Skip to main content

Home/ Dr. Goodyear/ Group items tagged H2O2

Rss Feed Group items tagged

Nathan Goodyear

O2*− and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Su... - 0 views

  •  
    Great read and synopsis of the interaction between vitamin C and the altered redox balance in cancer cells. The process involves Fe in part. Ascorbate increases H2O2 which increases the label Fe pool.
Nathan Goodyear

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a p... - 0 views

  • Taken together, these data indicate that ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H2O2, and that blood can be a delivery system of the pro-drug to tissues.
  • These findings give plausibility to i.v. ascorbic acid in cancer treatment, and have unexpected implications for treatment of infections where H2O2 may be beneficial
  • pharmacologic concentrations of ascorbate killed cancer but not normal cells, that cell death was dependent only on extracellular but not intracellular ascorbate, and that killing was dependent on extracellular hydrogen peroxide (H2O2) formation with ascorbate radical as an intermediate
  • ...48 more annotations...
  • Our data show that ascorbic acid selectively killed cancer but not normal cells, using concentrations that could only be achieved by i.v. administration
  • Ascorbate-mediated cell death was due to protein-dependent extracellular H2O2 generation, via ascorbate radical formation from ascorbate as the electron donor. Like glucose, when ascorbate is infused i.v., the resulting pharmacologic concentrations should distribute rapidly in the extracellular water space (42). We showed that such pharmacologic ascorbate concentrations in media, as a surrogate for extracellular fluid, generated ascorbate radical and H2O2. In contrast, the same pharmacologic ascorbate concentrations in whole blood generated little detectable ascorbate radical and no detectable H2O2. These findings can be accounted for by efficient and redundant H2O2 catabolic pathways in whole blood (e.g., catalase and glutathione peroxidase) relative to those in media or extracellular fluid
  • ascorbic acid administered i.v. in pharmacologic concentrations may serve as a pro-drug for H2O2 delivery to the extracellular milieu
  • H2O2 generated in blood is normally removed by catalase and glutathione peroxidase within red blood cells, with internal glutathione providing reducing equivalents
  • The electron source for glutathione is NADPH from the pentose shunt, via glucose-6-phosphate dehydrogenase. If activity of this enzyme is diminished, the predicted outcome is impaired H2O2 removal causing intravascular hemolysis, the observed clinical finding.
    • Nathan Goodyear
       
      The mechansism here is inadequate recycling of GSH due to lack of G6PD, build up of intracellular H2O2 and RBC lysis--hemolysis.
  • Only recently has it been understood that the discordant clinical findings can be explained by previously unrecognized fundamental pharmacokinetics properties of ascorbate
  • Intracellular transport of ascorbate is tightly controlled in relation to extracellular concentration
  • Intravenous ascorbate infusion is expected to drastically change extracellular but not intracellular concentrations
  • For i.v. ascorbate to be clinically useful in killing cancer cells, pharmacologic but not physiologic extracellular concentrations should be effective, independent of intracellular ascorbate concentrations.
    • Nathan Goodyear
       
      accumulation of extracellular vitamin C is the effect.
  • It is unknown why ascorbate, via H2O2, killed some cancer cells but not normal cells.
  • There was no correlation with ascorbate-induced cell death and glutathione, catalase activity, or glutathione peroxidase activity.
  • H2O2, as the product of pharmacologic ascorbate concentrations, has potential therapeutic uses in addition to cancer treatment, especially in infections
  • Neutrophils generate H2O2 from superoxide,
  • i.v. ascorbate is effective in some viral infections
  • H2O2 is toxic to hepatitis C
  • Use of ascorbate as an H2O2-delivery system against sensitive pathogens, viral or bacterial, has substantial clinical implications that deserve rapid exploration.
  • Recent pharmacokinetics studies in men and women show that 10 g of ascorbate given i.v. is expected to produce plasma concentrations of nearly 6 mM, which are >25-fold higher than those concentrations from the same oral dose
  • As much as a 70-fold difference in plasma concentrations is expected between oral and i.v. administration,
  • Complementary and alternative medicine practitioners worldwide currently use ascorbate i.v. in some patients, in part because there is no apparent harm
  • Human Burkitt's lymphoma cells
  • We first investigated whether ascorbate in pharmacologic concentrations selectively affected the survival of cancer cells by studying nine cancer cell lines
  • Clinical pharmacokinetics analyses show that pharmacologic concentrations of plasma ascorbate, from 0.3 to 15 mM, are achievable only from i.v. administration
  • plasma ascorbate concentrations from maximum possible oral doses cannot exceed 0.22 mM because of limited intestinal absorption
  • For five of the nine cancer cell lines, ascorbate concentrations causing a 50% decrease in cell survival (EC50 values) were less than 5 mM, a concentration easily achievable from i.v. infusion
  • All tested normal cells were insensitive to 20 mM ascorbate.
    • Nathan Goodyear
       
      meaning safe.
  • Lymphoma cells were selected because of their sensitivity to ascorbate
  • As ascorbate concentration increased, the pattern of death changed from apoptosis to pyknosis/necrosis, a pattern suggestive of H2O2-mediated cell death
  • Apoptosis occurred by 6 h after exposure, and cell death by pyknosis was ≈90% at 14 h after exposure
    • Nathan Goodyear
       
      work continued beyond the IVC therapy itself
  • In contrast to lymphoma cells, there was little or no killing of normal lymphocytes and monocytes by ascorbate
  • Ascorbate is transported into cells as such by sodium-dependent transporters, whereas dehydroascorbic acid is transported into cells by glucose transporters and then immediately reduced internally to ascorbate
  • Whether or not intracellular ascorbate was preloaded, extracellular ascorbate induced the same amount and type of death.
  • extracellular ascorbate in pharmacologic concentrations mediates death of lymphoma cells by apoptosis and pyknosis/necrosis, independently of intracellular ascorbate.
  • H2O2 as the effector species mediating pharmacologic ascorbate-induced cell death
  • Superoxide dismutase was not protective
  • Because these data implicated H2O2 in cell killing, we added H2O2 to lymphoma cells and studied death patterns using nuclear staining (19, 28). The death patterns found with exogenous H2O2 exposure were similar to those found with ascorbate
  • For both ascorbate and H2O2, death changed from apoptosis to pyknosis/necrosis as concentrations increased
  • Sensitivity to direct exposure to H2O2 was greater in lymphoma cells compared with normal lymphocytes and normal monocytes
  • There was no association between the EC50 for ascorbate-mediated cell death and intracellular glutathione concentrations, catalase activity, or glutathione peroxidase activity
  • H2O2 generation was dependent on time, ascorbate concentration, and the presence of trace amounts of serum in media
  • ascorbate radical is a surrogate marker for H2O2 formation.
  • whatever H2O2 is generated should be removed by glutathione peroxidase and catalase within red blood cells, because H2O2 is membrane permeable
  • The data are consistent with the hypothesis that ascorbate in pharmacologic concentrations is a pro-drug for H2O2 generation in the extracellular milieu but not in blood.
  • The occurrence of one predicted complication, oxalate kidney stones, is controversial
  • In patients with glucose-6-phosphate dehydrogenase deficiency, i.v. ascorbate is contraindicated because it causes intravascular hemolysis
  • ascorbate at pharmacologic concentrations in blood is a pro-drug for H2O2 delivery to tissues.
  • ascorbate, an electron-donor in such reactions, ironically initiates pro-oxidant chemistry and H2O2 formation
  • data here showed that ascorbate initiated H2O2 formation extracellularly, but H2O2 targets could be either intracellular or extracellular, because H2O2 is membrane permeant
    • Nathan Goodyear
       
      the conversion of ascorbate to H2O2 occurs extracellular
  • More than 100 patients have been described, presumably without glucose-6-phosphate dehydrogenase deficiency, who received 10 g or more of i.v. ascorbate with no reported adverse effects other than tumor lysis
  •  
    IV vitamin C benefits cancer patients
Nathan Goodyear

H2O2-mediated Cytotoxicity of Pharmacologic Ascorbate Concentrations to Neuroblastoma C... - 0 views

  •  
    Study finds that ferritin in the tumor microenvironment is critical to the cytotoxicity elicited through its interaction with vitamin C through H2O2.
Nathan Goodyear

O2⋅− and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Su... - 0 views

  •  
    IV vitamin C shown to have selective cytotoxicity, no surprise, on lung cancer and glioblastoma cells via H2O2, while at the same time safe to other cells.  
Nathan Goodyear

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a p... - 0 views

  •  
    IV vitamin C and IV vitamin C only can deliver levels to tumor cells that induce formation of H2O2 that then induces cell death.
Nathan Goodyear

Mitochondrial Fission Induces Glycolytic Reprogramming in Cancer-Associated Myofibrobla... - 0 views

  • L-lactate functions as an onco-metabolite, stimulating mitochondrial biogenesis and OXPHOS in adjacent cancer cells, directly providing energy for tumor growth
  • Oxidative stress in stromal fibroblasts then induces their metabolic conversion into cancer-associated fibroblasts. Such oxidative stress drives the onset of autophagy, mitophagy, and aerobic glycolysis in fibroblasts, resulting in the local production of high-energy mitochondrial fuels (such as L-lactate, ketone bodies, and glutamine). These recycled nutrients are then transferred to cancer cells, where they are efficiently burned via oxidative mitochondrial metabolism (OXPHOS)
  • stromal L-lactate serves as a high-energy mitochondrial “fuel” for cancer cells. We have termed this new model of cancer metabolism “Two-Compartment Tumor Metabolism”, where two opposing metabolic compartments co-exist, side-by-side, with stromal glycolysis fueling OXPHOS in cancer cells
  • ...10 more annotations...
  • Two-Compartment Tumor Metabolism
  • Reverse Warburg Effect”, is that catabolic fibroblasts should promote tumor growth, without any increases in angiogenesis
  • when cancer cells use L-lactate as a mitochondrial fuel source, this metabolic phenotype is a predictor of lethal cancer metabolism
  • tumor microenvironment is intimately involved in tumor development and progression
  • mitochondrial dysregulation is likely the “root cause” of several human disease(s), and especially epithelial cancers
  • Both in vitro and in vivo studies have now provided convincing evidence that “activated” stromal fibroblasts, a.k.a., myofibroblasts, may play a critical role in initiating tumor recurrence, via paracrine interactions with adjacent tumor epithelial cells
  • A new hypothesis is that cancer is not a cell autonomous disease, but rather a disease of the tumor microenvironment
  • cancer cells behave as metabolic parasites, by inducing oxidative stress in adjacent normal fibroblasts
  • recent experimental evidence indicates that cancer-associated fibroblasts have a catabolic phenotype, and undergo autophagy and mitophagy, resulting in the onset of glycolytic metabolism, driving L-lactate production, and its release into the tumor microenvironment
  • oncogenic mutations in cancer cells lead to ROS production and the “secretion” of hydrogen peroxide species
  •  
    A good discussion of what is proposed the Reverse Warburg effect.  A process by which the local environment dictates tumor progression.  The cancer cells release ROS primarily in the form of H2O2 and this leads to Cancer Associated Fibroblasts (CAFs) in the stroma.  The altered stromal environment increases ROS further and promotes ocogenic metabolites through the classic Warburg effect.  This high lactate production from the CAFs then is used by the cancer cells via classic oxidative phosphorylation.  Complex, beautiful and still an the understanding is a work in progress.   This study/article points to the importance of oxidative stress in some cancer development through CAFs.
Nathan Goodyear

L-Ascorbic acid induces apoptosis in acute myeloid leukemia cells via hydrogen peroxide... - 0 views

  •  
    vitamin C induces apoptosis of leukemia cells via the production of H2O2 inside the cancer cell that lacks adequate catalse activity to break it down.
Nathan Goodyear

Vitamin C and cancer revisited - 0 views

  • It is well known that vitamin C, or ascorbic acid, is an effective biologic antioxidant and does not act as a pro-oxidant under normal conditions (5) because it does not readily autoxidize, i.e., react with oxygen (O2) to produce reactive oxygen species, such as superoxide radicals (O2•−) or H2O2
  • However, ascorbate readily donates an electron to redox-active transition metal ions, such as cupric (Cu2+) or ferric (Fe3+) ions, reducing them to cuprous (Cu+) and ferrous (Fe2+) ions, respectively
  • Reduced transition metal ions, in contrast to ascorbic acid, readily react with O2, reducing it to superoxide radicals (Reaction 2), which in turn dismutate to form H2O2 and O2
  • ...6 more annotations...
  • The H2O2 produced this way (Reactions 1–3) seems to be key to ascorbate's antitumor effect because H2O2 causes cancer cells to undergo apoptosis, pyknosis, and necrosis
  • In contrast, normal cells are considerably less vulnerable to H2O2
  • The reason for the increased sensitivity of tumor cells to H2O2 is not clear but may be due to lower antioxidant defenses
  • In fact, a lower capacity to destroy H2O2—e.g., by catalase, peroxiredoxins, and GSH peroxidases—may cause tumor cells to grow and proliferate more rapidly than normal cells in response to low concentrations of H2O2
  • These observations, combined with the inhibitory effect on xenograft growth, provide the proof of concept that millimolar concentrations of extracellular ascorbate, achievable by i.p. injection or i.v. infusion in experimental animals and humans, respectively, exert pro-oxidant, antitumor effects in vivo.
  • They also show that the concentration of the ascorbyl radical correlates with the concentration of H2O2 in interstitial fluid, whereas no H2O2 can be detected in blood or plasma
  •  
    review of the mechanism of how extracellular AA, only obtainable from parenteral dosing, can produce H2O2 extracellularly to then be cytotoxic to cancer cells.
Nathan Goodyear

Lipopolysaccharide (LPS) potentiates hydrogen peroxide toxicity in T98G astrocytoma cel... - 0 views

  •  
    good review of proposed mechanism of how LPS aids in cell death of astrocytes in vivo: LPS damages the endothelium of the BBB, leading to increase permeability.  This exposes astrocytes to LPS directly.  LPS suppressed genetic expression of antioxidant genes.  LPS stimulates cytokine production, including the production of H2O2 from microglial cells in the brain.  An up regulation of iNOS occurs and in the presence of weakened ability to protect against NO and its metabolites occurs.  
Nathan Goodyear

Effects of Antioxidants and Pro-oxidants on Cytotoxicity of Dihydroartemisinin to Molt-... - 0 views

  •  
    Study finds that vitamin C, D, H2O2, and dexamethasone combine with artemisinin to increase cell death in human leukemia cell lines.
Nathan Goodyear

Utilization of Pharmacological Ascorbate to Enhance Hydrogen Peroxide-Mediated Radiosen... - 0 views

  •  
    Conclusion: the data presented in this review show synergistically increased DNA damage with combination treatment of RT and P-AscH−, associated with H2O2 formation
Nathan Goodyear

Paradoxical effects of antioxidants on cancer. [Rejuvenation Res. 2014] - PubMed - NCBI - 0 views

  •  
    Just the abstract available here.  Cancer is proving to be very complex--no surprise here.  Antioxidant therapy can actually promote cancer progression as can tumor suppressor genes.  The issue is context of the environment and the tumor in that environment.   Vitamin C is antioxidant in serum, but pro oxidant in the cancer cell.  The result is a production of H2O2 and lysis of the cell.
Nathan Goodyear

Pharmacological ascorbate induces cytotoxic... [Anticancer Drugs. 2012] - PubMed - NCBI - 0 views

  •  
    IV vitamin C induces cell death of prostate cancer cell lines via H2O2, which is not new, but what is new is the ascorbate-insensitive cell line.
Nathan Goodyear

The normal vaginal flora, H2O2-producing lactobacilli, and bacterial vaginosis in pregn... - 0 views

  •  
    vaginal flora.  Lactobacillus produce H202.
Nathan Goodyear

Non-toxic potentiation of cancer chemotherapy b... [Int J Cancer. 1987] - PubMed - NCBI - 0 views

  •  
    IV vitamin C and K3 induces cancer cell death through production of H2O2 in catalase deficient cancer cells.  Pretreament shown to potentiate traditional chemotherapy.
Nathan Goodyear

Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and h... - 0 views

  •  
    In vivo study of vitamin C IV found to produce H2O2 which is key to the prooxidant effect of vitamin C against cancer.
Nathan Goodyear

http://altmedrev.com/archive/publications/15/4/345.pdf - 0 views

  •  
    Vitamin K3 + vitamin C work synergistically to induce oxidation of cancer cell lines via H2O2 production.  The authors propose that the combination may even limit the need for IV AA because the combination increased the cytotoxicity by up to 7 fold. The authors looked at the benefit of other antioxidants i.e. quercetin, melatonin, curcumin, and vitamin D3
Nathan Goodyear

Vitamin C and cancer revisited | PNAS - 0 views

  •  
    nice review of the mechanism of vitamin C induction of cellular apoptosis via H2O2 mechansism in cancer
Nathan Goodyear

Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxid... - 0 views

  • reducing oxidative stress with powerful antioxidants, is an important strategy for cancer prevention, as it would suppress one of the key early initiating steps where DNA damage and tumor-stroma metabolic-coupling begins. This would prevent cancer cells from acting as metabolic “parasites
  • Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the “reverse Warburg effect.
  • Then, oxidative stress, in cancer-associated fibroblasts, triggers the activation of two main transcription factors, NFκB and HIF-1α, leading to the onset of inflammation, autophagy, mitophagy and aerobic glycolysis in the tumor microenvironment
  • ...38 more annotations...
  • oxidative stress and ROS, produced in cancer-associated fibroblasts, has a “bystander effect” on adjacent cancer cells, leading to DNA damage, genomic instability and aneuploidy, which appears to be driving tumor-stroma co-evolution
  • tumor cells produce and secrete hydrogen peroxide, thereby “fertilizing” the tumor microenvironment and driving the “reverse Warburg effect.”
  • This type of stromal metabolism then produces high-energy nutrients (lactate, ketones and glutamine), as well as recycled chemical building blocks (nucleotides, amino acids, fatty acids), to literally “feed” cancer cells
  • loss of stromal caveolin (Cav-1) is sufficient to drive mitochondrial dysfunction with increased glucose uptake in fibroblasts, mimicking the glycolytic phenotype of cancer-associated fibroblasts.
  • oxidative stress initiated in tumor cells is transferred to cancer-associated fibroblasts.
  • Then, cancer-associated fibroblasts show quantitative reductions in mitochondrial activity and compensatory increases in glucose uptake, as well as high ROS production
  • These findings may explain the prognostic value of a loss of stromal Cav-1 as a marker of a “lethal” tumor microenvironment
  • aerobic glycolysis takes place in cancer-associated fibroblasts, rather than in tumor cells, as previously suspected.
  • our results may also explain the “field effect” in cancer biology,5 as hydrogen peroxide secreted by cancer cells, and the propagation of ROS production, from cancer cells to fibroblasts, would create an increasing “mutagenic field” of ROS production, due to the resulting DNA damage
  • Interruption of this process, by addition of catalase (an enzyme that detoxifies hydrogen peroxide) to the tissue culture media, blocks ROS activity in cancer cells and leads to apoptotic cell death in cancer cells
  • In this new paradigm, cancer cells induce oxidative stress in neighboring cancer-associated fibroblasts
  • cancer-associated fibroblasts have the largest increases in glucose uptake
  • cancer cells secrete hydrogen peroxide, which induces ROS production in cancer-associated fibroblasts
  • Then, oxidative stress in cancer-associated fibroblast leads to decreases in functional mitochondrial activity, and a corresponding increase in glucose uptake, to fuel aerobic glycolysis
  • cancer cells show significant increases in mitochondrial activity, and decreases in glucose uptake
  • fibroblasts and cancer cells in co-culture become metabolically coupled, resulting in the development of a “symbiotic” or “parasitic” relationship.
  • cancer-associated fibroblasts undergo aerobic glycolysis (producing lactate), while cancer cells use oxidative mitochondrial metabolism.
  • We have previously shown that oxidative stress in cancer-associated fibroblasts drives a loss of stromal Cav-1, due to its destruction via autophagy/lysosomal degradation
  • a loss of stromal Cav-1 is sufficient to induce further oxidative stress, DNA damage and autophagy, essentially mimicking pseudo-hypoxia and driving mitochondrial dysfunction
  • loss of stromal Cav-1 is a powerful biomarker for identifying breast cancer patients with early tumor recurrence, lymph-node metastasis, drug-resistance and poor clinical outcome
  • this type of metabolism (aerobic glycolysis and autophagy in the tumor stroma) is characteristic of a lethal tumor micro-environment, as it fuels anabolic growth in cancer cells, via the production of high-energy nutrients (such as lactate, ketones and glutamine) and other chemical building blocks
  • the upstream tumor-initiating event appears to be the secretion of hydrogen peroxide
  • one such enzymatically-active protein anti-oxidant that may be of therapeutic use is catalase, as it detoxifies hydrogen peroxide to water
  • numerous studies show that “catalase therapy” in pre-clinical animal models is indeed sufficient to almost completely block tumor recurrence and metastasis
  • by eliminating oxidative stress in cancer cells and the tumor microenvironment,55 we may be able to effectively cut off the tumor's fuel supply, by blocking stromal autophagy and aerobic glycolysis
  • breast cancer patients show systemic evidence of increased oxidative stress and a decreased anti-oxidant defense, which increases with aging and tumor progression.68–70 Chemotherapy and radiation therapy then promote further oxidative stress.69 Unfortunately, “sub-lethal” doses of oxidative stress during cancer therapy may contribute to tumor recurrence and metastasis, via the activation of myofibroblasts.
  • a loss of stromal Cav-1 is associated with the increased expression of gene profiles associated with normal aging, oxidative stress, DNA damage, HIF1/hypoxia, NFκB/inflammation, glycolysis and mitochondrial dysfunction
  • cancer-associated fibroblasts show the largest increases in glucose uptake, while cancer cells show corresponding decreases in glucose uptake, under identical co-culture conditions
  • Thus, increased PET glucose avidity may actually be a surrogate marker for a loss of stromal Cav-1 in human tumors, allowing the rapid detection of a lethal tumor microenvironment.
  • it appears that astrocytes are actually the cell type responsible for the glucose avidity.
  • In the brain, astrocytes are glycolytic and undergo aerobic glycolysis. Thus, astrocytes take up and metabolically process glucose to lactate.7
  • Then, lactate is secreted via a mono-carboxylate transporter, namely MCT4. As a consequence, neurons use lactate as their preferred energy substrate
  • both astrocytes and cancer-associated fibroblasts express MCT4 (which extrudes lactate) and MCT4 is upregulated by oxidative stress in stromal fibroblasts.34
  • In accordance with the idea that cancer-associated fibroblasts take up the bulk of glucose, PET glucose avidity is also now routinely used to measure the extent of fibrosis in a number of human diseases, including interstitial pulmonary fibrosis, postsurgical scars, keloids, arthritis and a variety of collagen-vascular diseases.
  • PET glucose avidity and elevated serum inflammatory markers both correlate with poor prognosis in breast cancers.
  • PET signal over-estimates the actual anatomical size of the tumor, consistent with the idea that PET glucose avidity is really measuring fibrosis and inflammation in the tumor microenvironment.
  • human breast and lung cancer patients can be positively identified by examining their exhaled breath for the presence of hydrogen peroxide.
  • tumor cell production of hydrogen peroxide drives NFκB-activation in adjacent normal cells in culture6 and during metastasis,103 directly implicating the use of antioxidants, NFκB-inhibitors and anti-inflammatory agents, in the treatment of aggressive human cancers.
  •  
    Good description of the communication between cancer cells and fibroblasts.  This theory is termed the "reverse Warburg effect".
Nathan Goodyear

The rate of cellular hydrogen peroxide removal shows dependency on GSH: Mathematical in... - 0 views

  • High levels of ROS will lead to a more oxidized redox environment thereby inducing cell damage or even cell death
  • Catalase
  • six members of the peroxiredoxin family of enzymes
  • ...2 more annotations...
  • glutathione peroxidases
  • all reduce H2O2 to water (organic hydroperoxides are reduced to water and the corresponding alcohol) with the electrons coming from GSH, a necessary and specific cofactor.
  •  
    good review of the interaction between H202 and the glutathione pathway.  This has significant implications in the mechanism of action in cancer cells with IV vitamin C.
1 - 20 of 30 Next ›
Showing 20 items per page