impact of high fructose intake and metabolic dysfunction.  This study also does a great job of highlighting the historical change of fructose intake.
Nathan Goodyear

Colonization-Induced Host-Gut Microbial Metabolic Interaction - 0 views

  • he gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems.
  • Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization
  • The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis
  • ...11 more annotations...
  • modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites
  • Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated
  • The gut microbiota (GM) exhibits a relatively low level of diversity compared to those of most soil ecosystems and in humans it is comprised of usually no more than nine phyla of microorganisms, of which only two are dominant: the Firmicutes and the Bacteroidetes
  • colonization of a germfree gut was rapid and remarkably stable, establishing within only a week after first exposure
  • a study conducted on germfree rats by Nicholls et al. showed that 3 weeks were necessary to obtain a stabilization and “normalization”
  • the microbiota status affects the systemic metabolism of the host, modulating the metabolic fingerprint of topographically remote organs such as the liver and the kidney
  • Gut colonization induces a rapid weight gain associated with stimulation of hepatic glycogenesis and triglyceride synthesis
  • Gut colonization alters bile acid metabolite profiles via modulation of hepatic Cyp8b1 expression
  • Bile acids are well-known contributors to glucose and lipid metabolism in the liver
  • GM is known to alter bile metabolism
  • GM is also known to exert a strong influence on the metabolism of xenobiotics
  •  
    The effects of gut microbiome are not confined to the gut.  They alter bile acid metabolism and thus lipid/glucose metabolism.  They alter CYP450 activity.  They effect metabolism.  They effect the metabolism, and thus effects, of other drugs. 
Nathan Goodyear

PLOS ONE: The Gut Microbiota and Developmental Programming of the Testis in Mice - 0 views

  • The intra-testicular level of testosterone in GF mice was found to be significantly lower than in SPF and CBUT mice
  • This study establishes a novel role for the commensal gut microbiota in the regulation of testicular development and function
  • Absence of the normal microbiota influences the formation and the integrity of the BTB as well as the intra-testicular levels of testosterone and serum levels of LH and FSH.
  • ...8 more annotations...
  • Nutritional, socioeconomic, lifestyle and environmental factors (among others) are involved in the regulation of normal spermatogenesis.
  • he gut microbiota is one such potential source of environmental factors/products that has developed an intimate symbiotic relationship with host's physiology.
  • Manipulation of the gut microbiotia through dietary modification, pre- and probiotics can therefore be beneficial for the host's reproductive health.
  • In the current study, colonizing GF mice with CBUT resulted in an increased sperm production, suggesting that bacterial products, e.g. of fermentation, directly or indirectly, can affect the testis.
  • the absence of gut microbiota influenced testosterone levels
  • A recent study demonstrated that dietary supplementation of the probiotics Lactobacillus reuteri increased and restored testosterone levels in aging mice
  • bacterial metabolites such as butyrate have been shown to increase the levels of LH [43] and FSH
  • This suggests that butyrate most likely regulates testosterone production at the testicular level by stimulation of gene expression in Leydig cells and with little or no effect at the pituitary- hypothalamic levels.
  •  
    gut micro biome effects spermatogenesis, Testosterone production, and the brain-testicle-barrier.
wheelchairindia9

Golden Motor Electric Wheelchair - 0 views

  •  
    Powerchairs are generally four-wheeled or six-wheeled and non-folding, however some folding designs exist and other designs may have some ability to partially dismantle for transit. Four general styles of powerchair drive systems exist: front, centre or rear wheel drive and all-wheel drive. Powered wheels are typically somewhat larger than the trailing/castoring wheels, while castoring wheels are typically larger than the castors on a manual chair. Centre wheel drive powerchairs have castors at both front and rear for a six-wheel layout. Angel Wheelchair Electric standing wheelchair Standing up, driving function by power. Head and signal light (controlled by joystick). Adjustable headrest. Adjustable footplate. Detachable backrest Rigid steel framework W/liquid coating Flip-backward armrest Max speed: 9.15KM/H Front castor: 2.80/2.50-4 pneumatic castor (9") Rear wheels: 3.00-8 pneumatic tire (14") Available seat width: A (46 cm), D (42 cm) Max loading: A size: 135 kg Net weight w/o battery: 62.7 kg A powerchairs is a wheelchair that is propelled by means of an electric motor rather than manual power. Power wheelchairs are useful for those unable to propel a manual wheelchair or who may need to use a wheelchair for distances or over terrain which would be fatiguing in a manual wheelchair. They may also be used not just by people with 'traditional' mobility impairments, but also by people with cardiovascular and fatigue based condition. An powerwheelchair powers more than just chair. It gives the power to safely travel long distances on own. It empowers to navigate through home, backyard, school, workplace or local park. It gives power to do the things,want to do. It gives power. When accidents occur that leave permanent leg injuries, or as age sets in and joint pain becomes unbearable, the power chair acts as a gateway to continue living life to the fullest. The powerwheelchairs in our lineup are all battery powered, yet each device fills
Nathan Goodyear

What dietary modification best improves insulin sensitivity and why? - Weickert - 2012 ... - 0 views

  • cereal-fibre intake, under isoenergetic conditions, improves whole-body IR in both short-term and more prolonged studies
  •  
    Great review of macronutrients and insulin resistance.  Caloric reduction plus exercise still the best method to reduce insulin resistance.   Long-term high protein intake increases insulin resistance.
Nathan Goodyear

Low-level lead exposure, metabolic syndrome, and h... [Environ Health Perspect. 2006] -... - 0 views

  • The results suggest that elderly men with MetS were more susceptible to autonomic dysfunction in association with chronic lead exposure as measured in patella. The modification by MetS is consistent with a role for oxidative stress in lead toxicity on the cardiovascular system.
  •  
    low lead levels through oxidative stress contribute to metabolic syndrome
Nathan Goodyear

International Journal of Impotence Research - Obesity, low testosterone levels and erec... - 0 views

  • Studies have shown that ED may be an early biomarker of general endothelial dysfunction, atherosclerosis and CVD
  • testosterone treatment of hypogonadal young and older men improves sexual function, increases lean mass and decreases fat mass
  • In men with low serum testosterone (for example, <8 or 230 nmol l−1) with obesity, metabolic syndrome and diabetes mellitus, treatment with testosterone is warranted
  • ...12 more annotations...
  • In obese middle-aged men, testosterone treatment reduced visceral adipocity, insulin resistance, serum cholesterol and glucose levels
  • testosterone replacement has a favorable impact on body mass, insulin secretion and sensitivity, lipid profile and blood pressure in hypogonadal men with the metabolic syndrome as well as type 2 diabetes mellitus
  • Testosterone significantly inhibits lipoprotein lipase activity, which reduces triglycerides uptake into adipocytes in the abdominal adipose tissue
  • testosterone treatment decreased endogenous inflammatory cytokines (tumor necrosis factor-α and IL-1β) and lipids (total cholesterol) and increased IL-10 in hypogonadal men
  • Testosterone treatment reduced leptin and adiponectin levels in hypogonadal type 2 diabetic men after 3 months of testosterone replacement
  • available data clearly show a relationship between obesity, low testosterone levels and ED
  • Obesity adversely affects endothelial function and lowers serum testosterone levels through the development of insulin resistance and metabolic syndrome
  • Metabolic disturbances as well as production of cytokines and adipokines by inflamed fat cells may be causal factors in the development of ED
  • The onset of ED and the associated risk of CVD may be delayed through lifestyle modifications that affect obesity, such as diet and exercise
  • Very low testosterone levels contribute to the development of ED in obesity, metabolic syndrome and type 2 diabetes mellitus
  • Obesity is associated with low total testosterone levels that can be explained at least partially by lower sex hormone-binding globulin (SHBG) in obese men
  • epidemiological studies have shown a negative correlation between BMI and total testosterone and to a lesser extent with free and bioavailable (biologically active) testosterone levels
  •  
    Obesity is associated with low Testosterone and ED in men.
Nathan Goodyear

Testosterone and weight loss: the evidence - 0 views

    • Nathan Goodyear
       
      What a ridiculous statement!
  • Testosterone therapy increases LBM, reduces fat mass and produces sustained and significant weight loss, reduction in waist circumference and BMI
Nathan Goodyear

Nitrogen Excretion in Cancer Cachexia and Its Modification by a High Fat Diet in Mice - 0 views

  •  
    animal model finds ketogenic diet is beneficial in colon cancer.
Nathan Goodyear

Approved Drugs > Modification of the Dosage Regimen for Nivolumab - 0 views

  •  
    FDA recommends nivolumab, PD-1 inhibitor immunotherapy, at 240 mg IV Q2 weeks.
1 - 20 of 36 Next ›
Showing 20 items per page