Skip to main content

Home/ Dr. Goodyear/ Group items tagged ascorbic

Rss Feed Group items tagged

Nathan Goodyear

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a p... - 0 views

  • Taken together, these data indicate that ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H2O2, and that blood can be a delivery system of the pro-drug to tissues.
  • These findings give plausibility to i.v. ascorbic acid in cancer treatment, and have unexpected implications for treatment of infections where H2O2 may be beneficial
  • pharmacologic concentrations of ascorbate killed cancer but not normal cells, that cell death was dependent only on extracellular but not intracellular ascorbate, and that killing was dependent on extracellular hydrogen peroxide (H2O2) formation with ascorbate radical as an intermediate
  • ...48 more annotations...
  • Our data show that ascorbic acid selectively killed cancer but not normal cells, using concentrations that could only be achieved by i.v. administration
  • Ascorbate-mediated cell death was due to protein-dependent extracellular H2O2 generation, via ascorbate radical formation from ascorbate as the electron donor. Like glucose, when ascorbate is infused i.v., the resulting pharmacologic concentrations should distribute rapidly in the extracellular water space (42). We showed that such pharmacologic ascorbate concentrations in media, as a surrogate for extracellular fluid, generated ascorbate radical and H2O2. In contrast, the same pharmacologic ascorbate concentrations in whole blood generated little detectable ascorbate radical and no detectable H2O2. These findings can be accounted for by efficient and redundant H2O2 catabolic pathways in whole blood (e.g., catalase and glutathione peroxidase) relative to those in media or extracellular fluid
  • ascorbic acid administered i.v. in pharmacologic concentrations may serve as a pro-drug for H2O2 delivery to the extracellular milieu
  • H2O2 generated in blood is normally removed by catalase and glutathione peroxidase within red blood cells, with internal glutathione providing reducing equivalents
  • The electron source for glutathione is NADPH from the pentose shunt, via glucose-6-phosphate dehydrogenase. If activity of this enzyme is diminished, the predicted outcome is impaired H2O2 removal causing intravascular hemolysis, the observed clinical finding.
    • Nathan Goodyear
       
      The mechansism here is inadequate recycling of GSH due to lack of G6PD, build up of intracellular H2O2 and RBC lysis--hemolysis.
  • Only recently has it been understood that the discordant clinical findings can be explained by previously unrecognized fundamental pharmacokinetics properties of ascorbate
  • Intracellular transport of ascorbate is tightly controlled in relation to extracellular concentration
  • Intravenous ascorbate infusion is expected to drastically change extracellular but not intracellular concentrations
  • For i.v. ascorbate to be clinically useful in killing cancer cells, pharmacologic but not physiologic extracellular concentrations should be effective, independent of intracellular ascorbate concentrations.
    • Nathan Goodyear
       
      accumulation of extracellular vitamin C is the effect.
  • It is unknown why ascorbate, via H2O2, killed some cancer cells but not normal cells.
  • There was no correlation with ascorbate-induced cell death and glutathione, catalase activity, or glutathione peroxidase activity.
  • H2O2, as the product of pharmacologic ascorbate concentrations, has potential therapeutic uses in addition to cancer treatment, especially in infections
  • Neutrophils generate H2O2 from superoxide,
  • i.v. ascorbate is effective in some viral infections
  • H2O2 is toxic to hepatitis C
  • Use of ascorbate as an H2O2-delivery system against sensitive pathogens, viral or bacterial, has substantial clinical implications that deserve rapid exploration.
  • Recent pharmacokinetics studies in men and women show that 10 g of ascorbate given i.v. is expected to produce plasma concentrations of nearly 6 mM, which are >25-fold higher than those concentrations from the same oral dose
  • As much as a 70-fold difference in plasma concentrations is expected between oral and i.v. administration,
  • Complementary and alternative medicine practitioners worldwide currently use ascorbate i.v. in some patients, in part because there is no apparent harm
  • Human Burkitt's lymphoma cells
  • We first investigated whether ascorbate in pharmacologic concentrations selectively affected the survival of cancer cells by studying nine cancer cell lines
  • Clinical pharmacokinetics analyses show that pharmacologic concentrations of plasma ascorbate, from 0.3 to 15 mM, are achievable only from i.v. administration
  • plasma ascorbate concentrations from maximum possible oral doses cannot exceed 0.22 mM because of limited intestinal absorption
  • For five of the nine cancer cell lines, ascorbate concentrations causing a 50% decrease in cell survival (EC50 values) were less than 5 mM, a concentration easily achievable from i.v. infusion
  • All tested normal cells were insensitive to 20 mM ascorbate.
    • Nathan Goodyear
       
      meaning safe.
  • Lymphoma cells were selected because of their sensitivity to ascorbate
  • As ascorbate concentration increased, the pattern of death changed from apoptosis to pyknosis/necrosis, a pattern suggestive of H2O2-mediated cell death
  • Apoptosis occurred by 6 h after exposure, and cell death by pyknosis was ≈90% at 14 h after exposure
    • Nathan Goodyear
       
      work continued beyond the IVC therapy itself
  • In contrast to lymphoma cells, there was little or no killing of normal lymphocytes and monocytes by ascorbate
  • Ascorbate is transported into cells as such by sodium-dependent transporters, whereas dehydroascorbic acid is transported into cells by glucose transporters and then immediately reduced internally to ascorbate
  • Whether or not intracellular ascorbate was preloaded, extracellular ascorbate induced the same amount and type of death.
  • extracellular ascorbate in pharmacologic concentrations mediates death of lymphoma cells by apoptosis and pyknosis/necrosis, independently of intracellular ascorbate.
  • H2O2 as the effector species mediating pharmacologic ascorbate-induced cell death
  • Superoxide dismutase was not protective
  • Because these data implicated H2O2 in cell killing, we added H2O2 to lymphoma cells and studied death patterns using nuclear staining (19, 28). The death patterns found with exogenous H2O2 exposure were similar to those found with ascorbate
  • For both ascorbate and H2O2, death changed from apoptosis to pyknosis/necrosis as concentrations increased
  • Sensitivity to direct exposure to H2O2 was greater in lymphoma cells compared with normal lymphocytes and normal monocytes
  • There was no association between the EC50 for ascorbate-mediated cell death and intracellular glutathione concentrations, catalase activity, or glutathione peroxidase activity
  • H2O2 generation was dependent on time, ascorbate concentration, and the presence of trace amounts of serum in media
  • ascorbate radical is a surrogate marker for H2O2 formation.
  • whatever H2O2 is generated should be removed by glutathione peroxidase and catalase within red blood cells, because H2O2 is membrane permeable
  • The data are consistent with the hypothesis that ascorbate in pharmacologic concentrations is a pro-drug for H2O2 generation in the extracellular milieu but not in blood.
  • The occurrence of one predicted complication, oxalate kidney stones, is controversial
  • In patients with glucose-6-phosphate dehydrogenase deficiency, i.v. ascorbate is contraindicated because it causes intravascular hemolysis
  • ascorbate at pharmacologic concentrations in blood is a pro-drug for H2O2 delivery to tissues.
  • ascorbate, an electron-donor in such reactions, ironically initiates pro-oxidant chemistry and H2O2 formation
  • data here showed that ascorbate initiated H2O2 formation extracellularly, but H2O2 targets could be either intracellular or extracellular, because H2O2 is membrane permeant
    • Nathan Goodyear
       
      the conversion of ascorbate to H2O2 occurs extracellular
  • More than 100 patients have been described, presumably without glucose-6-phosphate dehydrogenase deficiency, who received 10 g or more of i.v. ascorbate with no reported adverse effects other than tumor lysis
  •  
    IV vitamin C benefits cancer patients
Nathan Goodyear

Pharmacological Ascorbate Radiosensitizes Pancreatic Cancer - 0 views

  • Previous studies from our laboratory have demonstrated that pharmacological ascorbate is cytotoxic to pancreatic cancer cells while normal cells are resistant
  • Ascorbate-induced cytotoxicity is mediated by the formation of H2O2 during the oxidation of ascorbate
  • the combination of IR + ascorbate increased the concentration of intracellular H2O2
  • ...17 more annotations...
  • Under steady-state conditions, intracellular GSH is maintained at millimolar concentrations, which keeps cells in a reduced environment and serves as the principal intracellular redox buffer when cells are subjected to an oxidative stressor including H2O2 (26). Glutathione peroxidase (GPx) activity catalyzes the reduction of H2O2 to water with the conversion of GSH to glutathione disulfide (GSSG). Under steady-state conditions, GSSG is recycled back to GSH by glutathione disulfide reductase using reducing equivalents from NADPH. However, under conditions of increased H2O2 flux, this recycling mechanism may become overwhelmed leading to a depletion of intracellular GSH (27, 28).
  • ascorbate radiosensitization can create an overwhelming oxidative stress to pancreatic cancer cells resulting in oxidation/depletion of the GSH intracellular redox buffer, resulting in cell death.
  • Treatment with the combination of ascorbate + IR significantly delayed tumor growth compared to controls or ascorbate alone
  • Ascorbate + IR also significantly increased overall survival compared to controls, IR alone or ascorbate alone
  • 54% of mice treated with the combination of IR + ascorbate had no measurable tumors
  • Glutathione is a measurable marker indicative of the oxidation state of the thiol redox buffer in cells. In severe systemic oxidative stress, the GSSG/2GSH couple may become oxidized, i.e. the concentration of GSH decreases and GSSG may increase because the capacity to recycle GSSG to GSH becomes rate-limiting
  • This suggests that the very high levels of pharmacological ascorbate in these experiments may have a pro-oxidant toward red blood cells as seen by a decrease in the capacity of the intracellular redox buffer
  • These data support the hypothesis that ascorbate radiosensitization does not cause an increase in oxidative damage from lipid-derived aldehydes to other organs.
  • Our current study demonstrates the potential for pharmacological ascorbate as a radiosensitizer in the treatment of pancreatic cancer.
  • pharmacological ascorbate enhances IR-induced cell killing and DNA fragmentation leading to induction of apoptosis in HL60 leukemia cells
  • pharmacological ascorbate significantly decreases clonogenic survival and inhibits the growth of all pancreatic cancer cell lines as a single agent, as well as sensitizes cancer cells to IR
  • Hurst et al. demonstrated that pharmacological ascorbate combined with IR leads to increased numbers of double-strand DNA breaks and cell cycle arrest when compared to either treatment alone
  • pharmacological ascorbate could serve as a “pro-drug” for the delivery of H2O2 to tumors
  • the double-strand breaks induced by H2O2 were more slowly repaired
  • The combination of ascorbate and IR provide two distinct mechanisms of action: ascorbate-induced toxicity due to extracellular production of H2O2 that then diffuses into cells and causes damage to DNA, protein, and lipids; and radiation-induced toxicity as a result of ROS-induced damage to DNA. In addition, redox metal metals like Fe2+ may play an important role in ascorbate-induced cytotoxicity. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of H2O2; labile iron can also react with H2O2. Recently our group has demonstrated that pharmacological ascorbate and IR increase the labile iron in tumor homogenates from this murine model of pancreatic cancer
  • we demonstrated that ascorbate or IR alone decreased tumor growth, but the combination treatment further inhibited tumor growth, indicating that pharmacological ascorbate is an effective radiosensitizer in vivo
  • data suggest that pharmacological ascorbate may protect the gut locally by decreasing IR-induced damage to the crypt cells, and systemically, by ameliorating increases in TNF-α
  •  
    IV vitamin C effective as radiosensitizer in pancreatic cancer.
Nathan Goodyear

Ascorbic acid: Chemistry, biology and the treatment of cancer - 0 views

  • iron and ascorbate has long been used as an oxidizing system; the combination of these two reagents is referred to as the Udenfriend system
  • ascorbate serves as a reducing cofactor for many enzymes
  • uptake of ascorbate from the intestinal tract is very tightly controlled
  • ...11 more annotations...
  • pharmacokinetic data indicate that intravenous administration of ascorbate can bypass this tight control resulting in highly elevated plasma levels
  • ascorbate readily oxidizes to produce H2O2, pharmacological ascorbate has been proposed as a prodrug for the delivery of H2O2 to tumors
  • Ascorbate is an excellent reducing agent and readily undergoes two consecutive, one-electron oxidations to form ascorbate radical (Asc•−) and dehydroascorbic acid (DHA)
  • Ascorbate oxidizes readily. The rate of oxidation is dependent on pH and is accelerated by catalytic metals
  • In near-neutral buffers with contaminating metals, the oxidation and subsequent loss of ascorbate can be very rapid
  • Ascorbate is required for maintaining iron in the ferrous state
  • In the presence of catalytic metal ions, ascorbate can also exert pro-oxidant effects
  • Ascorbate is an excellent one-electron reducing agent that can reduce ferric (Fe3+) to ferrous (Fe2+) iron, while being oxidized to ascorbate radical
  • In a classic Fenton reaction, Fe2+ reacts with H2O2 to generate Fe3+ and the very oxidizing hydroxyl radical
  • e presence of ascorbate can allow the recycling of Fe3+ back to Fe2+, which in turn will catalyze the formation of highly reactive oxidants from H2O2
  • Depending on concentrations, the effects of ascorbate on models of lipid peroxidation can be pro- or antioxidant
  •  
    ferritin released enhanced pharmacologic ascorbate induced-cytotoxicity, indicating that ferritin with high iron-saturation could be a source of catalytic iron. Consistent with this, ascorbate has also been shown to be capable of releasing iron from cellular ferritin
Nathan Goodyear

Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and h... - 0 views

  • Proposed mechanism
  • The data show that pharmacologic ascorbate concentrations produced Asc•− selectively in extracellular fluid compared with blood and that H2O2 formation occurred when Asc•− concentrations were >100 nM in extracellular fluid.
  • These data validate the hypothesis that ascorbate is a prodrug for selective delivery of reactive species to the extravascular space
  • ...22 more annotations...
  • pharmacologic ascorbate as a prooxidant drug for therapeutic use.
  • Recently we reported that pharmacologic ascorbic acid concentrations produced H2O2 concentrations of ≥25 μM, causing cancer cell death in vitro
  • We found that H2O2 concentrations generated in vivo were those that caused cancer cell death in vitro
  • When ascorbate was given parenterally, Asc•−, the product of a loss of one electron from ascorbate, was detected preferentially in extracellular fluid compared with blood
  • Asc•− generation in extracellular fluid depended on the ascorbate dose and the resulting concentrations
  • With i.v. administration of ascorbate, Asc•− concentrations were as much as 12-fold greater in extracellular fluid compared to blood and approached 250 nM
  • In blood, such Asc•− concentrations were never produced and were always <50 nM
  • These data are all consistent with the hypothesis that pharmacologic ascorbate concentrations in vivo serve as a prodrug for selective delivery of H2O2 to the extracellular space
  • After oral ingestion, control of intracellular and extracellular ascorbate concentrations is mediated by three mechanisms: intestinal absorption, tissue transport, and renal reabsorption
  • intestinal absorption, or bioavailability, declines at doses >200 mg
    • Nathan Goodyear
       
      significant limitation of gut absorption of vitamin C--at 200 mg po.
  • corresponding to plasma concentrations of ≈60 μM
    • Nathan Goodyear
       
      equates to 0.06 mM.  Max blood levels found with po AA dosing has been 0.22 mM
  • at approximately this concentration, the ascorbate tissue transporter SVCT2 approaches Vmax, and tissues appear to be saturated
    • Nathan Goodyear
       
      SVCT2 Rc in gut reach max binding.
  • also at ≈60 μM, renal reabsorption approaches saturation, and excess ascorbate is excreted in urine
  • Parenteral administration bypasses tight control
  • When tight control is bypassed, H2O2 forms in the extracellular space
  • in vivo validation of ascorbate as a prodrug for selective H2O2 formation
  • Temporarily bypassing tight control with parenteral administration of ascorbate allows H2O2 to form in discrete time periods only, decreasing likelihood of harm, and provides a pharmacologic basis for therapeutic use of i.v. ascorbate
  • H2O2 formation results in selective cytotoxicity
  • Tumor cells are killed with exposure to H2O2 for ≤30 min
  • In vitro, killing is mediated by H2O2 rather than Asc•−
  • In addition to cancer treatment, another potential therapeutic use is for treatment of infections. H2O2 concentrations of 25–50 μM are bacteriostatic
  • virally infected cells may also be candidates
  •  
    follow up invivo study to previous study from 2005.  Here, the authors prove their hypothesis that ascorbate is a prodrug for delivery of H2O2.
Nathan Goodyear

Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis - 1 views

  • Padayatty and colleagues showed that high-level ascorbic acid plasma concentrations could only be achieved by intravenous administration
  • No patient in the low or high dose ascorbic acid treatment arms of this study suffered any identifiable adverse event
  • a pharmacologic ascorbic acid treatment strategy in critically ill patients with severe sepsis appears to be safe
  • ...7 more annotations...
  • subnormal plasma ascorbic acid levels are a predictable feature in patients with severe sepsis
  • Ascorbic acid depletion in sepsis results from ascorbic acid consumption by the reduction of plasma free iron, ascorbic acid consumption by the scavenging of aqueous free radicals (peroxyl radicals), and by the destruction of the oxidized form of ascorbic acid dehydroascorbic acid
  • Sepsis further inhibits intracellular reduction of dehydroascorbic acid, producing acute intracellular ascorbic acid depletion
  • Ascorbic acid treated patients in this study exhibited rapid and sustained increases in plasma ascorbic acid levels using an intermittent every six hours administration protocol
  • Septic ascorbic acid-deficient neutrophils fail to undergo normal apoptosis. Rather, they undergo necrosis thereby releasing hydrolytic enzymes in tissue beds, thus contributing to organ injury
  • We speculate that intravenous ascorbic acid acts to restore neutrophil ascorbic acid levels
  • Repletion of ascorbic acid in this way allows for normal apoptosis, thus, preventing the release of organ damaging hydrolytic enzymes.
  •  
    Study finds IV vitamin C in patients with sepsis is very safe and blunts the effects (endothelial damage, end organ damage...) of sepsis.  Of note, the IV vitamin C group reached serum levels of ascorbic acid of 1,592 to 5,722 micromol/L.  The IV groups maintained elevated serum C levels for up to 96 hours post infusion.  
Nathan Goodyear

Clinical experience with intravenous administration of ascorbic acid: achievable levels... - 0 views

  • Patients with higher tumor markers are likely to have higher tumor burden, higher oxidative stress and, therefore, are more likely to have lower post IVC plasma levels.
  • Our data also showed that cancer patients with metastasis tend to have lower post-IVC vitamin C levels than those without metastasis
  • Lower peak plasma concentrations are obtained in cancer patients than in healthy subjects. Cancer patients who are deficient in vitamin C prior to therapy tend to achieve lower plasma levels post infusion.
  • ...25 more annotations...
  • Patients with higher inflammation or tumor burdens, as measured by CRP levels or tumor antigen levels, tend to show lower peak plasma ascorbate levels after IVC.
  • Patients with metastatic tumors tend to achieve lower post infusion plasma ascorbate levels than those with localized tumors.
  • Meta-analyses of clinical studies involving cancer and vitamins also conclude that antioxidant supplementation does not interfere with the efficacy of chemotherapeutic regiments
  • Most of the prostate cancer patients studied, 75±19% (95% confidence), showed reductions in PSA levels during the course of their IVC therapy
  • Laboratory studies suggest that, at high concentrations, ascorbate does not interfere with chemotherapy or irradiation and may enhance efficacy in some situations
  • Cameron and Pauling observed fourfold survival times in terminal cancer patients treated with intravenous ascorbate infusions followed by oral supplementation
  • The inflammatory microenvironment of cancer cells leads to increasing oxidative stress, which apparently depletes vitamin C, resulting in lower plasma ascorbate concentrations in blood samples post IVC infusion. Another explanation for this finding may be that cancers are themselves more metabolically active in their uptake of vitamin C, causing subjects to absorb more of the vitamin, and as a results show lower plasma ascorbate concentrations in blood post IVC infusion.
  • patients with severely elevated CRP levels attain plasma ascorbate concentrations after IVC infusions that are only 65% of those attained for subjects with normal CRP levels
  • The finding of decreased plasma ascorbate levels in cancer patients may relate to the molecular structure of ascorbic acid; in particular, the similarity of its oxidized form, dihydroascorbic acid, to glucose
  • Since tumor have increased requirement for glucose [67], transport of dehydroascorbate into the cancer cells via glucose transport molecules and ascorbate through sodium-dependent transporter may be elevated
  • Increased accumulation of ascorbic acid in the tumor site was supported by measurements of the level of ascorbic acid in tumors in animal experiments
  • patients with advanced malignancies may have lower level of ascorbic acid in tissue, creating a higher demand for the vitamin C
  • IVC therapy appears to reduce CRP levels in cancer patients.
  • CRP concentrations directly correlate with disease activity in many cases and can contribute to disease progression through a range of pro-inflammatory properties.
  • Being an exquisitely sensitive marker of systemic inflammation and tissue damage, CRP is very useful in screening for organic disease and monitoring treatment responses
  • ncreases in CRP concentrations have been associated with poorer prognosis of survival in cancer patients, particularly with advance disease independent of tumor stage
  • Regarding inflammation, 73±13% of subjects (95% confidence) showed a reduction in CRP levels during therapy. This was an even more dramatic 86±13% (95% confidence) in subjects who started therapy with CRP levels above 10 mg/L
  • patients treated by IVC with follow-up several year showed that suppression of inflammation in cancer patients by high-dose IVC is feasible and potentially beneficial
  • Inflammation is a marker of high cancer risk, and poor treatment outcome
  • The subjects with highly elevated CRP concentrations have a three-fold elevation “all-cause” mortality risk and a twenty-eight fold increase in cancer mortality risk
  • cancer patients may need higher doses to achieve a given plasma concentration.
  • patients with lower vitamin C levels may see more distribution of intravenously administered ascorbate into tissues and thus attain less in plasma.
  • When treating patients with IVC, the first treatment likely serves to replenish depleted tissue stores, if those subjects were vitamin C deficient at the beginning of the treatment. Then, in subsequent treatments, with increasing doses, higher plasma concentrations can be attained. On-going treatments serve to progressively reduce oxidative stress in cancer patients.
  • large doses given intravenously may result in maximum plasma concentrations of roughly 30 mM, a level that has been shown to be sufficient for preferential cytotoxicity against cancer cells
  • oral intake of vitamin C exceeded 200 mg administered once daily, it was difficult to increase plasma and tissue concentrations above roughly 200 μM.
  •  
    Great review on the use of IV vitamin C in cancer and to reduce inflammation.  The article does a great job of discussing the mechanism of vitamin C therapy in cancer as well as the proposed reasons for low vitamin C in cancer patients.  The study also highlights the obstacles to rise in vitamin C levels post IV vitamin C in cancer patients.
Nathan Goodyear

From the Cover: Pharmacologic doses of ascorbate act as a prooxidant and decrease growt... - 0 views

  • An extensive panel of 43 tumor and 5 normal cell lines were exposed to ascorbate in vitro for ≤2 h to mimic clinical pharmacokinetics
  • effective concentration that decreased survival 50% (EC50) was determined. EC50 was <10 mM for 75% of tumor cells tested, whereas cytotoxicity was not evident in normal cells with >20 mM ascorbate
  • The addition of catalase to the medium ameliorated death of ovarian carcinoma (Ovcar5), pancreatic carcinoma (Pan02), and glioblastoma (9L) cells exposed to 10 mM ascorbate (1 h), indicating cytotoxicity was mediated by H2O2
  • ...8 more annotations...
  • A treatment dose of 4 g ascorbate/kg body weight either once or twice daily did not produce any discernible adverse effects
  • Xenograft experiments showed that parenteral ascorbate as the only treatment significantly decreased both tumor growth and weight by 41–53%
  • Peak plasma concentrations of ascorbate approached 30 mM
  • Pharmacologic concentrations of ascorbate decreased tumor volumes 41–53% in diverse cancer types known for both their aggressive growth and limited treatment options.
  • Our findings showed that pharmacologic ascorbic acid concentrations were cytotoxic to many types of cancer cells in vitro (Fig. 1A) and significantly impeded tumor progression in vivo without toxicity to normal tissues
  • The amelioration of ascorbate cytotoxicity in vitro by the addition of catalase was consistent among sensitive cancer cells (Fig. 1B) and points unambiguously to H2O2 generation in the extracellular medium
  • the current in vivo data support that pharmacologic ascorbate concentrations, which can readily be achieved in humans (Fig. 3E), diminished growth of several aggressive cancer types in mice (Fig. 2) without causing apparent adverse effects.
  • These intratumoral H2O2 concentrations of >125 μM persisted for >3 h after ascorbate administration
  •  
    Tumor xenograft model in mice finds reduction in growth rates of ovarian cancer, pancreatic cancer, and glioblastoma with daily IV vitamin C.
Nathan Goodyear

Increased Tumor Ascorbate is Associated with Extended Disease-Free Survival and Decreas... - 0 views

  •  
    Enough said: "There was an inverse relationship between tumor ascorbate content and HIF-1 pathway activation and tumor size. Higher tumor ascorbate content was associated with significantly improved disease-free survival in the first 6 years after surgery with additional disease-free days. This was independent of tumor grade and stage. Survival advantage was associated with the amount of ascorbate in the tumor, but not with the amount in adjacent normal tissue. Our results demonstrate that higher tumor ascorbate content is associated with decreased HIF-1 activation."
Nathan Goodyear

Multiple Myeloma Tumor Cells are Selectively Killed by Pharmacologically-dosed Ascorbic... - 0 views

  • Recent reports indicate that a certain ROS concentration is required for high-dose vitamin C to induce cytotoxicity in cancer cells.
  • The generation of ascorbyl- and H2O2 radicals by PAA increases ROS stress in cancer cells
  • In this study, we report that PAA is efficacious in killing MM cells in vitro and in vivo models, which generated levels of 20–40 mM ascorbate and 500 nM ascorbyl radicals after intraperitoneal administration of 4 g ascorbate per kilogram of body weight (Chen et al., 2008Chen et al., 2008), in xenograft MM mice
  • ...33 more annotations...
  • These data suggest that PAA may show a therapeutic advantage to blood cancers vs solid tumors because of the communication between tumor cells and blood plasma
  • These results strongly suggest that the mechanism of PAA killing of MM cells is indeed iron-dependent
  • These results suggest that PAA administration in SMM may be able to prevent progression to symtomatic MM
  • A recent study by Yun and colleagues demonstrated that vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH, but spares normal cells
  • RAS family genes show the most frequent mutations in MM. KRAS, NRAS and BRAF are mutated in 22%, 20% and 7% of MM samples
  • the disease stage rather than the mutation of RAS and/or BRAF is the major predictive factor for PAA sensitivity in MM treatment
  • Other molecular mechanisms including ATP depletion and ATM-AMPK signaling have been reported to explain PAA-induced cell death
  • our pilot study also suggested that PAA could overcome drug resistance to bortezomib in MM cells
  • Our findings complement reported studies and further address the mechanism of action using clinical samples in which we observed that PAA killed tumor cells with high iron content, suggesting that iron might be the initiator of PAA cytotoxicity
  • combination of PAA with standard therapeutic drugs, such as melphalan, may significantly reduce the dose of melphalan needed
  • Combined treatment of reduced dose melphalan with PAA achieved a significantly longer progression-free survival than the same dose of melphalan alone.
  • These data also suggest that the bone marrow suppression induced by high-dose melphalan can be ameliorated by the combination of PAA with lower dose of melphalan because of the lack of toxicity of PAA on normal cells with low iron content.
  • if creatinine clearance is <30 mL/min, high dose ascorbic acid should be not administrated.
  • In MM preclinical and clinical studies, ascorbate was used as an adjunct drug and showed controversial results (Harvey et al., 2009, Perrone et al., 2009, Held et al., 2013, Sharma et al., 2012, Nakano et al., 2011, Takahashi, 2010, Sharma et al., 2009, Qazilbash et al., 2008). However, none of these tests used pharmacological doses of ascorbate and intravenous administration
  • Multiple myeloma (MM) is a plasma cell neoplasm.
  • Cameron and Pauling reported that high doses of vitamin C increased survival of patients with cancer
  • pharmacologically dosed ascorbic acid (PAA) 50–100 g (Chen et al., 2008, Padayatty et al., 2004, Hoffer et al., 2008, Padayatty et al., 2006, Welsh et al., 2013), administered intravenously, has potent anti-cancer activity and its role as anti-cancer therapy is being studied at the University of Iowa and in other centers
  • In the presence of catalytic metal ions like iron, PAA administered intravenously exerts pro-oxidant effects leading to the formation of highly reactive oxygen species (ROS), resulting in cell death
  • the labile iron pool (LIP) is significantly elevated in MM cells
  • The survival of CD138+ cells in vitro was significantly decreased following PAA treatment in all 9 MM
  • In contrast, no significant change of cell viability was observed in CD138− BM cells from the same patients
  • The same effect of PAA was also observed in the SMM patients
  • no response to PAA was detected in CD138+ cells from the 2 MGUS patients
  • the combination of melphalan plus PAA showed greater tumor burden reduction than each drug alone, suggesting a synergistic activity between these two drugs
  • Both catalase and NAC protect cells from oxidative damage
  • cells pretreated with NAC and catalase became resistant to PAA even at high doses
  • adding deferoxamine (DFO), an iron chelator, to OCI-MY5 cells before PAA treatment was also sufficient to prevent PAA-induced cellular death
  • iron is essential for PAA to achieve its anti-cancer activity
  • PAA induced early necrosis (Fig. 3Fig. 3A, 60 min) followed by late apoptosis
  • results further indicated that PAA induced mitochondria-mediated apoptosis
  • PAA by reacting with LIP and generating ROS induces mitochondria-mediated apoptosis in which AIF1 cleavage is important for cell death.
  • ROS and H2O2 are well known factors mediating PAA-induced cancer cell death
  • PAA was sensitive to all 9 MMs and 2 SMMs
  •  
    animal study finds high-dose, pharmacologic vitamin C found to kill multiple myeloma cells via pro-oxidant effect found in similar studies in dealing with different cancers.
Nathan Goodyear

O2*− and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Su... - 0 views

  •  
    Great read and synopsis of the interaction between vitamin C and the altered redox balance in cancer cells. The process involves Fe in part. Ascorbate increases H2O2 which increases the label Fe pool.
Nathan Goodyear

Modulation of hypoxia-inducible factor-1 alpha in cultured primary cells by intracellul... - 0 views

  •  
    "Induction of HIF-1α by hypoxia (1% O2) or by CoCl2 was markedly inhibited by ascorbate and loading with physiological levels resulted in almost complete reversal of HIF-1α stabilisation. Gene expression was similarly affected, with VEGF mRNA and GLUT-1 up-regulation being inhibited by ascorbate"
Nathan Goodyear

Pharmacokinetic modeling of ascorbate diffusion through normal and tumor tissue - PubMed - 0 views

  •  
    supraphysiological plasma ascorbate concentrations (>100 μM) are required to achieve effective delivery of ascorbate to poorly vascularized tumor tissue
Nathan Goodyear

Pharmacological ascorbate induces cytotoxic... [Anticancer Drugs. 2012] - PubMed - NCBI - 0 views

  •  
    IV vitamin C induces cell death of prostate cancer cell lines via H2O2, which is not new, but what is new is the ascorbate-insensitive cell line.
Nathan Goodyear

Nutrients | Free Full-Text | Myths, Artifacts, and Fatal Flaws: Identifying Limitations... - 0 views

  • l-gulonolactone oxidase, an enzyme with the synthesis of l-ascorbic acid as its only known function
  • prolonged fasting causes ascorbate synthesis to decline
  • agents that stimulate glycogenolysis also stimulate ascorbate synthesis when an animal is in a fed state
  •  
    Great review on the science of vitamin C.
Nathan Goodyear

Modulating factors of radical intensity and cytotoxic activity of ascorbate (review). -... - 0 views

  •  
    Ascorbic acid, also known as vitamin C, has pro-oxidant effect to induce apoptosis in human myelogenous leukemic cell lines.
Nathan Goodyear

Cytotoxicity of ascorbate, lipoic acid, and other antioxidants in hollow fibre in vitro... - 0 views

  •  
    Lipoic acid synergistically enhanced ascorbate cytotoxicity
Nathan Goodyear

Intravenous Ascorbate as a Tumor Cytotoxic Chemotherapeutic Agent - 0 views

  • There is a 10 — 100-fold greater content of catalase in normal cells than in tumor cells
  • induce hydrogen peroxide generation
  • Ascorbic acid and its salts (AA) are preferentially toxic to tumor cells in vitro (6 — 13) and in vivo
  • ...36 more annotations...
  • related to intracellular hydrogen peroxide generation
  • only be obtained by intravenous administration of AA
  • Preferentially kills neoplastic cells
  • Is virtually non-toxic at any dosage
  • Does not suppress the immune system, unlike most chemotherapy agents
  • Increases animal and human resistance to infectious agents by enhancing lymphocyte blastogenesis, enhancing cellular immunity, strengthening the extracellular matrix, and enhancing bactericidal activity of neutrophils and modulation of complement protein
  • Strengthens the structural integrity of the extracellular matrix which is responsible for stromal resistance to malignant invasiveness
  • 1969, researchers at the NCI reported AA was highly toxic to Ehrlich ascites cells in vitro
  • In 1977, Bram et al reported preferential AA toxicity for several malignant melanoma cell lines, including four human-derived lines
  • Noto et al reported that AA plus vitamin K3 had growth inhibiting action against three human tumor cell lines at non-toxic levels
  • Metabolites of AA have also shown antitumor activity in vitro
  • The AA begins to reduce cell proliferation in the tumor cell line at the lowest concentration, 1.76 mg/dl, and is completely cytotoxic to the cells at 7.04 mg/dl
  • the normal cells grew at an enhanced rate at the low dosages (1.76 and 3.52 mg/dl)
  • preferential toxicity of AA for tumor cells. >95% toxicity to human endometrial adenocarcinoma and pancreatic tumor cells (ATCC AN3-CA and MIA PaCa-2) occurred at 20 and 30 mg/dl, respectively.
  • No toxicity or inhibition was demonstrated in the normal, human skin fibroblasts (ATCC CCD 25SK) even at the highest concentration of 50 mg/dl.
  • the use of very high-dose intravenous AA for the treatment of cancer was proposed as early as 1971
  • Cameron and Pauling have published extensive suggestive evidence for prolonged life in terminal cancer patients orally supplemented (with and without initial intravenous AA therapy) with 10 g/day of AA
  • AA, plasma levels during infusion were not monitored,
  • the long-term, oral dosage used in those experiments (10 g/day), while substantial and capable of producing immunostimulatory and extracellular matrix modulation effects, was not high enough to achieve plasma concentrations that are generally cytotoxic to tumor cells in culture
  • This low cytotoxic level of AA is exceedingly rare
  • 5 — 40 mg/dl of AA is required in vitro to kill 100% of tumor cells within 3 days. The 100% kill levels of 30 mg/dl for the endometrial carcinoma cells and 40 mg/dl for the pancreatic carcinoma cells in Figure 2 are typical
  • normal range (95% range) of 0.39-1.13 mg/dl
  • 1 h after beginning his first 8-h infusion of 115 g AA (Merit Pharmaceuticals, Los Angeles, CA), the plasma AA was 3.7 mg/dl and at 5 h was 19 mg/dl. During his fourth 8-h infusion, 8 days later, the 1 h plasma level was 158 mg/dl and 5 h was 185 mg/dl
  • plasma levels of over 100 mg/dl have been maintained in 3 patients for more than 5 h using continuous intravenous infusion
  • In rare instances of patients with widely disseminated and rapidly proliferating tumors, intravenous AA administration (10 — 45 g/day) precipitated widespread tumor hemorrhage and necrosis, resulting in death
  • Although the outcomes were disastrous in these cases, they are similar to the description of tumor-necrosis-factor-induced hemorrhage and necrosis in mice (52) and seem to demonstrate the ability of AA to kill tumor cells in vivo.
  • toxic effects of AA on one normal cell line were observed at 58.36 mg/dl and the lack of side effects in patients maintaining >100 mg/dl plasma levels
  • Although it is very rare, tumor necrosis, hemorrhage, and subsequent death should be the highest priority concern for the safety of intravenous AA for cancer patients.
  • Klenner, who reported no ill effects of dosages as high as 150 g intravenously over a 24-h period
  • Cathcart (55) who describes no ill effects with doses of up to 200 g/d in patients with various pathological conditions
  • following circumstances: renal insufficiency, chronic hemodialysis patients, unusual forms of iron overload, and oxalate stone formers
  • Screening for red cell glucose-6-phosphate dehydrogenase deficiency, which can give rise to hemolysis of red blood cells under oxidative stress (57), should also be performed
  • any cancer therapy should be started at a low dosage to ensure that tumor hemorrhage does not occur.
  • patient is orally supplementing between infusions
  • a scorbutic rebound effect can be avoided with oral supplementation. Because of the possibility of a rebound effect, measurement of plasma levels during the periods between infusions should be performed to ensure that no such effect takes place
  • Every effort should be made to monitor plasma AA levels when a patient discontinues intravenous AA therapy.
  •  
    Older study, 1995, but shows the long-standing evidence that IVC preferentially is cytotoxic to cancer cells.`
Nathan Goodyear

Vitamin C and cancer revisited - 0 views

  • It is well known that vitamin C, or ascorbic acid, is an effective biologic antioxidant and does not act as a pro-oxidant under normal conditions (5) because it does not readily autoxidize, i.e., react with oxygen (O2) to produce reactive oxygen species, such as superoxide radicals (O2•−) or H2O2
  • However, ascorbate readily donates an electron to redox-active transition metal ions, such as cupric (Cu2+) or ferric (Fe3+) ions, reducing them to cuprous (Cu+) and ferrous (Fe2+) ions, respectively
  • Reduced transition metal ions, in contrast to ascorbic acid, readily react with O2, reducing it to superoxide radicals (Reaction 2), which in turn dismutate to form H2O2 and O2
  • ...6 more annotations...
  • The H2O2 produced this way (Reactions 1–3) seems to be key to ascorbate's antitumor effect because H2O2 causes cancer cells to undergo apoptosis, pyknosis, and necrosis
  • In contrast, normal cells are considerably less vulnerable to H2O2
  • The reason for the increased sensitivity of tumor cells to H2O2 is not clear but may be due to lower antioxidant defenses
  • In fact, a lower capacity to destroy H2O2—e.g., by catalase, peroxiredoxins, and GSH peroxidases—may cause tumor cells to grow and proliferate more rapidly than normal cells in response to low concentrations of H2O2
  • These observations, combined with the inhibitory effect on xenograft growth, provide the proof of concept that millimolar concentrations of extracellular ascorbate, achievable by i.p. injection or i.v. infusion in experimental animals and humans, respectively, exert pro-oxidant, antitumor effects in vivo.
  • They also show that the concentration of the ascorbyl radical correlates with the concentration of H2O2 in interstitial fluid, whereas no H2O2 can be detected in blood or plasma
  •  
    review of the mechanism of how extracellular AA, only obtainable from parenteral dosing, can produce H2O2 extracellularly to then be cytotoxic to cancer cells.
Nathan Goodyear

Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2... - 0 views

  • Chen et al. have revealed that ascorbate at pharmacologic concentrations (0.3–20 mM) achieved only by intravenously (i.v.) administration selectively kills a variety of cancer cell lines in vitro, but has little cytotoxic effect on normal cells.
  • Ascorbic acid (the reduced form of vitamin C) is specifically transported into cells by sodium-dependent vitamin C transporters (SVCTs)
  • SVCT-1 is predominantly expressed in epithelial tissues
  • ...41 more annotations...
  • whereas the expression of SVCT-2 is ubiquitous
  • differential sensitivity to VC may result from variations in VC flow into cells, which is dependent on SVCT-2 expression.
  • high-dose VC significantly impaired both the tumorspheres initiation (Fig. 4d, e) and the growth of established tumorspheres derived from HCC cells (Fig. 4f, g) in a time-dependent and dose-dependent manner.
  • Hepatocellular carcinoma (HCC)
  • The antioxidant, N-acetyl-L-cysteine (NAC), preventing VC-induced ROS production (a ROS scavenger), completely restored the viability and colony formation among VC-treated cells
  • DNA double-strand damage was found following VC treatment
  • DNA damage was prevented by NAC
  • Interestingly, the combination of VC and cisplatin was even more effective in reducing tumor growth and weight
  • Consistent with the in vitro results, stemness-related genes expressions in tumor xenograft were remarkably reduced after VC or VC+cisplatin treatment, whereas conventional cisplatin therapy alone led to the increase of CSCs
  • VC is one of the numerous common hepatoprotectants.
  • Interestingly, at extracellular concentrations greater than 1 mM, VC induces strong cytotoxicity to cancer cells including liver cancer cells
  • we hypothesized that intravenous VC might reduce the risk of recurrence in HCC patients after curative liver resection.
  • Intriguingly, the 5-year disease-free survival (DFS) for patients who received intravenous VC was 24%, as opposed to 15% for no intravenous VC-treated patients
  • Median DFS time for VC users was 25.2 vs. 18 months for VC non-users
  • intravenous VC use is linked to improved DFS in HCC patients.
  • In this study, based on the elevated expression of SVCT-2, which is responsible for VC uptake, in liver CSCs, we revealed that clinically achievable concentrations of VC preferentially eradicated liver CSCs in vitro and in vivo
    • Nathan Goodyear
       
      the authors here made similar mistakes to the Mayo authors i.e. under doses here in this study.  They dosed at only 2 grams IVC.  A woefully low dose of IVC.
  • Additionally, we found that intravenous VC reduced the risk of post-surgical HCC progression in a retrospective cohort study.
    • Nathan Goodyear
       
      positive results despite a low dose used.
    • Nathan Goodyear
       
      Their comfort zone was 1mM.  They should have targeted 20-40 mM.
  • Three hundred thirty-nine participants (55.3%) received 2 g intravenous VC for 4 or more days after initial hepatectomy
  • As the key protein responsible for VC uptake in the liver, SVCT-2 played crucial roles in regulating the sensitivity to ascorbate-induced cytotoxicity
  • we also observed that SVCT-2 was highly expressed in human HCC samples and preferentially elevated in liver CSCs
  • SVCT-2 might serve as a potential CSC marker and therapeutic target in HCC
  • CSCs play critical roles in regulating tumor initiation, relapse, and chemoresistance
  • we revealed that VC treatment dramatically reduced the self-renewal ability, expression levels of CSC-associated genes, and percentages of CSCs in HCC, indicating that CSCs were more susceptible to VC-induced cell death
  • as a drug for eradicating CSCs, VC may represent a promising strategy for treatment of HCC, alone or particularly in combination with chemotherapeutic drugs
  • In HCC, we found that VC-generated ROS caused genotoxic stress (DNA damage) and metabolic stress (ATP depletion), which further activated the cyclin-dependent kinase inhibitor p21, leading to G2/M phase cell cycle arrest and caspase-dependent apoptosis in HCC cells
  • we demonstrated a synergistic effect of VC and chemotherapeutic drug cisplatin on killing HCC both in vitro and in vivo
  • Intravenous VC has also been reported to reduce chemotherapy-associated toxicity of carboplatin and paclitaxel in patients,38 but the specific mechanism needs further investigation
    • Nathan Goodyear
       
      so, exclude the benefit to patients until the exact mechanism of action, which will never be fully elicited?!?!?
  • Our retrospective cohort study also showed that intravenous VC use (2 g) was related to the improved DFS in HCC patients after initial hepatectomy
    • Nathan Goodyear
       
      Terribly inadequate dose.  Target is 20-40 mM which other studies have found occur with 50-75 grams of IVC.
  • several clinical trials of high-dose intravenous VC have been conducted in patients with advanced cancer and have revealed improved quality of life and prolonged OS
  • high-dose VC was not toxic to immune cells and major immune cell subpopulations in vivo
  • high recurrence rate and heterogeneity
  • tumor progression, metastasis, and chemotherapy-resistance
  • SVCT-2 was highly expressed in HCC samples in comparison to peri-tumor tissues
  • high expression (grade 2+/3+) of SVCT-2 was in agreement with poorer overall survival (OS) of HCC patients (Fig. 1c) and more aggressive tumor behavior
  • SVCT-2 is enriched in liver CSCs
  • these data suggest that SVCT-2 is preferentially expressed in liver CSCs and is required for the maintenance of liver CSCs.
  • pharmacologic concentrations of plasma VC higher than 0.3 mM are achievable only from i.v. administration
  • The viabilities of HCC cells were dramatically decreased after exposure to VC in dose-dependent manner
  • VC and cisplatin combination further caused cell apoptosis in tumor xenograft
  • These results verify that VC inhibits tumor growth in HCC PDX models and SVCT-2 expression level is associated with VC response
  • qPCR and IHC analysis demonstrated that expression levels of CSC-associated genes and percentages of CSCs in PDXs dramatically declined after VC treatment, confirming the inhibitory role of VC in liver CSCs
  •  
    IV vitamin C in vitro and in vivo found to "preferentially" eradicate cancer stem cells.  In addition, IV vitamin C was found to be adjunctive to chemotherapy, found to be hepatoprotectant.  This study also looked at SVCT-2, which is the transport protein important in liver C uptake.
Nathan Goodyear

Intravenously administered vitamin C as cancer therapy: three cases - 0 views

  • peak plasma concentrations obtained intravenously are estimated to reach 14 000 μmol/L, and concentrations above 2000 μmol/L may persist for several hours
  • Emerging in vitro data show that extracellular ascorbic acid selectively kills some cancer but no normal cells by generating hydrogen peroxide
  • Death is mediated exclusively by extracellular ascorbate, at pharmacologic concentrations that can be achieved only by intravenous administration
  • ...6 more annotations...
  • Vitamin C may serve as a pro-drug for hydrogen peroxide delivery to extravascular tissues, but without the presence of hydrogen peroxide in blood
  • not all cancer cells were killed by ascorbic acid in vitro
  • Intravascular hemolysis was reported after massive vitamin C administration in people with glucose-6-phosphate dehydrogenase deficiency
  • Administration of high-dose vitamin C to patients with systemic iron overload may increase iron absorption and represents a contraindication
  • Ascorbic acid is metabolized to oxalate, and 2 cases of acute oxalate nephropathy were reported in patients with pre-existing renal insufficiency given massive intravenous doses of vitamin C
  • Rare cases of acute tumour hemorrhage and necrosis were reported in patients with advanced cancer within a few days of starting high-dose intravenous vitamin C therapy, although this was not independently verified by pathologic review
  •  
    IV vitamin C associated with prolonged survival in 3 patients with different cancers.  Peak serum levels reached 14,000 micromol/L, which levels above the 1,000 micro mol/L (cancer cell cytotoxic threshold) were maintained for hours
1 - 20 of 246 Next › Last »
Showing 20 items per page