Skip to main content

Home/ Dr. Goodyear/ Group items tagged superoxide

Rss Feed Group items tagged

Nathan Goodyear

Oxidative Stress and Its Relationship With Adenosine Deaminase Activity in Various Stag... - 0 views

  • Reduced SOD activity might be responsible for excessive accumulation of superoxide anions leading to increased free radical mediated injury. Increased free radical production has been shown to be responsible for chromosomal damage leading to mutagenecity, cell proliferation and carcinogenesis. SOD activity showed marked improvement after mastectomy indicating the lowering of oxidative stress.
  • The increased production of reactive oxygen species causes oxidative stress leading to cell proliferation and hence increased inflammatory conditions
  • Superoxide dismutase is an important antioxidant enzyme which decomposes the harmful superoxide anions into hydrogen peroxide thus protects the body from the action of free radicals
  • ...20 more annotations...
  • Females suffering from breast cancer had significantly decreased Superoxide dismutase (SOD) and reduced glutathione (GSH) levels in comparison to normal females
  • ADA seems to be a promising marker of inflammation in breast cancer thereby suggesting that it can be used as a diagnostic tool to detect the stage of breast cancer along with cytopathological studies
  • In conclusion, our study confirmed the role of oxidative stress in the pathogenesis of breast cancer.
  • Another potent antioxidant molecule is reduced glutathione. It acts as reductant which converts hydrogen peroxide into water and reduces lipid peroxidation products into their corresponding alcohols and thus mediates protective action.
  • In the present study, significantly low SOD activity has been observed in female patients suffering from carcinoma breast both pre as well as post operative in comparison to healthy females.
  • We observed significantly decreased SOD activity and GSH levels in patients belonging to clinical stage 4 as compared to those having stages 1, 2 or 3 of breast cancer.
  • Increased ADA activity in breast cancer patients has also been reported
  • The compromised antioxidant defence system produces the oxidative stress which in turn creates the inflammatory response shown by concomitant increased adenosine deaminase (ADA) activity in female patients.
  • Experimental and epidemiological evidences implicate the involvement of oxygen derived free radical in the pathogenesis of breast cancer.
  • Antioxidant status was highly depressed in advanced stages of breast cancer as compared to initial stage.
  • In the present study, significantly low GSH levels were observed in female patients of carcinoma breast as compared to normal females
  • Walia et al. (1995) reported increased ADA activity in breast cancer patients as compared to age matched normal subjects.
  • These free radicals are able to cause damage to membrane, mitochondria and macromolecules including proteins, lipids and DNA and actively take part in cell proliferation. This cascade in turn generates the inflammatory response and causes the progression of the disease.
  • increased oxidative stress gives rise to inflammation which could further aggravates the disease
  • Breast carcinoma involves a cascade of events that are highly inflammatory.
  • Marked oxidative stress in stage 4 of breast cancer indicated advancement of the disease, hence checking oxidative stress at initial stage could be helpful for controlling the progression of the disease.
  • They concluded that ADA is a better probable parameter for detection of breast cancer
  • Adenosine deaminase enzyme (ADA) catalyzes the conversion of adenosine to inosine which finally gets converted to uric acid
  • serum ADA activity tends to increase with advancing age,
  • Prevalence of oxidative stress gives rise to inflammation.
  •  
    Study finds a reduction in SuperOxide Dismutase and Glutathione Perioxidase in advancing breast cancer.  Cancer is a high oxidative stress disease that results in inflammation, mitochondrial dysfunction and proliferation.  Adenosine Deaminase (ADA) is proposed to be another biomarker to assess tumor stage.  
Nathan Goodyear

American Journal of Hypertension - Abstract of article: Superoxide Scavenging Effects o... - 0 views

  •  
    IV vitamin C therapy shown to improved the response of blood pressure to acetylcholine and nitroprusside in those patients with essential hypertension.  This effect was not found in NAC.  Vitamin C acts as a superoxide scavenger and glutathione recycler.
Nathan Goodyear

Naloxone inhibits immune cell function by suppressing superoxide production through a d... - 0 views

  •  
    Low dose naltrexone is immune modulator. This study proposes the biochemistry of immune cell suppression through superoxide inhibition.
Nathan Goodyear

Scopus preview - Scopus - Document details - 0 views

  •  
    Mercury decreases levels of superoxide dismutase in the lungs of rats exposed.  This study found NAC found to be protective.
Nathan Goodyear

Activity of glutathione peroxi... [Int Arch Occup Environ Health. 1998] - PubMed - NCBI - 0 views

  •  
    decreased activity of glutathione peroxidase and superoxide dismutase due to mercury exposure.
Nathan Goodyear

Internet Scientific Publications - 0 views

  •  
    Study of Iraqi population at elevated risk of stroke found that both serum and salivary levels of malondialdehyde, glutathione, superoxide dismutase, and uric acid proved useful as potential biomarkers of risk assessment.
Nathan Goodyear

Inflammatory cause of metabolic syndrome via brain stress and NF-κB - 0 views

  • Mechanistic studies further showed that such metabolic inflammation is related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect under prolonged nutritional excess
  • intracellular stress-inflammation process for metabolic syndrome has been established in the central nervous system (CNS) and particularly in the hypothalamus
  • the CNS and the comprised hypothalamus are known to govern various metabolic activities of the body including appetite control, energy expenditure, carbohydrate and lipid metabolism, and blood pressure homeostasis
  • ...56 more annotations...
  • Reactive oxygen species (ROS) refer to a class of radical or non-radical oxygen-containing molecules that have high oxidative reactivity with lipids, proteins, and nucleic acids
  • a large measure of intracellular ROS comes from the leakage of mitochondrial electron transport chain (ETC)
  • Another major source of intracellular ROS is the intentional generation of superoxides by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
  • there are other ROS-producing enzymes such as cyclooxygenases, lipoxygenases, xanthine oxidase, and cytochrome p450 enzymes, which are involved with specific metabolic processes
  • To counteract the toxic effects of molecular oxidation by ROS, cells are equipped with a battery of antioxidant enzymes such as superoxide dismutases, catalase, peroxiredoxins, sulfiredoxin, and aldehyde dehydrogenases
  • intracellular oxidative stress has been indicated to contribute to metabolic syndrome and related diseases, including T2D [72; 73], CVDs [74-76], neurodegenerative diseases [69; 77-80], and cancers
  • intracellular oxidative stress is highly associated with the development of neurodegenerative diseases [69] and brain aging
  • dietary obesity was found to induce NADPH oxidase-associated oxidative stress in rat brain
  • mitochondrial dysfunction in hypothalamic proopiomelanocortin (POMC) neurons causes central glucose sensing impairment
  • Endoplasmic reticulum (ER) is the cellular organelle responsible for protein synthesis, maturation, and trafficking to secretory pathways
  • unfolded protein response (UPR) machinery
  • ER stress has been associated to obesity, insulin resistance, T2D, CVDs, cancers, and neurodegenerative diseases
  • brain ER stress underlies neurodegenerative diseases
  • under environmental stress such as nutrient deprivation or hypoxia, autophagy is strongly induced to breakdown macromolecules into reusable amino acids and fatty acids for survival
  • intact autophagy function is required for the hypothalamus to properly control metabolic and energy homeostasis, while hypothalamic autophagy defect leads to the development of metabolic syndrome such as obesity and insulin resistance
  • prolonged oxidative stress or ER stress has been shown to impair autophagy function in disease milieu of cancer or aging
  • TLRs are an important class of membrane-bound pattern recognition receptors in classical innate immune defense
  • Most hypothalamic cell types including neurons and glia cells express TLRs
  • overnutrition constitutes an environmental stimulus that can activate TLR pathways to mediate the development of metabolic syndrome related disorders such as obesity, insulin resistance, T2D, and atherosclerotic CVDs
  • Isoforms TLR1, 2, 4, and 6 may be particularly pertinent to pathogenic signaling induced by lipid overnutrition
  • hypothalamic TLR4 and downstream inflammatory signaling are activated in response to central lipid excess via direct intra-brain lipid administration or HFD-feeding
  • overnutrition-induced metabolic derangements such as central leptin resistance, systemic insulin resistance, and weight gain
  • these evidences based on brain TLR signaling further support the notion that CNS is the primary site for overnutrition to cause the development of metabolic syndrome.
  • circulating cytokines can limitedly travel to the hypothalamus through the leaky blood-brain barrier around the mediobasal hypothalamus to activate hypothalamic cytokine receptors
  • significant evidences have been recently documented demonstrating the role of cytokine receptor pathways in the development of metabolic syndrome components
  • entral administration of TNF-α at low doses faithfully replicated the effects of central metabolic inflammation in enhancing eating, decreasing energy expenditure [158;159], and causing obesity-related hypertension
  • Resistin, an adipocyte-derived proinflammatory cytokine, has been found to promote hepatic insulin resistance through its central actions
  • both TLR pathways and cytokine receptor pathways are involved in central inflammatory mechanism of metabolic syndrome and related diseases.
  • In quiescent state, NF-κB resides in the cytoplasm in an inactive form due to inhibitory binding by IκBα protein
  • IKKβ activation via receptor-mediated pathway, leading to IκBα phosphorylation and degradation and subsequent release of NF-κB activity
  • Research in the past decade has found that activation of IKKβ/NF-κB proinflammatory pathway in metabolic tissues is a prominent feature of various metabolic disorders related to overnutrition
  • it happens in metabolic tissues, it is mainly associated with overnutrition-induced metabolic derangements, and most importantly, it is relatively low-grade and chronic
  • this paradigm of IKKβ/NF-κB-mediated metabolic inflammation has been identified in the CNS – particularly the comprised hypothalamus, which primarily accounts for to the development of overnutrition-induced metabolic syndrome and related disorders such as obesity, insulin resistance, T2D, and obesity-related hypertension
  • evidences have pointed to intracellular oxidative stress and mitochondrial dysfunction as upstream events that mediate hypothalamic NF-κB activation in a receptor-independent manner under overnutrition
  • In the context of metabolic syndrome, oxidative stress-related NF-κB activation in metabolic tissues or vascular systems has been implicated in a broad range of metabolic syndrome-related diseases, such as diabetes, atherosclerosis, cardiac infarct, stroke, cancer, and aging
  • intracellular oxidative stress seems to be a likely pathogenic link that bridges overnutrition with NF-κB activation leading to central metabolic dysregulation
  • overnutrition is an environmental inducer for intracellular oxidative stress regardless of tissues involved
  • excessive nutrients, when transported into cells, directly increase mitochondrial oxidative workload, which causes increased production of ROS by mitochondrial ETC
  • oxidative stress has been shown to activate NF-κB pathway in neurons or glial cells in several types of metabolic syndrome-related neural diseases, such as stroke [185], neurodegenerative diseases [186-188], and brain aging
  • central nutrient excess (e.g., glucose or lipids) has been shown to activate NF-κB in the hypothalamus [34-37] to account for overnutrition-induced central metabolic dysregulations
  • overnutrition can present the cell with a metabolic overload that exceeds the physiological adaptive range of UPR, resulting in the development of ER stress and systemic metabolic disorders
  • chronic ER stress in peripheral metabolic tissues such as adipocytes, liver, muscle, and pancreatic cells is a salient feature of overnutrition-related diseases
  • recent literature supports a model that brain ER stress and NF-κB activation reciprocally promote each other in the development of central metabolic dysregulations
  • when intracellular stresses remain unresolved, prolonged autophagy upregulation progresses into autophagy defect
  • autophagy defect can induce NF-κB-mediated inflammation in association with the development of cancer or inflammatory diseases (e.g., Crohn's disease)
  • The connection between autophagy defect and proinflammatory activation of NF-κB pathway can also be inferred in metabolic syndrome, since both autophagy defect [126-133;200] and NF-κB activation [20-33] are implicated in the development of overnutrition-related metabolic diseases
  • Both TLR pathway and cytokine receptor pathways are closely related to IKKβ/NF-κB signaling in the central pathogenesis of metabolic syndrome
  • Overnutrition, especially in the form of HFD feeding, was shown to activate TLR4 signaling and downstream IKKβ/NF-κB pathway
  • TLR4 activation leads to MyD88-dependent NF-κB activation in early phase and MyD88-indepdnent MAPK/JNK pathway in late phase
  • these studies point to NF-κB as an immediate signaling effector for TLR4 activation in central inflammatory response
  • TLR4 activation has been shown to induce intracellular ER stress to indirectly cause metabolic inflammation in the hypothalamus
  • central TLR4-NF-κB pathway may represent one of the early receptor-mediated events in overnutrition-induced central inflammation.
  • cytokines and their receptors are both upstream activating components and downstream transcriptional targets of NF-κB activation
  • central administration of TNF-α at low dose can mimic the effect of obesity-related inflammatory milieu to activate IKKβ/NF-κB proinflammatory pathways, furthering the development of overeating, energy expenditure decrease, and weight gain
  • the physiological effects of IKKβ/NF-κB activation seem to be cell type-dependent, i.e., IKKβ/NF-κB activation in hypothalamic agouti-related protein (AGRP) neurons primarily leads to the development of energy imbalance and obesity [34]; while in hypothalamic POMC neurons, it primarily results in the development of hypertension and glucose intolerance
  • the hypothalamus, is the central regulator of energy and body weight balance [
  •  
    Great article chronicles the biochemistry of "over nutrition" and inflammation through NF-kappaB activation and its impact on the brain.
Nathan Goodyear

Malondialdehyde, Bcl-2, superoxide dismutase a... [Neurochem Res. 2012] - PubMed - NCBI - 0 views

  •  
    decreased detoxification and increased oxidative stress in autism.
Nathan Goodyear

Susceptibility of mitochondrial superoxide dismut... [Toxicology. 2009] - PubMed - NCBI - 0 views

  •  
    Aluminum induces oxidative damage through a reduction in SOD.
Nathan Goodyear

Mercury intolerance in relation to superoxide di... [Environ Res. 2000] - PubMed - NCBI - 0 views

  •  
    mercury causes SOD dysfunction.
Nathan Goodyear

Lead-induced dysregulation of superoxide dismuta... [Environ Res. 2005] - PubMed - NCBI - 0 views

  •  
    Pb induces dysfunction of SOD, CAT, and GPX.
Nathan Goodyear

Effect of astaxanthin supplementation on muscle damage and oxidative stress markers in ... - 0 views

  • Postexercise CK and AST levels were significantly lower in Asx group compared to P group (P<0.05)
  •  
    study finds soccer training is associated with increased oxidative stress as measured by TBARS, SOD, superoxide anion and other oxidative stress load biomarkers.  Astaxanthin was associated with less oxidative stress.
Nathan Goodyear

Interaction of 5-methyltetrahydrofolate and tetrah... [Am J Physiol Heart Circ Physiol.... - 0 views

  • We demonstrate that 5-methyltetrahydrofolate binds the active site of nitric oxide synthase and mimics the orientation of tetrahydrobiopterin
  • 5-methyltetrahydrofolate attenuates superoxide production (induced by inhibition of tetrahydrobiopterin synthesis) and improves endothelial function
  • e suggest that 5-methyltetrahydrofolate directly interacts with nitric oxide synthase to promote nitric oxide (vs. superoxide) production and improve endothelial function
  • ...1 more annotation...
  • 5-Methyltetrahydrofolate may represent an important strategy for intervention aimed at improving tetrahydrobiopterin bioavailability.
  •  
    5-methyltetrahydrofolate promotes NO synthase and improves endothelial vascular function;  proposed as way to increase tetrahydropbiopterin
Nathan Goodyear

Implications of free radicals and antioxidant levels in carcinoma of the breast: A neve... - 0 views

  • Experimental investigations as well as clinical and epidemiological findings have provided evidence supporting the role of reactive oxygen metabolites or free radicals such as singlet oxygen O 2 - , superoxide anions (O 2 ), hydrogen peroxide (H­2 O2 ) and hydroxyl radical in the etiology of cancer.
  • Certain aldehydes such as Malonyldialdehyde (MDA), the end product of lipid peroxidation arising from free radical degeneration of polyunsaturated fatty acids can cause cross linking in lipids, proteins and nucleic acids leading to cellular damage.
  • In this study, patients with cancer exhibited higher levels of MDA, both in tissues and serum (p<0.001) compared to the control group [Table 1]. In tissue, the MDA level in stage IV was significantly higher as compared to stage I indicating increased free radical activity with increasing severity of cancer
  • ...6 more annotations...
  • From these observations, it can be concluded that MDA levels play an important role in assessing the outcome of cancer
  • SOD and CAT are considered primary antioxidant enzymes, since they are involved in direct elimination of reactive oxygen metabolites. [13-16] They also act as anti-carcinogens and inhibitors at initiation and promotion/transformation stage in carcinogenesis
  • In our study, SOD and CAT levels were found to be low in all cancer patients as compared to controls
  • Fridovich and Tayarani have demonstrated in their respective studies that the reduction in SOD activity increases the toxic effects of O2 - and this might lead to severe cellular damage.
  • Mehrotra et al. in their study also observed high levels of MDA and low levels of SOD and CAT in patients of cancer cervix which is in sync with our observations.
  • strong evidence regarding the definitive role of free radicals in breast malignancy.
  •  
    This study finds a strong correlation between advancing breast cancer, decreased catalase and SOD with increasing MDA.  The authors of this study conclude this is a key factor in carcinogenesis and not a by-product of cancer.  This flies in the face of traditional medicines fear of antioxidant therapy in cancer.
Nathan Goodyear

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a p... - 0 views

  • Taken together, these data indicate that ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H2O2, and that blood can be a delivery system of the pro-drug to tissues.
  • These findings give plausibility to i.v. ascorbic acid in cancer treatment, and have unexpected implications for treatment of infections where H2O2 may be beneficial
  • pharmacologic concentrations of ascorbate killed cancer but not normal cells, that cell death was dependent only on extracellular but not intracellular ascorbate, and that killing was dependent on extracellular hydrogen peroxide (H2O2) formation with ascorbate radical as an intermediate
  • ...48 more annotations...
  • Our data show that ascorbic acid selectively killed cancer but not normal cells, using concentrations that could only be achieved by i.v. administration
  • Ascorbate-mediated cell death was due to protein-dependent extracellular H2O2 generation, via ascorbate radical formation from ascorbate as the electron donor. Like glucose, when ascorbate is infused i.v., the resulting pharmacologic concentrations should distribute rapidly in the extracellular water space (42). We showed that such pharmacologic ascorbate concentrations in media, as a surrogate for extracellular fluid, generated ascorbate radical and H2O2. In contrast, the same pharmacologic ascorbate concentrations in whole blood generated little detectable ascorbate radical and no detectable H2O2. These findings can be accounted for by efficient and redundant H2O2 catabolic pathways in whole blood (e.g., catalase and glutathione peroxidase) relative to those in media or extracellular fluid
  • ascorbic acid administered i.v. in pharmacologic concentrations may serve as a pro-drug for H2O2 delivery to the extracellular milieu
  • H2O2 generated in blood is normally removed by catalase and glutathione peroxidase within red blood cells, with internal glutathione providing reducing equivalents
  • The electron source for glutathione is NADPH from the pentose shunt, via glucose-6-phosphate dehydrogenase. If activity of this enzyme is diminished, the predicted outcome is impaired H2O2 removal causing intravascular hemolysis, the observed clinical finding.
    • Nathan Goodyear
       
      The mechansism here is inadequate recycling of GSH due to lack of G6PD, build up of intracellular H2O2 and RBC lysis--hemolysis.
  • Only recently has it been understood that the discordant clinical findings can be explained by previously unrecognized fundamental pharmacokinetics properties of ascorbate
  • Intracellular transport of ascorbate is tightly controlled in relation to extracellular concentration
  • Intravenous ascorbate infusion is expected to drastically change extracellular but not intracellular concentrations
  • For i.v. ascorbate to be clinically useful in killing cancer cells, pharmacologic but not physiologic extracellular concentrations should be effective, independent of intracellular ascorbate concentrations.
    • Nathan Goodyear
       
      accumulation of extracellular vitamin C is the effect.
  • It is unknown why ascorbate, via H2O2, killed some cancer cells but not normal cells.
  • There was no correlation with ascorbate-induced cell death and glutathione, catalase activity, or glutathione peroxidase activity.
  • H2O2, as the product of pharmacologic ascorbate concentrations, has potential therapeutic uses in addition to cancer treatment, especially in infections
  • Neutrophils generate H2O2 from superoxide,
  • i.v. ascorbate is effective in some viral infections
  • H2O2 is toxic to hepatitis C
  • Use of ascorbate as an H2O2-delivery system against sensitive pathogens, viral or bacterial, has substantial clinical implications that deserve rapid exploration.
  • Recent pharmacokinetics studies in men and women show that 10 g of ascorbate given i.v. is expected to produce plasma concentrations of nearly 6 mM, which are >25-fold higher than those concentrations from the same oral dose
  • As much as a 70-fold difference in plasma concentrations is expected between oral and i.v. administration,
  • Complementary and alternative medicine practitioners worldwide currently use ascorbate i.v. in some patients, in part because there is no apparent harm
  • Human Burkitt's lymphoma cells
  • We first investigated whether ascorbate in pharmacologic concentrations selectively affected the survival of cancer cells by studying nine cancer cell lines
  • Clinical pharmacokinetics analyses show that pharmacologic concentrations of plasma ascorbate, from 0.3 to 15 mM, are achievable only from i.v. administration
  • plasma ascorbate concentrations from maximum possible oral doses cannot exceed 0.22 mM because of limited intestinal absorption
  • For five of the nine cancer cell lines, ascorbate concentrations causing a 50% decrease in cell survival (EC50 values) were less than 5 mM, a concentration easily achievable from i.v. infusion
  • All tested normal cells were insensitive to 20 mM ascorbate.
    • Nathan Goodyear
       
      meaning safe.
  • Lymphoma cells were selected because of their sensitivity to ascorbate
  • As ascorbate concentration increased, the pattern of death changed from apoptosis to pyknosis/necrosis, a pattern suggestive of H2O2-mediated cell death
  • Apoptosis occurred by 6 h after exposure, and cell death by pyknosis was ≈90% at 14 h after exposure
    • Nathan Goodyear
       
      work continued beyond the IVC therapy itself
  • In contrast to lymphoma cells, there was little or no killing of normal lymphocytes and monocytes by ascorbate
  • Ascorbate is transported into cells as such by sodium-dependent transporters, whereas dehydroascorbic acid is transported into cells by glucose transporters and then immediately reduced internally to ascorbate
  • Whether or not intracellular ascorbate was preloaded, extracellular ascorbate induced the same amount and type of death.
  • extracellular ascorbate in pharmacologic concentrations mediates death of lymphoma cells by apoptosis and pyknosis/necrosis, independently of intracellular ascorbate.
  • H2O2 as the effector species mediating pharmacologic ascorbate-induced cell death
  • Superoxide dismutase was not protective
  • Because these data implicated H2O2 in cell killing, we added H2O2 to lymphoma cells and studied death patterns using nuclear staining (19, 28). The death patterns found with exogenous H2O2 exposure were similar to those found with ascorbate
  • For both ascorbate and H2O2, death changed from apoptosis to pyknosis/necrosis as concentrations increased
  • Sensitivity to direct exposure to H2O2 was greater in lymphoma cells compared with normal lymphocytes and normal monocytes
  • There was no association between the EC50 for ascorbate-mediated cell death and intracellular glutathione concentrations, catalase activity, or glutathione peroxidase activity
  • H2O2 generation was dependent on time, ascorbate concentration, and the presence of trace amounts of serum in media
  • ascorbate radical is a surrogate marker for H2O2 formation.
  • whatever H2O2 is generated should be removed by glutathione peroxidase and catalase within red blood cells, because H2O2 is membrane permeable
  • The data are consistent with the hypothesis that ascorbate in pharmacologic concentrations is a pro-drug for H2O2 generation in the extracellular milieu but not in blood.
  • The occurrence of one predicted complication, oxalate kidney stones, is controversial
  • In patients with glucose-6-phosphate dehydrogenase deficiency, i.v. ascorbate is contraindicated because it causes intravascular hemolysis
  • ascorbate at pharmacologic concentrations in blood is a pro-drug for H2O2 delivery to tissues.
  • ascorbate, an electron-donor in such reactions, ironically initiates pro-oxidant chemistry and H2O2 formation
  • data here showed that ascorbate initiated H2O2 formation extracellularly, but H2O2 targets could be either intracellular or extracellular, because H2O2 is membrane permeant
    • Nathan Goodyear
       
      the conversion of ascorbate to H2O2 occurs extracellular
  • More than 100 patients have been described, presumably without glucose-6-phosphate dehydrogenase deficiency, who received 10 g or more of i.v. ascorbate with no reported adverse effects other than tumor lysis
  •  
    IV vitamin C benefits cancer patients
Nathan Goodyear

Vitamin C and cancer revisited - 0 views

  • It is well known that vitamin C, or ascorbic acid, is an effective biologic antioxidant and does not act as a pro-oxidant under normal conditions (5) because it does not readily autoxidize, i.e., react with oxygen (O2) to produce reactive oxygen species, such as superoxide radicals (O2•−) or H2O2
  • However, ascorbate readily donates an electron to redox-active transition metal ions, such as cupric (Cu2+) or ferric (Fe3+) ions, reducing them to cuprous (Cu+) and ferrous (Fe2+) ions, respectively
  • Reduced transition metal ions, in contrast to ascorbic acid, readily react with O2, reducing it to superoxide radicals (Reaction 2), which in turn dismutate to form H2O2 and O2
  • ...6 more annotations...
  • The H2O2 produced this way (Reactions 1–3) seems to be key to ascorbate's antitumor effect because H2O2 causes cancer cells to undergo apoptosis, pyknosis, and necrosis
  • In contrast, normal cells are considerably less vulnerable to H2O2
  • The reason for the increased sensitivity of tumor cells to H2O2 is not clear but may be due to lower antioxidant defenses
  • In fact, a lower capacity to destroy H2O2—e.g., by catalase, peroxiredoxins, and GSH peroxidases—may cause tumor cells to grow and proliferate more rapidly than normal cells in response to low concentrations of H2O2
  • These observations, combined with the inhibitory effect on xenograft growth, provide the proof of concept that millimolar concentrations of extracellular ascorbate, achievable by i.p. injection or i.v. infusion in experimental animals and humans, respectively, exert pro-oxidant, antitumor effects in vivo.
  • They also show that the concentration of the ascorbyl radical correlates with the concentration of H2O2 in interstitial fluid, whereas no H2O2 can be detected in blood or plasma
  •  
    review of the mechanism of how extracellular AA, only obtainable from parenteral dosing, can produce H2O2 extracellularly to then be cytotoxic to cancer cells.
Nathan Goodyear

Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde... - 0 views

  • Hydroxyl radicals cause oxidative damage to cells because they unspecifically attack biomolecules [22] located less than a few nanometres from its site of generation and are involved in cellular disorders such as neurodegeneration [23, 24], cardiovascular disease [25], and cancer [26, 27].
  • It is generally assumed that in biological systems is formed through redox cycling by Fenton reaction, where free iron (Fe2+) reacts with hydrogen peroxide (H2O2) and the Haber-Weiss reaction that results in the production of Fe2+ when superoxide reacts with ferric iron (Fe3+)
  • other transition-metal including Cu, Ni, Co, and V can be responsible for formation in living cells
  • ...20 more annotations...
  • The hydroperoxyl radical () plays an important role in the chemistry of lipid peroxidation
  • The is a much stronger oxidant than superoxide anion-radical
  • Lipid peroxidation can be described generally as a process under which oxidants such as free radicals or nonradical species attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs) that involve hydrogen abstraction from a carbon, with oxygen insertion resulting in lipid peroxyl radicals and hydroperoxides as described previously
  • under medium or high lipid peroxidation rates (toxic conditions) the extent of oxidative damage overwhelms repair capacity, and the cells induce apoptosis or necrosis programmed cell death
  • The overall process of lipid peroxidation consists of three steps: initiation, propagation, and termination
  • Once lipid peroxidation is initiated, a propagation of chain reactions will take place until termination products are produced.
  • The main primary products of lipid peroxidation are lipid hydroperoxides (LOOH)
  • Among the many different aldehydes which can be formed as secondary products during lipid peroxidation, malondialdehyde (MDA), propanal, hexanal, and 4-hydroxynonenal (4-HNE) have been extensively studied
  • MDA has been widely used for many years as a convenient biomarker for lipid peroxidation of omega-3 and omega-6 fatty acids because of its facile reaction with thiobarbituric acid (TBA)
  • MDA is one of the most popular and reliable markers that determine oxidative stress in clinical situations [53], and due to MDA’s high reactivity and toxicity underlying the fact that this molecule is very relevant to biomedical research community
  • 4-HNE is considered as “second toxic messengers of free radicals,” and also as “one of the most physiologically active lipid peroxides,” “one of major generators of oxidative stress,” “a chemotactic aldehydic end-product of lipid peroxidation,” and a “major lipid peroxidation product”
  • MDA is an end-product generated by decomposition of arachidonic acid and larger PUFAs
  • Identifying in vivo MDA production and its role in biology is important as indicated by the extensive literature on the compound (over 15 800 articles in the PubMed database using the keyword “malondialdehyde lipid peroxidation” in December 2013)
  • MDA reactivity is pH-dependent
  • When pH decreases MDA exists as beta-hydroxyacrolein and its reactivity increases
  • MAA adducts are shown to be highly immunogenic [177–181]. MDA adducts are biologically important because they can participate in secondary deleterious reactions (e.g., crosslinking) by promoting intramolecular or intermolecular protein/DNA crosslinking that may induce profound alteration in the biochemical properties of biomolecules and accumulate during aging and in chronic diseases
  • MDA is an important contributor to DNA damage and mutation
  • This MDA-induced DNA alteration may contribute significantly to cancer and other genetic diseases.
  • Dietary intake of certain antioxidants such as vitamins was associated with reduced levels of markers of DNA oxidation (M1dG and 8-oxodG) measured in peripheral white blood cells of healthy subjects, which could contribute to the protective role of vitamins on cancer risk
  • 4-HNE is an extraordinarily reactive compound
  •  
    Great review of lipid peroxidation
Nathan Goodyear

Glutathione Peroxidase (GPx) and Superoxide Dismutase (SOD) in Oropharyngeal Cancer Ass... - 0 views

  •  
    Hmmm…."Both GPx and SOD activity was statistically lower in patients with EBV/HPV coinfection than in a single EBV or HPV infection. Analysis of GPx and SOD activity in relation to histological grading and tumor, node (TN) classification revealed that in poorly-differentiated tumors, the level of antioxidant enzymes was lower compared with well-differentiated lesions and in cases with greater tumor dimensions and lymph-node involvement, both GPx and SOD activity was decreased."
Nathan Goodyear

Activity of superoxide dismutase, catalase, glutathione peroxidase, and glutathione red... - 0 views

  •  
    "Glutathione reductase activity is lower in all colorectal carcinoma groups than in control, and a significant decrease in glutathione reductase activity was obtained between patients in tumor stage II and III compared to tumor stage IV." Same is see with SOD in study.
Nathan Goodyear

Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxida... - 0 views

  •  
    This article proposes that increased antioxidant enzymatic activity is an adaption to the increased ROS found in MS.  This increased ROS disrupts the blood-brain barrier.
1 - 20 of 33 Next ›
Showing 20 items per page