Skip to main content

Home/ Dr. Goodyear/ Group items tagged malondialdehyde

Rss Feed Group items tagged

Nathan Goodyear

Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde... - 0 views

  • Hydroxyl radicals cause oxidative damage to cells because they unspecifically attack biomolecules [22] located less than a few nanometres from its site of generation and are involved in cellular disorders such as neurodegeneration [23, 24], cardiovascular disease [25], and cancer [26, 27].
  • It is generally assumed that in biological systems is formed through redox cycling by Fenton reaction, where free iron (Fe2+) reacts with hydrogen peroxide (H2O2) and the Haber-Weiss reaction that results in the production of Fe2+ when superoxide reacts with ferric iron (Fe3+)
  • other transition-metal including Cu, Ni, Co, and V can be responsible for formation in living cells
  • ...20 more annotations...
  • The hydroperoxyl radical () plays an important role in the chemistry of lipid peroxidation
  • The is a much stronger oxidant than superoxide anion-radical
  • Lipid peroxidation can be described generally as a process under which oxidants such as free radicals or nonradical species attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs) that involve hydrogen abstraction from a carbon, with oxygen insertion resulting in lipid peroxyl radicals and hydroperoxides as described previously
  • under medium or high lipid peroxidation rates (toxic conditions) the extent of oxidative damage overwhelms repair capacity, and the cells induce apoptosis or necrosis programmed cell death
  • The overall process of lipid peroxidation consists of three steps: initiation, propagation, and termination
  • Once lipid peroxidation is initiated, a propagation of chain reactions will take place until termination products are produced.
  • The main primary products of lipid peroxidation are lipid hydroperoxides (LOOH)
  • Among the many different aldehydes which can be formed as secondary products during lipid peroxidation, malondialdehyde (MDA), propanal, hexanal, and 4-hydroxynonenal (4-HNE) have been extensively studied
  • MDA has been widely used for many years as a convenient biomarker for lipid peroxidation of omega-3 and omega-6 fatty acids because of its facile reaction with thiobarbituric acid (TBA)
  • MDA is one of the most popular and reliable markers that determine oxidative stress in clinical situations [53], and due to MDA’s high reactivity and toxicity underlying the fact that this molecule is very relevant to biomedical research community
  • 4-HNE is considered as “second toxic messengers of free radicals,” and also as “one of the most physiologically active lipid peroxides,” “one of major generators of oxidative stress,” “a chemotactic aldehydic end-product of lipid peroxidation,” and a “major lipid peroxidation product”
  • MDA is an end-product generated by decomposition of arachidonic acid and larger PUFAs
  • Identifying in vivo MDA production and its role in biology is important as indicated by the extensive literature on the compound (over 15 800 articles in the PubMed database using the keyword “malondialdehyde lipid peroxidation” in December 2013)
  • MDA reactivity is pH-dependent
  • When pH decreases MDA exists as beta-hydroxyacrolein and its reactivity increases
  • MAA adducts are shown to be highly immunogenic [177–181]. MDA adducts are biologically important because they can participate in secondary deleterious reactions (e.g., crosslinking) by promoting intramolecular or intermolecular protein/DNA crosslinking that may induce profound alteration in the biochemical properties of biomolecules and accumulate during aging and in chronic diseases
  • MDA is an important contributor to DNA damage and mutation
  • This MDA-induced DNA alteration may contribute significantly to cancer and other genetic diseases.
  • Dietary intake of certain antioxidants such as vitamins was associated with reduced levels of markers of DNA oxidation (M1dG and 8-oxodG) measured in peripheral white blood cells of healthy subjects, which could contribute to the protective role of vitamins on cancer risk
  • 4-HNE is an extraordinarily reactive compound
  •  
    Great review of lipid peroxidation
Nathan Goodyear

[Malondialdehyde (MDA) as a lipid peroxidation marker]. - PubMed - NCBI - 0 views

  •  
    Only abstract her and it is an older article.  Malondialdehyde (MDA) is a great marker of oxidative stress.  Specifically, MDA is an end product of polyunsaturated fat peroxidation.
Nathan Goodyear

Internet Scientific Publications - 0 views

  •  
    Study of Iraqi population at elevated risk of stroke found that both serum and salivary levels of malondialdehyde, glutathione, superoxide dismutase, and uric acid proved useful as potential biomarkers of risk assessment.
Nathan Goodyear

Malondialdehyde, Bcl-2, superoxide dismutase a... [Neurochem Res. 2012] - PubMed - NCBI - 0 views

  •  
    decreased detoxification and increased oxidative stress in autism.
Nathan Goodyear

Positive effects of astaxanthin on lipid profiles and oxidative stress in overweight su... - 0 views

  •  
    Astaxanthin at 20 mg found to reduce oxidized LDL and other oxidative stress biomarkers as assessed by Malondialdehydy, SOD, Isoprostane, and TAC.  The dose was 20 mg for 12 weeks. This higher dose was associated with minimal side effects--red stools.
Nathan Goodyear

Effects of astaxanthin on oxidative stress in overweight and obese adults. - PubMed - NCBI - 0 views

  •  
    short study found that astaxanthin at 5 and 20 mg was associated with a reduction in oxidative stress biomarkers.
Nathan Goodyear

Calcium plus vitamin D supplementation influences biomarkers of inflammation and oxidat... - 0 views

  •  
    Vitamin D plus calcium found to reduce inflammation and oxidative stress in women with PCOS.  CRP and MDA were decreased.  Notice dosing.
Nathan Goodyear

ScienceDirect - Food and Chemical Toxicology : Neuroprotective effect of ginger on anti... - 0 views

  • A marked decrease in anti-oxidant marker enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH) and increase in malondialdehyde (MDA) was observed in the diabetic rats
  • inger may be used as therapeutic agent in preventing complications in diabetic patients.
  • These results suggest that ginger exhibit a neuroprotective effect by accelerating brain anti-oxidant defense mechanisms and down regulating the MDA levels to the normal levels in the diabetic rats
  •  
    Ginger reduces oxidative stress in diabetic rat model
Nathan Goodyear

Hepatoprotective Effect of Vitamin C (Ascorbic Acid) - 0 views

  •  
    Vitamin C is hepatoprotective.  This review highlights the proposed methods by which vitamin C reduces ALT, AST, alkaline phosphatase, LDH, malondialdegyde...
Nathan Goodyear

No indications of persistent oxidative stress in response to an iro... - PubMed - NCBI - 0 views

  •  
    Oxidative stress markers remain elevated up to 5 days post ironman triathlon.
Nathan Goodyear

Implications of free radicals and antioxidant levels in carcinoma of the breast: A neve... - 0 views

  • Experimental investigations as well as clinical and epidemiological findings have provided evidence supporting the role of reactive oxygen metabolites or free radicals such as singlet oxygen O 2 - , superoxide anions (O 2 ), hydrogen peroxide (H­2 O2 ) and hydroxyl radical in the etiology of cancer.
  • Certain aldehydes such as Malonyldialdehyde (MDA), the end product of lipid peroxidation arising from free radical degeneration of polyunsaturated fatty acids can cause cross linking in lipids, proteins and nucleic acids leading to cellular damage.
  • In this study, patients with cancer exhibited higher levels of MDA, both in tissues and serum (p<0.001) compared to the control group [Table 1]. In tissue, the MDA level in stage IV was significantly higher as compared to stage I indicating increased free radical activity with increasing severity of cancer
  • ...6 more annotations...
  • From these observations, it can be concluded that MDA levels play an important role in assessing the outcome of cancer
  • SOD and CAT are considered primary antioxidant enzymes, since they are involved in direct elimination of reactive oxygen metabolites. [13-16] They also act as anti-carcinogens and inhibitors at initiation and promotion/transformation stage in carcinogenesis
  • In our study, SOD and CAT levels were found to be low in all cancer patients as compared to controls
  • Fridovich and Tayarani have demonstrated in their respective studies that the reduction in SOD activity increases the toxic effects of O2 - and this might lead to severe cellular damage.
  • Mehrotra et al. in their study also observed high levels of MDA and low levels of SOD and CAT in patients of cancer cervix which is in sync with our observations.
  • strong evidence regarding the definitive role of free radicals in breast malignancy.
  •  
    This study finds a strong correlation between advancing breast cancer, decreased catalase and SOD with increasing MDA.  The authors of this study conclude this is a key factor in carcinogenesis and not a by-product of cancer.  This flies in the face of traditional medicines fear of antioxidant therapy in cancer.
Nathan Goodyear

http://www.iasj.net/iasj?func=fulltext&aId=1538 - 0 views

  •  
    serum and salivary oxidative stress biomarkers used to follow children with autism in Iraq.
Nathan Goodyear

Thieme E-Journals - Hormone and Metabolic Research / Abstract - 0 views

  •  
    Short study found that Selenium improved pregnancy rate compared to placebo, reduced DHEA, hirsutism, CRP and MDA
1 - 13 of 13
Showing 20 items per page