Skip to main content

Home/ Dr. Goodyear/ Group items tagged metabolic syndrome

Rss Feed Group items tagged

Nathan Goodyear

Inflammatory cause of metabolic syndrome via brain stress and NF-κB - 0 views

  • Mechanistic studies further showed that such metabolic inflammation is related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect under prolonged nutritional excess
  • intracellular stress-inflammation process for metabolic syndrome has been established in the central nervous system (CNS) and particularly in the hypothalamus
  • the CNS and the comprised hypothalamus are known to govern various metabolic activities of the body including appetite control, energy expenditure, carbohydrate and lipid metabolism, and blood pressure homeostasis
  • ...56 more annotations...
  • Reactive oxygen species (ROS) refer to a class of radical or non-radical oxygen-containing molecules that have high oxidative reactivity with lipids, proteins, and nucleic acids
  • a large measure of intracellular ROS comes from the leakage of mitochondrial electron transport chain (ETC)
  • Another major source of intracellular ROS is the intentional generation of superoxides by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
  • there are other ROS-producing enzymes such as cyclooxygenases, lipoxygenases, xanthine oxidase, and cytochrome p450 enzymes, which are involved with specific metabolic processes
  • To counteract the toxic effects of molecular oxidation by ROS, cells are equipped with a battery of antioxidant enzymes such as superoxide dismutases, catalase, peroxiredoxins, sulfiredoxin, and aldehyde dehydrogenases
  • intracellular oxidative stress has been indicated to contribute to metabolic syndrome and related diseases, including T2D [72; 73], CVDs [74-76], neurodegenerative diseases [69; 77-80], and cancers
  • intracellular oxidative stress is highly associated with the development of neurodegenerative diseases [69] and brain aging
  • dietary obesity was found to induce NADPH oxidase-associated oxidative stress in rat brain
  • mitochondrial dysfunction in hypothalamic proopiomelanocortin (POMC) neurons causes central glucose sensing impairment
  • Endoplasmic reticulum (ER) is the cellular organelle responsible for protein synthesis, maturation, and trafficking to secretory pathways
  • unfolded protein response (UPR) machinery
  • ER stress has been associated to obesity, insulin resistance, T2D, CVDs, cancers, and neurodegenerative diseases
  • brain ER stress underlies neurodegenerative diseases
  • under environmental stress such as nutrient deprivation or hypoxia, autophagy is strongly induced to breakdown macromolecules into reusable amino acids and fatty acids for survival
  • intact autophagy function is required for the hypothalamus to properly control metabolic and energy homeostasis, while hypothalamic autophagy defect leads to the development of metabolic syndrome such as obesity and insulin resistance
  • prolonged oxidative stress or ER stress has been shown to impair autophagy function in disease milieu of cancer or aging
  • TLRs are an important class of membrane-bound pattern recognition receptors in classical innate immune defense
  • Most hypothalamic cell types including neurons and glia cells express TLRs
  • overnutrition constitutes an environmental stimulus that can activate TLR pathways to mediate the development of metabolic syndrome related disorders such as obesity, insulin resistance, T2D, and atherosclerotic CVDs
  • Isoforms TLR1, 2, 4, and 6 may be particularly pertinent to pathogenic signaling induced by lipid overnutrition
  • hypothalamic TLR4 and downstream inflammatory signaling are activated in response to central lipid excess via direct intra-brain lipid administration or HFD-feeding
  • overnutrition-induced metabolic derangements such as central leptin resistance, systemic insulin resistance, and weight gain
  • these evidences based on brain TLR signaling further support the notion that CNS is the primary site for overnutrition to cause the development of metabolic syndrome.
  • circulating cytokines can limitedly travel to the hypothalamus through the leaky blood-brain barrier around the mediobasal hypothalamus to activate hypothalamic cytokine receptors
  • significant evidences have been recently documented demonstrating the role of cytokine receptor pathways in the development of metabolic syndrome components
  • entral administration of TNF-α at low doses faithfully replicated the effects of central metabolic inflammation in enhancing eating, decreasing energy expenditure [158;159], and causing obesity-related hypertension
  • Resistin, an adipocyte-derived proinflammatory cytokine, has been found to promote hepatic insulin resistance through its central actions
  • both TLR pathways and cytokine receptor pathways are involved in central inflammatory mechanism of metabolic syndrome and related diseases.
  • In quiescent state, NF-κB resides in the cytoplasm in an inactive form due to inhibitory binding by IκBα protein
  • IKKβ activation via receptor-mediated pathway, leading to IκBα phosphorylation and degradation and subsequent release of NF-κB activity
  • Research in the past decade has found that activation of IKKβ/NF-κB proinflammatory pathway in metabolic tissues is a prominent feature of various metabolic disorders related to overnutrition
  • it happens in metabolic tissues, it is mainly associated with overnutrition-induced metabolic derangements, and most importantly, it is relatively low-grade and chronic
  • this paradigm of IKKβ/NF-κB-mediated metabolic inflammation has been identified in the CNS – particularly the comprised hypothalamus, which primarily accounts for to the development of overnutrition-induced metabolic syndrome and related disorders such as obesity, insulin resistance, T2D, and obesity-related hypertension
  • evidences have pointed to intracellular oxidative stress and mitochondrial dysfunction as upstream events that mediate hypothalamic NF-κB activation in a receptor-independent manner under overnutrition
  • In the context of metabolic syndrome, oxidative stress-related NF-κB activation in metabolic tissues or vascular systems has been implicated in a broad range of metabolic syndrome-related diseases, such as diabetes, atherosclerosis, cardiac infarct, stroke, cancer, and aging
  • intracellular oxidative stress seems to be a likely pathogenic link that bridges overnutrition with NF-κB activation leading to central metabolic dysregulation
  • overnutrition is an environmental inducer for intracellular oxidative stress regardless of tissues involved
  • excessive nutrients, when transported into cells, directly increase mitochondrial oxidative workload, which causes increased production of ROS by mitochondrial ETC
  • oxidative stress has been shown to activate NF-κB pathway in neurons or glial cells in several types of metabolic syndrome-related neural diseases, such as stroke [185], neurodegenerative diseases [186-188], and brain aging
  • central nutrient excess (e.g., glucose or lipids) has been shown to activate NF-κB in the hypothalamus [34-37] to account for overnutrition-induced central metabolic dysregulations
  • overnutrition can present the cell with a metabolic overload that exceeds the physiological adaptive range of UPR, resulting in the development of ER stress and systemic metabolic disorders
  • chronic ER stress in peripheral metabolic tissues such as adipocytes, liver, muscle, and pancreatic cells is a salient feature of overnutrition-related diseases
  • recent literature supports a model that brain ER stress and NF-κB activation reciprocally promote each other in the development of central metabolic dysregulations
  • when intracellular stresses remain unresolved, prolonged autophagy upregulation progresses into autophagy defect
  • autophagy defect can induce NF-κB-mediated inflammation in association with the development of cancer or inflammatory diseases (e.g., Crohn's disease)
  • The connection between autophagy defect and proinflammatory activation of NF-κB pathway can also be inferred in metabolic syndrome, since both autophagy defect [126-133;200] and NF-κB activation [20-33] are implicated in the development of overnutrition-related metabolic diseases
  • Both TLR pathway and cytokine receptor pathways are closely related to IKKβ/NF-κB signaling in the central pathogenesis of metabolic syndrome
  • Overnutrition, especially in the form of HFD feeding, was shown to activate TLR4 signaling and downstream IKKβ/NF-κB pathway
  • TLR4 activation leads to MyD88-dependent NF-κB activation in early phase and MyD88-indepdnent MAPK/JNK pathway in late phase
  • these studies point to NF-κB as an immediate signaling effector for TLR4 activation in central inflammatory response
  • TLR4 activation has been shown to induce intracellular ER stress to indirectly cause metabolic inflammation in the hypothalamus
  • central TLR4-NF-κB pathway may represent one of the early receptor-mediated events in overnutrition-induced central inflammation.
  • cytokines and their receptors are both upstream activating components and downstream transcriptional targets of NF-κB activation
  • central administration of TNF-α at low dose can mimic the effect of obesity-related inflammatory milieu to activate IKKβ/NF-κB proinflammatory pathways, furthering the development of overeating, energy expenditure decrease, and weight gain
  • the physiological effects of IKKβ/NF-κB activation seem to be cell type-dependent, i.e., IKKβ/NF-κB activation in hypothalamic agouti-related protein (AGRP) neurons primarily leads to the development of energy imbalance and obesity [34]; while in hypothalamic POMC neurons, it primarily results in the development of hypertension and glucose intolerance
  • the hypothalamus, is the central regulator of energy and body weight balance [
  •  
    Great article chronicles the biochemistry of "over nutrition" and inflammation through NF-kappaB activation and its impact on the brain.
Nathan Goodyear

Testosterone and glucose metabolism in men: current concepts and controversies - 0 views

  • Around 50% of ageing, obese men presenting to the diabetes clinic have lowered testosterone levels relative to reference ranges based on healthy young men
  • The absence of high-level evidence in this area is illustrated by the Endocrine Society testosterone therapy in men with androgen deficiency clinical practice guidelines (Bhasin et al. 2010), which are appropriate for, but not specific to men with metabolic disorders. All 32 recommendations made in these guidelines are based on either very low or low quality evidence.
  • A key concept relates to making a distinction between replacement and pharmacological testosterone therapy
  • ...59 more annotations...
  • The presence of symptoms was more closely linked to increasing age than to testosterone levels
  • Findings similar to type 2 diabetes were reported for men with the metabolic syndrome, which were associated with reductions in total testosterone of −2.2 nmol/l (95% CI −2.41 to 1.94) and in free testosterone
  • low testosterone is more predictive of the metabolic syndrome in lean men
  • Cross-sectional studies uniformly show that 30–50% of men with type 2 diabetes have lowered circulating testosterone levels, relative to references based on healthy young men
  • In a recent cross-sectional study of 240 middle-aged men (mean age 54 years) with either type 2 diabetes, type 1 diabetes or without diabetes (Ng Tang Fui et al. 2013b), increasing BMI and age were dominant drivers of low total and free testosterone respectively.
  • both diabetes and the metabolic syndrome are associated with a modest reduction in testosterone, in magnitude comparable with the effect of 10 years of ageing
  • In a cross-sectional study of 490 men with type 2 diabetes, there was a strong independent association of low testosterone with anaemia
  • In men, low testosterone is a marker of poor health, and may improve our ability to predict risk
    • Nathan Goodyear
       
      probably the most important point made in this article
  • low testosterone identifies men with an adverse metabolic phenotype
  • Diabetic men with low testosterone are significantly more likely to be obese or insulin resistant
  • increased inflammation, evidenced by higher CRP levels
  • Bioavailable but not free testosterone was independently predictive of mortality
  • It remains possible that low testosterone is a consequence of insulin resistance, or simply a biomarker, co-existing because of in-common risk factors.
  • In prospective studies, reviewed in detail elsewhere (Grossmann et al. 2010) the inverse association of low testosterone with metabolic syndrome or diabetes is less consistent for free testosterone compared with total testosterone
  • In a study from the Framingham cohort, SHBG but not testosterone was prospectively and independently associated with incident metabolic syndrome
  • low SHBG (Ding et al. 2009) but not testosterone (Haring et al. 2013) with an increased risk of future diabetes
  • In cross-sectional studies of men with (Grossmann et al. 2008) and without (Bonnet et al. 2013) diabetes, SHBG but not testosterone was inversely associated with worse glycaemic control
  • SHBG may have biological actions beyond serving as a carrier protein for and regulator of circulating sex steroids
  • In men with diabetes, free testosterone, if measured by gold standard equilibrium dialysis (Dhindsa et al. 2004), is reduced
    • Nathan Goodyear
       
      expensive, laborious process filled with variables
  • Low free testosterone remains inversely associated with insulin resistance, independent of SHBG (Grossmann et al. 2008). This suggests that the low testosterone–dysglycaemia association is not solely a consequence of low SHBG.
  • Experimental evidence reviewed below suggests that visceral adipose tissue is an important intermediate (rather than a confounder) in the inverse association of testosterone with insulin resistance and metabolic disorders.
  • testosterone promotes the commitment of pluripotent stem cells into the myogenic lineage and inhibits their differentiation into adipocytes
  • testosterone regulates the metabolic functions of mature adipocytes (Xu et al. 1991, Marin et al. 1995) and myocytes (Pitteloud et al. 2005) in ways that reduce insulin resistance.
  • Pre-clinical evidence (reviewed in Rao et al. (2013)) suggests that at the cellular level, testosterone may improve glucose metabolism by modulating the expression of the glucose-transported Glut4 and the insulin receptor, as well as by regulating key enzymes involved in glycolysis.
  • More recently testosterone has been shown to protect murine pancreatic β cells against glucotoxicity-induced apoptosis
  • Interestingly, a reciprocal feedback also appears to exist, given that not only chronic (Cameron et al. 1990, Allan 2013) but also, as shown more recently (Iranmanesh et al. 2012, Caronia et al. 2013), acute hyperglycaemia can lower testosterone levels.
  • There is also evidence that testosterone regulates insulin sensitivity directly and acutely
  • In men with prostate cancer commencing androgen deprivation therapy, both total as well as, although not in all studies (Smith 2004), visceral fat mass increases (Hamilton et al. 2011) within 3 months
  • More prolonged (>12 months) androgen deprivation therapy has been associated with increased risk of diabetes in several large observational registry studies
  • Testosterone has also been shown to reduce the concentration of pro-inflammatory cytokines in some, but not all studies, reviewed recently in Kelly & Jones (2013). It is not know whether this effect is independent of testosterone-induced changes in body composition.
  • the observations discussed in this section suggest that it is the decrease in testosterone that causes insulin resistance and diabetes. One important caveat remains: the strongest evidence that low testosterone is the cause rather than consequence of insulin resistance comes from men with prostate cancer (Grossmann & Zajac 2011a) or biochemical castration, and from mice lacking the androgen receptor.
  • Several large prospective studies have shown that weight gain or development of type 2 diabetes is major drivers of the age-related decline in testosterone levels
  • there is increasing evidence that healthy ageing by itself is generally not associated with marked reductions in testosterone
  • Circulating testosterone, on an average 30%, is lower in obese compared with lean men
  • increased visceral fat is an important component in the association of low testosterone and insulin resistance
  • The vast majority of men with metabolic disorders have functional gonadal axis suppression with modest reductions in testosterone levels
  • obesity is a dominant risk factor
  • men with Klinefelter syndrome have an increased risk of metabolic disorders. Interestingly, greater body fat mass is already present before puberty
  • Only 5% of men with type 2 diabetes have elevated LH levels
  • inhibition of the gonadal axis predominantly takes place in the hypothalamus, especially with more severe obesity
  • Metabolic factors, such as leptin, insulin (via deficiency or resistance) and ghrelin are believed to act at the ventromedial and arcuate nuclei of the hypothalamus to inhibit gonadotropin-releasing hormone (GNRH) secretion from GNRH neurons situated in the preoptic area
  • kisspeptin has emerged as one of the most potent secretagogues of GNRH release
  • hypothesis that obesity-mediated inhibition of kisspeptin signalling contributes to the suppression of the HPT axis, infusion of a bioactive kisspeptin fragment has been recently shown to robustly increase LH pulsatility, LH levels and circulating testosterone in hypotestosteronaemic men with type 2 diabetes
  • A smaller study with a similar experimental design found that acute testosterone withdrawal reduced insulin sensitivity independent of body weight, whereas oestradiol withdrawal had no effects
  • suppression of the diabesity-associated HPT axis is functional, and may hence be reversible
  • Obesity and dysglycaemia and associated comorbidities such as obstructive sleep apnoea (Hoyos et al. 2012b) are important contributors to the suppression of the HPT axis
  • weight gain and development of diabetes accelerate the age-related decline in testosterone
  • Modifiable risk factors such as obesity and co-morbidities are more strongly associated with a decline in circulating testosterone levels than age alone
  • 55% of symptomatic androgen deficiency reverted to a normal testosterone or an asymptomatic state after 8-year follow-up, suggesting that androgen deficiency is not a stable state
  • Weight loss can reactivate the hypothalamic–pituitary–testicular axis
  • Leptin treatment resolves hypogonadism in leptin-deficient men
  • The hypothalamic–pituitary–testicular axis remains responsive to treatment with aromatase inhibitors or selective oestrogen receptor modulators in obese men
  • Kisspeptin treatment increases LH secretion, pulse frequency and circulating testosterone levels in hypotestosteronaemic men with type 2 diabetes
  • change in BMI was associated with the change in testosterone (Corona et al. 2013a,b).
  • weight loss can lead to genuine reactivation of the gonadal axis by reversal of obesity-associated hypothalamic suppression
  • There is pre-clinical and observational evidence that chronic hyperglycaemia can inhibit the HPT axis
  • in men who improved their glycaemic control over time, testosterone levels increased. By contrast, in those men in whom glycaemic control worsened, testosterone decreased
  • testosterone levels should be measured after successful weight loss to identify men with an insufficient rise in their testosterone levels. Such men may have HPT axis pathology unrelated to their obesity, which will require appropriate evaluation and management.
  •  
    Article discusses the expanding evidence of low T and Metabolic syndrome.
Nathan Goodyear

Nutrition & Metabolism | Full text | Fructose, insulin resistance, and metabolic dyslip... - 0 views

  • For thousands of years humans consumed fructose amounting to 16–20 grams per day
  • daily consumptions amounting to 85–100 grams of fructose per day
  • Of key importance is the ability of fructose to by-pass the main regulatory step of glycolysis, the conversion of glucose-6-phosphate to fructose 1,6-bisphosphate, controlled by phosphofructokinase
  • ...29 more annotations...
  • Thus, while glucose metabolism is negatively regulated by phosphofructokinase, fructose can continuously enter the glycolytic pathway. Therefore, fructose can uncontrollably produce glucose, glycogen, lactate, and pyruvate, providing both the glycerol and acyl portions of acyl-glycerol molecules. These particular substrates, and the resultant excess energy flux due to unregulated fructose metabolism, will promote the over-production of TG (reviewed in [53]).
  • Glycemic excursions and insulin responses were reduced by 66% and 65%, respectively, in the fructose-consuming subjects
  • reduction in circulating leptin both in the short and long-term as well as a 30% reduction in ghrelin (an orexigenic gastroenteric hormone) in the fructose group compared to the glucose group.
  • A prolonged elevation of TG was also seen in the high fructose subjects
  • Both fat and fructose consumption usually results in low leptin concentrations which, in turn, leads to overeating in populations consuming energy from these particular macronutrients
  • Chronic fructose consumption reduces adiponectin responses, contributing to insulin resistance
  • A definite relationship has also been found between metabolic syndrome and hyperhomocysteinemia
  • the liver takes up dietary fructose rapidly where it can be converted to glycerol-3-phosphate. This substrate favours esterification of unbound FFA to form the TG
  • Fructose stimulates TG production, but impairs removal, creating the known dyslipidemic profile
  • the effects of fructose in promoting TG synthesis are independent of insulinemia
  • Although fructose does not appear to acutely increase insulin levels, chronic exposure seems to indirectly cause hyperinsulinemia and obesity through other mechanisms. One proposed mechanism involves GLUT5
  • If FFA are not removed from tissues, as occurs in fructose fed insulin resistant models, there is an increased energy and FFA flux that leads to the increased secretion of TG
  • In these scenarios, where there is excess hepatic fatty acid uptake, synthesis and secretion, 'input' of fats in the liver exceed 'outputs', and hepatic steatosis occurs
  • Carbohydrate induced hypertriglycerolemia results from a combination of both TG overproduction, and inadequate TG clearance
  • fructose-induced metabolic dyslipidemia is usually accompanied by whole body insulin resistance [100] and reduced hepatic insulin sensitivity
  • Excess VLDL secretion has been shown to deliver increased fatty acids and TG to muscle and other tissues, further inducing insulin resistance
  • the metabolic effects of fructose occur through rapid utilization in the liver due to the bypassing of the regulatory phosphofructokinase step in glycolysis. This in turn causes activation of pyruvate dehydrogenase, and subsequent modifications favoring esterification of fatty acids, again leading to increased VLDL secretion
  • High fructose diets can have a hypertriglyceridemic and pro-oxidant effect
  • Oxidative stress has often been implicated in the pathology of insulin resistance induced by fructose feeding
  • Administration of alpha-lipoic acid (LA) has been shown to prevent these changes, and improve insulin sensitivity
  • LA treatment also prevents several deleterious effects of fructose feeding: the increases in cholesterol, TG, activity of lipogenic enzymes, and VLDL secretion
  • Fructose has also been implicated in reducing PPARα levels
  • PPARα is a ligand activated nuclear hormone receptor that is responsible for inducing mitochondrial and peroxisomal β-oxidation
  • decreased PPARα expression can result in reduced oxidation, leading to cellular lipid accumulation
  • fructose diets altered the structure and function of VLDL particles causing and increase in the TG: protein ratio
  • LDL particle size has been found to be inversely related to TG concentration
  • therefore the higher TG results in a smaller, denser, more atherogenic LDL particle, which contributes to the morbidity of the metabolic disorders associated with insulin resistance
  • High fructose, which stimulates VLDL secretion, may initiate the cycle that results in metabolic syndrome long before type 2 diabetes and obesity develop
  • A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, disturbs normal hepatic carbohydrate metabolism leading to two major consequences (Figure 2): perturbations in glucose metabolism and glucose uptake pathways, and a significantly enhanced rate of de novo lipogenesis and TG synthesis, driven by the high flux of glycerol and acyl portions of TG molecules coming from fructose catabolism
  •  
    Fructose and metabolic syndrome.  Good discussion of the impact of high fructose intake and metabolic dysfunction.  This study also does a great job of highlighting the historical change of fructose intake.
Nathan Goodyear

Inborn-like errors of metabolism are determinants of breast cancer risk, clinical respo... - 0 views

  • We now recognize that human cancers evolve in an environment of metabolic stress. Rapidly proliferating tumor cells deprived of adequate oxygen, nutrients, hormones and growth factors up-regulate pathways that address these deficiencies to overcome hypoxia (HIF), vascular insufficiency (VEGF), growth factor deprivation (EGFR, HER2) and the loss of hormonal support (ER, PR, AR) all to enhance survival and proliferation
  • RAS, PI3K, TP53 and MYC
  • The results suggest that breast cancer could be preceded by systemic subclinical disturbances in glucose-insulin homeostasis characterized by mild, likely asymptomatic, IEM-like biochemical changes
  • ...16 more annotations...
  • The process would include variable periods of hyperinsulinemia with the consequent systemic MYC activation of glycolysis, glutaminolysis, structural lipidogenesis and further exacerbation of hypoglycemia, the result of MYC's known role as an inhibitor of liver gluconeogenesis
  • The metabolic changes we describe in breast cancer arise in concert with IEM-like changes in oxidative phosphorylation as detected by increased values of the ratio lactate/pyruvate (Supplementary Table 2A, 2B) characteristic of Ox/Phos deficiency [25]. In our study, 76% (70/92) of the European breast cancer patients had lactate/pyruvate ratios values higher than the normal value of 25.8
  • four-fold higher frequency of cancer (including breast) in patients with energy metabolism disorders
  • growing recognition that cancer cells differ from their normal counterparts in their use of nutrients, synthesis of biomolecules and generation of energy
  • glutamine concentrations in the cancer patients were reduced to nearly 1/8 of the levels observed in the normal population
  • blood concentrations of aspartate (p = 1.7e-67, FDR = 8.3e-67) (Figure ​(Figure1E)1E) and glutamate (p = 6.4e-96, FDR = 6.2e-95) (Figure ​(Figure1F)1F) were nearly 10 fold higher than the normal ranges of 0–5 μM/L and 40 μM/L, respectively
  • glutamine consumption associated with parallel increases in glutamate and aspartate (Figure ​(Figure1A1A red arrows) is considered a hallmark of MYC-driven “glutaminolysis”
  • Gln/Glu ratio inversely correlates with i- late stage metabolic syndrome and with ii- increased chance of death
  • changes in glutamine consumption, reflected by the Gln/Glu ratio could provide a metabolic link between breast cancer initiation and diabetes, reflective of a systemic metabolic reprogramming from glucose to glutamine as the preferred source of precursors for biosynthetic reactions and cellular energy
  • lower Gln/Glu ratios inversely correlated with insulin resistance and the risk of diabetes
  • the metabolic dependencies of cancer characterized by excessive glycolysis, glutaminolysis and malignant lipidogenesis, previously considered a consequence of local tumor DNA aberration [23] could, instead, represent a systemic biochemical aberration that predates and very likely promotes tumorigenesis
  • these metabolic disturbances would be expected to remain extant after therapeutic interventions
  • accumulation of very long chain acylcarnitines such as C14:1-OH (p = 0.0, FDR = 0.0), C16 (p = 0.0, FDR = 0.0), C18 (p = 0.0, FDR = 0.0) and C18:1 (p = 1.73e-322, FDR = 1.16-321) and lipids containing VLCFA (lysoPC a C28:0) (p = 1.14-e95, FDR = 1.65e-95) in the blood of breast and colon cancer patients
  • Among the most powerful metabolic equations for MYC-activation is that which links the widely used MYC-driven desaturation marker ratio of SFA/MUFA to the MYC glutaminolysis-associated ratio of (Asp/Gln)
  • liver dysfunction shares many features with both IEM and cancer suggesting a role for hepatic dysfunction in carcinogenesis
  • cancer “conscripts” the human genome to meet its needs under conditions of systemic metabolic stress
  •  
    Breast cancer is a metabolic disease.  Now, where have I heard that cancer is a metabolic disease?
Nathan Goodyear

Nature Clinical Practice Endocrinology & Metabolism | Testosterone and ill-health in ag... - 0 views

  • Levels of total and bioavailable testosterone and SHBG were reported to be inversely correlated with the prevalence of the metabolic syndrome in men aged 40–80 years
  • as were total testosterone and SHBG in men aged 65–96 years
  • and in a cross-sectional analysis of a large cohort of non-diabetic men aged 70–89 years
  • ...18 more annotations...
  • In longitudinal studies, decreased levels of total testosterone and SHBG predicted an increased incidence of metabolic syndrome in nonobese men
  • Free testosterone level is not associated with the prevalence of metabolic syndrome in middle-aged and older men
  • Levels of free, bioavailable and total testosterone are lower in men with T2DM than in age-matched controls,34, 35 and decreased total testosterone level predicts incident T2DM in middle-aged men.
  • men with T2DM commonly have low total or free testosterone levels
  • Total, bioavailable and free testosterone levels are inversely correlated with fasting insulin level and insulin resistance in middle-aged men without T2DM
  • total testosterone is positively correlated with insulin sensitivity in men with normal or impaired glucose tolerance or T2DM
  • low SHBG level is more strongly associated with metabolic syndrome than low total testosterone in aging men
  • the recognized association between low SHBG level and insulin resistance
  • Low levels of SHBG are also associated with smaller, denser LDL-cholesterol molecules in nondiabetic men,58 and were found to predict increased cardiovascular disease mortality in one study of older men
  • Low levels of SHBG might reflect obesity, insulin resistance and overall poor health
  • Compared with those who have normal testosterone levels, men aged 40 years or more with total testosterone levels <9.8 nmol/l or elevated LH level have greater CIMT
  • In men aged 73–94 years, total testosterone was inversely correlated with CIMT
  • a prospective analysis of men aged 73–91 years, progression of CIMT was not related to total testosterone level, but it was inversely related to free testosterone level
  • A study of men aged 55 years or more found that those with total and bioavailable testosterone levels in the highest tertile had a lower risk of severe aortic atherosclerosis (detected by radiography as abdominal aortic calcification) than those with the lowest testosterone levels.
  • a large study of men aged 69–80 years, those with total or free testosterone in the lowest quartile had increased odds of lower-extremity peripheral arterial disease
  • the possibility of reverse causation has to be considered, as systemic illness can result in decreased testosterone levels
  • previous case–control studies and longitudinal studies have failed to identify low testosterone levels as strong predictors of clinically significant coronary disease
  • Reviews of trials on testosterone therapy in men with either low or low-to-normal testosterone levels have not shown consistent beneficial effects either on lipid profiles or on actual cardiovascular events.24, 54, 55 These trials, however, have not been designed or powered to detect treatment-related differences in cardiovascular outcome
  •  
    Declining Testosterone or low Testosterone is clearly associated with poor health in men.   Very nice review of the association between low Testosterone and metabolic dysfunction.  Low T is associated with increased metabolic syndrome, Diabetes, weight gain, insulin resistance...
Nathan Goodyear

Correlation between Hormonal Statuses and Metabolic Syndrome in Postmenopausal Women - 0 views

  •  
    Study of 110 women finds metabolic syndrome prevalence at 39%.  The women with metabolic syndrome had statistically higher Testosterone levels and statistically lower SHBG.  This stands in start contrast to metabolic syndrome in men.
Nathan Goodyear

Associations of Salivary Cortisol Levels with Metabolic Syndrome and Its Components: Th... - 0 views

  •  
    Salivary cortisol testing used to evaluate cortisol pattern in those with metabolic syndrome.  In this study, they found no difference in cortisol pattern in people with metabolic syndrome.
Nathan Goodyear

Endogenous sex hormones, metabolic syndrome... [Curr Cardiol Rep. 2014] - PubMed - NCBI - 1 views

  •  
    Abstract ahead of print.  Low Testosterone in men is associated with increased risk of metabolic syndrome and type II Diabetes.  Just the opposite is the case in women: elevated Testosterone in women is associated with increasing metabolic syndrome and diabetes risk. Low  SHBG is associated with increased risk in both.
Nathan Goodyear

[Plasma testosterone, obesity, metabolic syndrome and diabetes]. - Abstract - Europe Pu... - 0 views

  •  
    Androgen deprivation therapy leads to insulin resistance, metabolic syndrome, and type II diabetes in men. Testosterone therapy in men with IR, obesity, metabolic syndrome, and type II Diabetes will result in improved cardiovascular risk.  
Nathan Goodyear

Metabolic syndrome as a prognostic factor for breast cancer recurrences - Pasanisi - 20... - 0 views

  •  
    Women with metabolic syndrome have increased recurrence of breast cancer after initial therapy.  Likewise, Increasing Testosterone was associated with increasing risk of metabolic syndrome.  This is the opposite of men.  One wonders what this massive doping of Testosterone that is underway is doing to women?  Are we merely feeding disease?
Nathan Goodyear

Estradiol and Metabolic Syndrome in Older Italian Men: the InCHIANTI Study - 0 views

  •  
    Men with metabolic syndrome found to be associated with higher Estradiol levels.  Thus, Estradiol in "older men", >65 in this study, is associated with metabolic syndrome.
Nathan Goodyear

Diabetology & Metabolic Syndrome | Full text | High plasma uric acid concentration: cau... - 0 views

  •  
    Uric acid and its role in metabolic syndrome.  The elevated uric acid is likely the result of the metabolic dysfunction that leads to metabolic syndrome.
Nathan Goodyear

BMC Endocrine Disorders | Full text | The prevalence of metabolic syndrome and metaboli... - 0 views

  •  
    metabolic syndrome incidence in Europe far below that of the US.  One of the primary driving forces of MetS is obesity.
Nathan Goodyear

Fructose: A Key Factor in the Development of Metabolic Syndrome and Hypertension - 0 views

  • HFCS consists of fructose and glucose mixed in a variety of concentrations, but most commonly as 55% fructose and 45% glucose
  • In the United States, HFCS and sucrose are the major sources of fructose in the diet, and HFCS is a major ingredient in soft drinks, pastries, desserts, and various processed foods
  • fructose and glucose are metabolized in completely different ways and utilize different GLUT transporters
  • ...9 more annotations...
  • In the liver, fructose bypasses the two highly regulated steps of glycolysis, catalyzed by glucokinase/hexokinase and phosphofructokinase both of which are inhibited by increasing concentrations of their byproducts. Instead, fructose enters the pathway at a level that is not regulated and is metabolized to fructose-1-phosphate primarily by fructokinase or ketohexokinase
  • Fructokinase has no negative feedback system, and ATP is used for the phosphorylation process. As a result, continued fructose metabolism results in intracellular phosphate depletion, activation of AMP deaminase, and uric acid generation which is harmful at the cellular level
  • Uric acid, a byproduct of fructose degradation,
  • Uric acid inhibits endothelial NO both in vivo and in vitro, [15] and directly induces adipocyte dysfunction
  • Serum uric acid increases rapidly after ingestion of fructose, resulting in increases as high as 2 mg/dL within 1 hour
  • Uncontrolled fructose metabolism leads to postprandial hypertriglyceridemia, which increases visceral adipose deposition. Visceral adiposity contributes to hepatic triglyceride accumulation, protein kinase C activation, and hepatic insulin resistance by increasing the portal delivery of free fatty acids to the liver
  • Several reviews have concluded that intake of both fructose and HFCS by children and adults was associated with an increased risk of obesity and metabolic syndrome
  • Sucrose is a disaccharide that is comprised of fructose and glucose
  • Figure 2
  •  
    great read and review of the role of fructose in metabolic syndrome.
Nathan Goodyear

BMC Public Health | Abstract | High prevalence of vitamin D insufficiency and its assoc... - 0 views

  •  
    Malaysians with metabolic syndrome and obesity found to have high prevalence of vitamin D insufficiency.  Role for vitamin D therapy for those with metabolic syndrome and obesity.
Nathan Goodyear

Hypogonadism and Metabolic Syndrome in Nigerian Male Patients With Both Type 2 Diabetes... - 0 views

  •  
    Asian study finds Testosterone is inversely associated with increased central obesity, increased dyslipidemia, and metabolic syndrome in me with new diagnosis of type II diabetes and hypertension.  Men with metabolic syndrome, type II diabetes, and CVD must have appropriate hormone evaluation.
Nathan Goodyear

Association of metabolic syndrome ... [Indian J Endocrinol Metab. 2014] - PubMed - NCBI - 0 views

  •  
    Metabolic Syndrome is associated with CAD.  No surprise here, but increase in # of metabolic syndrome parameters was associated with increasing % of Triple vessel disease.   No surprise that MetS was associated with TNF-alpha, IL-6, IR, and hsCRP.
Nathan Goodyear

The association between hyperandrogenemia and the metabolic syndrome in morbidly obese ... - 0 views

  • a significant inverse relationship between HA and HDL-cholesterol levels which is in accordance with previous studies of women with PCOS
  • HA was associated with 61 % increased adjusted odds of MetS, and that this association was mainly driven by increased odds of dysglycemia and dyslipidemia
  • the prevalences of MetS, PCOS and HA were high among morbidly obese women <50 years of age
  • ...3 more annotations...
  • Compared to women without HA, those with HA had significantly higher odds of having the MetS, which was mainly explained by the associations between HA and the lipid- and glucose components of the MetS
  • FTI-blood test might add value to the cardiovascular risk assessment of premenopausal women with morbid obesity
  • We calculated the free testosterone index (FTI) using the formula: FTI = 100 x serum testosterone (nmol/L) / sex hormone binding globulin (SHBG, nmol/L)
  •  
    Another study that finds hyperandrogenism in women is associated with increased Metabolic Syndrome.  This study found obesity was associated with increased hyperandrogegism and Metabolic Syndrome irregardless of PCOS diagnosis or not.
Nathan Goodyear

11β-HSD1 inhibition ameliorates metabolic syndrome and prevents progression o... - 0 views

  •  
    inhibition of 11beta-HSD1 improves metabolic syndrome and atherosclerosis.  This suggests that metabolic syndrome is associated with increase 11beta-HSD1 expression/activity.  Animal study
Nathan Goodyear

Prevalence of metabolic syndrome and... [J Diabetes Metab Disord. 2014] - PubMed - NCBI - 0 views

  •  
    Startiling statistic: 11% of males 10-19 in Iran have metabolic syndrome and 7% of females of the same age have metabolic syndrome.
1 - 20 of 355 Next › Last »
Showing 20 items per page