Skip to main content

Home/ Dr. Goodyear/ Group items tagged anti-inflammation

Rss Feed Group items tagged

Nathan Goodyear

Cortisol Exerts Bi-Phasic Regulation of Inflammation in Humans - 0 views

  • GCs induce increased cellular expression of receptors for several pro-inflammatory cytokines including interleukin (IL)-1 (Spriggs et al. 1990), IL-2 (Wiegers et al. 1995), IL-4 (Paterson et al. 1994), IL-6 (Snyers et al. 1990), and IFN-g (Strickland et al. 1986), as well as GM-CSF
  • GCs have also been shown to stimulate effector cell functions including phagocytosis by monocytes (van der Goes et al. 2000), effector cell proliferative responses (Spriggs et al. 1990), macrophage activation (Sorrells and Sapolsky 2010), and a delay of neutrophil apoptosis
  • a concentration- and time-dependent range of GC effects that are both pro- and anti-inflammatory
  • ...13 more annotations...
  • basal (diurnal) concentrations of cortisol do not exert an anti-inflammatory effect on several pro-and anti-inflammatory mediators of the human immune inflammatory response
  • withdrawal of cortisol activity in vivo did not lead to increased inflammatory responsiveness of immune effector cells
  • maximal suppression of inflammation was achieved by a stress-associated, but still physiologic, cortisol concentration. There was no greater anti-inflammatory effect at higher cortisol concentrations (Yeager et al. 2005) although IL-10 concentrations continued to increase with increasing cortisol concentrations as we and others have shown
  • acutely, physiological cortisol concentrations are anti-inflammatory and, as proposed, act to limit over expression of an inflammatory response that could lead to tissue damage
  • Acutely, cortisol has anti-inflammatory effects following a systemic inflammatory stimulus (Figure 4). However, a cortisol concentration that acts acutely to suppress systemic inflammation also has a delayed effect of augmenting the inflammatory response to subsequent, delayed stimulu
  • 1) GCs can exert pro-inflammatory effects on key inflammatory processes and, 2) GC regulation of inflammation can vary from anti- to a pro-inflammatory in a time-dependent manner
  • The immediate in vivo effect of both stress-induced and pharmacological GC concentrations is to suppress concurrent inflammation and protect the organism from an excessive or prolonged inflammatory response
  • GCs alone, in the absence of an inflammatory stimulus, up-regulate monocyte mRNA and/or receptors for several molecules that participate in pro-inflammatory signaling, as noted above and in the studies presented here.
  • In humans, as shown here, if in vivo GC concentrations are elevated concurrent with an inflammatory stimulus, anti-inflammatory effects are observed
  • In sharp contrast, with a time delay of 12 or more hours between an increased GC concentration and the onset of an inflammatory stimulus, enhancing effects on inflammation are observed. These effects have been shown to persist in humans for up to 6 days
  • GC-induced enhancement of inflammatory responses is maximal at an intermediate concentration, in our studies at a concentration that approximates that observed in vivo following a major systemic inflammatory stimulus
  • In addition to enhanced responses to LPS, recently identified pro-inflammatory effects of GCs also show enhanced localization of effector cells at inflammatory sites
  • we hypothesize that pre-exposure to stress-associated cortisol concentrations “prime” effector cells of the monocyte/macrophage lineage for an augmented pro-inflammatory response by; a) inducing preparative changes in key regulators of LPS signal transduction, and b) enhancing localization of inflammatory effector cells at potential sites of injury
  •  
    very interesting read on the effects of inflammation on cortisol and visa versa.
Nathan Goodyear

Inflammation and insulin resistance 10.1016/j.febslet.2007.11.057 : FEBS Letters | Scie... - 0 views

  • A subsequent study by Yuan et al. showed that Tnf treatment of 3T3L1 adipocytes induces insulin resistance and that this could be prevented by pretreatment of cells with aspirin
  • Activation of the Tnf receptor results in stimulation of NFκB signaling via Ikkb
  • Insulin is a pleiotropic hormone
  • ...25 more annotations...
  • the percentage of macrophages in a given adipose tissue depot is positively correlated with adiposity and adipocyte size
  • Il-10 is an anti-inflammatory cytokine produced by macrophages and lymphocytes
  • Il-10 exerts its anti-inflammatory activity by inhibiting Tnf-induced NFκB activation by reducing IKK activity [38]
  • adipose tissue macrophages are responsible for nearly all adipose tissue Tnf expression and a significant portion of Nos2 and Il6 expression
  • One theory holds that the expansion of adipose tissue leads to adipocyte hypertrophy and hyperplasia and that large adipocytes outstrip the local oxygen supply leading to cell autonomous hypoxia with activation of cellular stress pathways
  • The use of the anti-inflammatory compounds, salicylate and its derivative aspirin, for treating symptoms of T2DM dates back over 100 years
  • elevated levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin (IL-8) have all been reported in various diabetic and insulin resistant states
  • overnutrition and obesity are often accompanied by elevations in tissue and circulating FFA concentrations, and saturated FFAs can directly activate pro-inflammatory responses
  • Adipokines such as resistin, leptin and adiponectin, which are secreted by adipocytes, can also affect inflammation and insulin sensitivity
  • In skeletal muscle insulin promotes glucose uptake by stimulating translocation of the GLUT4 glucose transporter
  • macrophages are also capable of undergoing a phenotypic switch from an M1 state, which was defined as the “classically activated” pro-inflammatory macrophage, to the M2 state or the “alternatively activated” non-inflammatory cell
  • saturated fatty acids are the most potent inducers of this inflammatory response
  • Several inducers of insulin resistance, including FFAs, pro-inflammatory cytokines and oxidative stress, activate the expression of Nos2, the gene that encodes iNOS (reviewed in [33]
  • Adipose tissue insulin signaling results in decreased hormone sensitive lipase activity and this anti-lipolytic effect inhibits free fatty acid (FFA) efflux out of adipocytes.
  • In the liver, insulin inhibits the expression of key gluconeogenic enzymes and, therefore, insulin resistance in liver leads to elevated hepatic glucose production
  • elevated JNK activity in liver, adipose tissue and skeletal muscle of obese insulin resistant mice, and knockout of Jnk1 (Jnk1−/−) leads to amelioration of insulin resistance in high fat diet
  • Adipose tissue from obese mice contains proportionately more M1 macrophages, whereas, lean adipose tissue contains more M2 macrophages, and increased M1 content positively correlates with inflammation, macrophage infiltration and insulin resistance
  • C-reactive protein (CRP)
  • these studies highlight the possibility that increased iNOS activity plays a direct role in the pathogenesis of insulin resistance
  • the important role of Ikkb in the development of obesity and inflammation-induced insulin resistance.
  • It is probable that local concentrations of inflammatory mediators, such as FFAs, Tnf or other cytokines/adipokines contribute to this polarity switch
  • Tnf and other cytokines/chemokines are symptomatic of inflammation, and while they propagate and/or maintain the inflammatory state, they are not the initial cause(s) of inflammation
  • Tlr4, in particular, is stimulated by lipopolysaccharide (LPS), an endotoxin released by gram-negative bacteria
  • Tlr4 belongs to the family of Toll-like receptors that function as pattern recognition receptors that guard against microorganismal infections as part of the innate immune system.
  • Tlr4 stimulation results in the activation of both Ikkb/NFκB and JNK/AP-1 signaling, culminating in the expression and secretion of pro-inflammatory cytokines/chemokines, including, Il1b, IL-6, Tnf, Mcp1, etc. (reviewed in [57
  •  
    Great review of all the known components in the inflammation, insulin resistance link
Nathan Goodyear

PPARs, Obesity, and Inflammation - 0 views

  • increase of 61% within 10 years
  • Many of the inflammatory markers found in plasma of obese individuals appear to originate from adipose tissue
  • obesity is a state of chronic low-grade inflammation that is initiated by morphological changes in the adipose tissue.
  • ...19 more annotations...
  • secretion of MCP-1, resistin, and other proinflammatory cytokines is increased by obesity, the adipose secretion of the anti-inflammatory protein adiponectin is decreased
  • the peroxisome proliferators- activated receptor (PPAR) family are involved in the regulation of inflammation and energy homestasis
  • natural agonists, including unsaturated fatty acids and eicosanoids
  • PPARα also regulates inflammatory processes, mainly by inhibiting inflammatory gene expression
  • upregulation of COX-2 is seen in alcoholic steatohepatitis and nonalcoholic steatohepatitis and has been directly linked to the progression of steatosis to steatohepatitis, the inhibitory effect of PPARα on COX-2 may reduce steatohepatitis
  • PPARα agonists have a clear anorexic effect resulting in decreased food intake, evidence is accumulating that PPARα may also directly influence adipose tissue function, including its inflammatory status.
  • PPARα may govern adipose tissue inflammation in three different ways: (1) by decreasing adipocyte hypertrophy, which is known to be connected with a higher inflammatory status of the tissue [3, 11, 59], (2) by direct regulation of inflammatory gene expression via locally expressed PPARα, or (3) by systemic events likely originating from liver
  • PPARγ is considered the master regulator of adipogenesis
  • Unsaturated fatty acids and several eicosanoids serve as endogenous agonists of PPARγ
  • PPARγ2, which is adipose-tissue specific
  • two different molecular mechanisms have been proposed by which anti-inflammatory actions of PPARγ are effectuated: (1) via interference with proinflammatory transcription factors including STAT, NF-κB, and AP-1
  • and (2) by preventing removal of corepressor complexes from gene promoter regions resulting in suppression of inflammatory gene transcription
  • diet-induced obesity is associated with increased inflammatory gene expression in adipose tissue via adipocyte hypertrophy and macrophage infiltration
  • PPARγ is able to reverse macrophage infiltration, and subsequently reduces inflammatory gene expression
  • Inflammatory adipokines mainly originate from macrophages which are part of the stromal vascular fraction of adipose tissue [18, 19], and accordingly, the downregulation of inflammatory adipokines in WAT by PPARγ probably occurs via effects on macrophages
  • By interfering with NF-κB signaling pathways, PPARγ is known to decrease inflammation in activated macrophages
  • Recent data suggest that activation of PPARγ in fatty liver may protect against inflammation
  • PPARs may influence the inflammatory response either by direct transcriptional downregulation of proinflammatory genes
  • anti-inflammatory properties of PPARs in human obesity
  •  
    PPARs play pivotal in obesity.  PPARs appear to reduce the inflammatory cascade associated with obesity.  Downregulation of PPARs are associated with increased inflammation.  Natural PPARs include unsaturated fats and eicosanoids.
Nathan Goodyear

Nutritional protective mechanisms against gut inflammation - 0 views

  •  
    Nice review of inflammation originating from the gut.  This article nicely points out the pathway involving PPAR gamma and its anti-inflammatory effects in gut inflammatory conditions such as IBD. This article also specifically discusses natural compounds that activate PPAR gamma and thus reduce inflammation.  Good deep biochemical discussion of how natural therapies reduce inflammation.  
Nathan Goodyear

Dietary Strategies for Improving Post-Prandial Glucose, Lipids, Inflammation, and Cardi... - 0 views

  •  
    Diet can be a direct cause of inflammation.  A anti-inflammatory diet is a must in those with chronic, inflammatory diseases.    In this study, triglycerides, oxidative stress, and inflammation was found immediately after a single meal of saturated fat.
fitspresso

https://www.fitspresso-co.com/ - 0 views

  •  
    FitSpresso™ | Official Site fitspresso-co.com FitSpresso Only $39/Bottle Limited Time Offer! FitSpresso Special Deal + Special 51% Discount Save $660 + 180 Days Money Back Guarantee FitSpresso Herpesyl Five Star A dietary product formulated to assist users in reducing weight can increase other advantages that can support overall health. This product can assist users in getting closer to the desirable body weight. Regular Price: 149/per bottle Only for: $39/per bottle Buy Now What IsFitSpresso? FitSpresso is promoted as a natural supplement that comes in the form of diet pills, and it can aid in rapid and efficient weight loss, similar to many other supplements. The term "natural supplements refers to a nutritional supplement that is made entirely of natural, chemical-free materials. You can utilize these organic ingredients to aid in natural weight loss. It can speed up your body's metabolism and assist with other crucial processes. All parts of our bodies are impacted by weight increase, and not only do we need to deal with the increased weight, but we also need to deal with the numerous problems and illnesses that come along with it. This refers to the risk of developing chronic cardiac conditions, low blood pressure, and, in some circumstances, problems with blood sugar. However, FitSpresso even with its bright and bold claims, can help you efficiently manage your weight and completely avoid these extra uncomfortable problems. FitSpresso is a supplement that comes in the form of a pill, which makes it tasty, simple to swallow, and handy. According to the manufacturer, these diet tablets are GMO-free and toxic-free, making them edible. This is why we have things such as weight loss supplements. Thanks to modern advancements, we can just take a dietary supplement pill to bring about significant weight loss in a completely healthy and natural manner. Not only this, but dietary supplements can also support healthy blood sugar levels and help with
Nathan Goodyear

ScienceDirect - Trends in Immunology : Inflammation: the link between insulin resistanc... - 0 views

  • Inflammation: the link between insulin resistance, obesity and diabetes
  • Chronic overnutrition (obesity) might thus be a proinflammatory state with oxidative stress. Secondly, the increased concentrations of TNF-α and IL-6, associated with obesity and type 2 diabetes, might interfere with insulin action by suppressing insulin signal transduction. This might interfere with the anti-inflammatory effect of insulin, which in turn might promote inflammation.
  •  
    Inflammation: the link between insulin resistance, obesity and diabetes
Nathan Goodyear

Crossroads of Estrogen Receptor and NF-{kappa}B Signaling -- Biswas et al. 2005 (288): ... - 0 views

  •  
    This study looked at estrogen receptors and breast cancer.  But, they found anti estrogen therapy might actually increase NF-KappB activity i.e.inflammation.  In contrast, ER inhibited NF-kappaB and resultant inflammation.
Nathan Goodyear

Inflammatory Mechanisms in Obesity - Annual Review of Immunology, 29(1):415 - 0 views

  •  
    good review of inflammation-obesity link.  THis article also discusses endoplasmic reticulum stress associated with inflammation and obesity.  The result is decoupling of protein synthesis.  This article also discusses some anti-inflammatory therapies.  This link is for abstract only.  Full article is not available on line.  
Nathan Goodyear

The significance of proinflammatory cytokines and Th1/ Th2 balance in depression and ac... - 1 views

  •  
    good review of the interatction between inflammation and depression and then the interaction between anti-depressants and inflammation
Nathan Goodyear

Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxid... - 0 views

  • reducing oxidative stress with powerful antioxidants, is an important strategy for cancer prevention, as it would suppress one of the key early initiating steps where DNA damage and tumor-stroma metabolic-coupling begins. This would prevent cancer cells from acting as metabolic “parasites
  • Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the “reverse Warburg effect.
  • Then, oxidative stress, in cancer-associated fibroblasts, triggers the activation of two main transcription factors, NFκB and HIF-1α, leading to the onset of inflammation, autophagy, mitophagy and aerobic glycolysis in the tumor microenvironment
  • ...38 more annotations...
  • oxidative stress and ROS, produced in cancer-associated fibroblasts, has a “bystander effect” on adjacent cancer cells, leading to DNA damage, genomic instability and aneuploidy, which appears to be driving tumor-stroma co-evolution
  • tumor cells produce and secrete hydrogen peroxide, thereby “fertilizing” the tumor microenvironment and driving the “reverse Warburg effect.”
  • This type of stromal metabolism then produces high-energy nutrients (lactate, ketones and glutamine), as well as recycled chemical building blocks (nucleotides, amino acids, fatty acids), to literally “feed” cancer cells
  • loss of stromal caveolin (Cav-1) is sufficient to drive mitochondrial dysfunction with increased glucose uptake in fibroblasts, mimicking the glycolytic phenotype of cancer-associated fibroblasts.
  • oxidative stress initiated in tumor cells is transferred to cancer-associated fibroblasts.
  • Then, cancer-associated fibroblasts show quantitative reductions in mitochondrial activity and compensatory increases in glucose uptake, as well as high ROS production
  • These findings may explain the prognostic value of a loss of stromal Cav-1 as a marker of a “lethal” tumor microenvironment
  • Interruption of this process, by addition of catalase (an enzyme that detoxifies hydrogen peroxide) to the tissue culture media, blocks ROS activity in cancer cells and leads to apoptotic cell death in cancer cells
  • our results may also explain the “field effect” in cancer biology,5 as hydrogen peroxide secreted by cancer cells, and the propagation of ROS production, from cancer cells to fibroblasts, would create an increasing “mutagenic field” of ROS production, due to the resulting DNA damage
  • aerobic glycolysis takes place in cancer-associated fibroblasts, rather than in tumor cells, as previously suspected.
  • In this new paradigm, cancer cells induce oxidative stress in neighboring cancer-associated fibroblasts
  • cancer-associated fibroblasts have the largest increases in glucose uptake
  • cancer cells secrete hydrogen peroxide, which induces ROS production in cancer-associated fibroblasts
  • Then, oxidative stress in cancer-associated fibroblast leads to decreases in functional mitochondrial activity, and a corresponding increase in glucose uptake, to fuel aerobic glycolysis
  • cancer cells show significant increases in mitochondrial activity, and decreases in glucose uptake
  • fibroblasts and cancer cells in co-culture become metabolically coupled, resulting in the development of a “symbiotic” or “parasitic” relationship.
  • cancer-associated fibroblasts undergo aerobic glycolysis (producing lactate), while cancer cells use oxidative mitochondrial metabolism.
  • We have previously shown that oxidative stress in cancer-associated fibroblasts drives a loss of stromal Cav-1, due to its destruction via autophagy/lysosomal degradation
  • a loss of stromal Cav-1 is sufficient to induce further oxidative stress, DNA damage and autophagy, essentially mimicking pseudo-hypoxia and driving mitochondrial dysfunction
  • loss of stromal Cav-1 is a powerful biomarker for identifying breast cancer patients with early tumor recurrence, lymph-node metastasis, drug-resistance and poor clinical outcome
  • this type of metabolism (aerobic glycolysis and autophagy in the tumor stroma) is characteristic of a lethal tumor micro-environment, as it fuels anabolic growth in cancer cells, via the production of high-energy nutrients (such as lactate, ketones and glutamine) and other chemical building blocks
  • the upstream tumor-initiating event appears to be the secretion of hydrogen peroxide
  • one such enzymatically-active protein anti-oxidant that may be of therapeutic use is catalase, as it detoxifies hydrogen peroxide to water
  • numerous studies show that “catalase therapy” in pre-clinical animal models is indeed sufficient to almost completely block tumor recurrence and metastasis
  • by eliminating oxidative stress in cancer cells and the tumor microenvironment,55 we may be able to effectively cut off the tumor's fuel supply, by blocking stromal autophagy and aerobic glycolysis
  • breast cancer patients show systemic evidence of increased oxidative stress and a decreased anti-oxidant defense, which increases with aging and tumor progression.68–70 Chemotherapy and radiation therapy then promote further oxidative stress.69 Unfortunately, “sub-lethal” doses of oxidative stress during cancer therapy may contribute to tumor recurrence and metastasis, via the activation of myofibroblasts.
  • a loss of stromal Cav-1 is associated with the increased expression of gene profiles associated with normal aging, oxidative stress, DNA damage, HIF1/hypoxia, NFκB/inflammation, glycolysis and mitochondrial dysfunction
  • cancer-associated fibroblasts show the largest increases in glucose uptake, while cancer cells show corresponding decreases in glucose uptake, under identical co-culture conditions
  • Thus, increased PET glucose avidity may actually be a surrogate marker for a loss of stromal Cav-1 in human tumors, allowing the rapid detection of a lethal tumor microenvironment.
  • it appears that astrocytes are actually the cell type responsible for the glucose avidity.
  • In the brain, astrocytes are glycolytic and undergo aerobic glycolysis. Thus, astrocytes take up and metabolically process glucose to lactate.7
  • Then, lactate is secreted via a mono-carboxylate transporter, namely MCT4. As a consequence, neurons use lactate as their preferred energy substrate
  • both astrocytes and cancer-associated fibroblasts express MCT4 (which extrudes lactate) and MCT4 is upregulated by oxidative stress in stromal fibroblasts.34
  • In accordance with the idea that cancer-associated fibroblasts take up the bulk of glucose, PET glucose avidity is also now routinely used to measure the extent of fibrosis in a number of human diseases, including interstitial pulmonary fibrosis, postsurgical scars, keloids, arthritis and a variety of collagen-vascular diseases.
  • PET glucose avidity and elevated serum inflammatory markers both correlate with poor prognosis in breast cancers.
  • PET signal over-estimates the actual anatomical size of the tumor, consistent with the idea that PET glucose avidity is really measuring fibrosis and inflammation in the tumor microenvironment.
  • human breast and lung cancer patients can be positively identified by examining their exhaled breath for the presence of hydrogen peroxide.
  • tumor cell production of hydrogen peroxide drives NFκB-activation in adjacent normal cells in culture6 and during metastasis,103 directly implicating the use of antioxidants, NFκB-inhibitors and anti-inflammatory agents, in the treatment of aggressive human cancers.
  •  
    Good description of the communication between cancer cells and fibroblasts.  This theory is termed the "reverse Warburg effect".
Nathan Goodyear

Stuck at the bench: Potential natural neuroprotective compounds for concussion - 0 views

  • Long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are highly enriched in neuronal synaptosomal plasma membranes and vesicles
  • The predominant CNS polyunsaturated fatty acid is DHA
  • effective supplementation and/or increased ingestion of dietary sources rich in EPA and DHA, such as cold-water fish species and fish oil, may help improve a multitude of neuronal functions, including long-term potentiation and cognition.
  • ...45 more annotations...
  • multiple preclinical studies have suggested that DHA and/or EPA supplementation may have potential benefit through a multitude of diverse, but complementary mechanisms
  • pre-injury dietary supplementation with fish oil effectively reduces post-traumatic elevations in protein oxidation
  • The benefits of pre-traumatic DHA supplementation have not only been independently confirmed,[150] but DHA supplementation has been shown to significantly reduce the number of swollen, disconnected and injured axons when administered following traumatic brain injury.
  • DHA has provided neuroprotection in experimental models of both focal and diffuse traumatic brain injury
  • potential mechanisms of neuroprotection, in addition to DHA and EPA's well-established anti-oxidant and anti-inflammatory properties
  • Despite abundant laboratory evidence supporting its neuroprotective effects in experimental models, the role of dietary DHA and/or EPA supplementation in human neurological diseases remains uncertain
  • Several population-based, observational studies have suggested that increased dietary fish and/or omega-3 polyunsaturated fatty acid consumption may reduce risk for ischemic stroke in several populations
  • Randomized control trials have also demonstrated significant reductions in ischemic stroke recurrence,[217] relative risk for ischemic stroke,[2] and reduced incidence of both symptomatic vasospasm and mortality following subarachnoid hemorrhage
  • Clinical trials in Alzheimer's disease have also been largely ineffective
  • The clinical evidence thus far appears equivocal
  • curcumin has gained much attention from Western researchers for its potential therapeutic benefits in large part due to its potent anti-oxidant[128,194,236] and anti-inflammatory properties
  • Curcumin is highly lipophilic and crosses the blood-brain barrier enabling it to exert a multitude of different established neuroprotective effects
  • in the context of TBI, a series of preclinical studies have suggested that pre-traumatic and post-traumatic curcumin supplementation may bolster the brain's resilience to injury and serve as a valuable therapeutic option
  • Curcumin may confer significant neuroprotection because of its ability to act on multiple deleterious post-traumatic, molecular cascades
  • studies demonstrated that both pre- and post-traumatic curcumin administration resulted in a significant reduction of neuroinflammation via inhibition of the pro-inflammatory molecules interleukin 1β and nuclear factor kappa B (NFκB)
  • no human studies have been conducted with respect to the effects of curcumin administration on the treatment of TBI, subarachnoid or intracranial hemorrhage, epilepsy or stroke
  • studies have demonstrated that resveratrol treatment reduces brain edema and lesion volume, as well as improves neurobehavioral functional performance following TBI
  • green tea consumption or supplementation with its derivatives may bolster cognitive function acutely and may slow cognitive decline
  • At least one population based study, though, did demonstrate that increased green tea consumption was associated with a reduced risk for Parkinson's disease independent of total caffeine intake
  • a randomized, placebo-controlled trial demonstrated that administration of green tea extract and L-theanine, over 16 weeks of treatment, improved indices of memory and brain theta wave activity on electroencephalography, suggesting greater cognitive alertness
  • Other animal studies have also demonstrated that theanine, another important component of green tea extract, exerts a multitude of neuroprotective benefits in experimental models of ischemic stroke,[63,97] Alzheimer's disease,[109] and Parkinson's disease
  • Theanine, like EGCG, contains multiple mechanisms of neuroprotective action including protection from excitotoxic injury[97] and inhibition of inflammation
  • potent anti-oxidant EGCG which is capable of crossing the blood-nerve and blood-brain barrier,
  • Epigallocatechin-3-gallate also displays neuroprotective properties
  • More recent research has suggested that vitamin D supplementation and the prevention of vitamin D deficiency may serve valuable roles in the treatment of TBI and may represents an important and necessary neuroprotective adjuvant for post-TBI progesterone therapy
  • Progesterone is one of the few agents to demonstrate significant reductions in mortality following TBI in human patients in preliminary trials
  • in vitro and in vivo studies have suggested that vitamin D supplementation with progesterone administration may significantly enhance neuroprotection
  • Vitamin D deficiency may increase inflammatory damage and behavioral impairment following experimental injury and attenuate the protective effects of post-traumatic progesterone treatment.[37]
  • emerging evidence has suggested that daily intravenous administration of vitamin E following TBI significantly decreases mortality and improves patient outcomes
  • high dose vitamin C administration following injury stabilized or reduced peri-lesional edema and infarction in the majority of patients receiving post-injury treatment
  • it has been speculated that combined vitamin C and E therapy may potentiate CNS anti-oxidation and act synergistically with regards to neuroprotection
  • one prospective human study has found that combined intake of vitamin C and E displays significant treatment interaction and reduces the risk of stroke
  • Pycnogenol has demonstrated the ability to slow or reduce the pathological processes associated with Alzheimer's disease
  • Pcynogenol administration, in a clinical study of elderly patients, led to improved cognition and reductions in markers of lipid peroxidase
  • One other point of consideration is that in neurodegenerative disease states like Alzheimer's disease and Parkinson's disease, where there are high levels of reactive oxygen species generation, vitamin E can tend to become oxidized itself. For maximal effectiveness and to maintain its anti-oxidant capacity, vitamin E must be given in conjunction with other anti-oxidants like vitamin C or flavonoids
  • These various factors might account for the null effects of alpha-tocopherol supplementation in patients with MCI and Alzheimer's disease
  • preliminary results obtained in a pediatric population have suggested that post-traumatic oral creatine administration (0.4 g/kg) given within four hours of traumatic brain injury and then daily thereafter, may improve both acute and long-term outcomes
  • Acutely, post-traumatic creatine administration seemed to reduce duration of post-traumatic amnesia, length of time spent in the intensive care unit, and duration of intubation
  • At three and six months post-injury, subjects in the creatine treatment group demonstrated improvement on indices of self care, communication abilities, locomotion, sociability, personality or behavior and cognitive function when compared to untreated controls
  • patients in the creatine-treatment group were less likely to experience headaches, dizziness and fatigue over six months of follow-up
  • CNS creatine is derived from both its local biosynthesis from the essential amino acids methionine, glycine and arginine
  • Studies of patients with CNS creatine deficiency and/or murine models with genetic ablation of creatine kinase have consistently demonstrated significant neurological impairment in the absence of proper creatine, phosphocreatine, or creatine kinase function; thus highlighting its functional importance
  • chronic dosing may partially reverse neurological impairments in human CNS creatine deficiency syndromes
  • Several studies have suggested that creatine supplementation may also reduce oxidative DNA damage and brain glutamate levels in Huntington disease patients
  • Another study highlighted that creatine supplementation marginally improved indices of mood and reduced the need for increased dopaminergic therapy in patients with Parkinson's disease
  •  
    great review of natural therapies in the treatment of concussions
Nathan Goodyear

Inflammation and Sex Hormone Metabolism - SCHMIDT - 2006 - Annals of the New York Acade... - 0 views

  •  
    Rheumatoid arthritis would benefit from non-aromatizable androgens (DHT) and from the use of aromatase inhibitors.  This suggests the role of estrogen in the inflammation in those with RA and the anti-inflammatory effect of DHT.
Nathan Goodyear

Increased Vascular Inflammation in Early Menopausal Women Is Associated with Hot Flush ... - 0 views

  •  
    increased inflammatory markers associated with increased hot flash severity in menopausal women.  This is also associated with increased cardiovascular disease. Interesting that progesterone has anti-inflammatory properties.  So, therapy to reduce hot flashes should include inflammation reduction.
fitspresso

https://www.sightcare-co.com/ - 0 views

  •  
    Sight Care | Official Site sightcare-co.com · by Sight Care Sight Care Only $49/Bottle Limited Time Offer! Sight Care Special Deal + Special 67% Discount Save $600 + 180 Days Money Back Guarantee #1.The Sight Care vision supplement is a dietary supplement for helping you improve your vision and brain health. Sight Care eye supplements are formulated to provide a synergistic blend of vitamins, minerals, antioxidants, and other bioactive compounds that are essential for maintaining healthy vision Regular Price: 147/per bottle Only for: $49/per bottle What Is Sight Care? This powerful vision support supplement is made with a unique blend of natural ingredients and plant extracts that work together synergistically to deliver numerous benefits for your brain and eye health. With Sight Care, you can expect to experience increased energy levels, improved eyesight, and an overall revitalized sense of well-being. Taking care of your vision health is not just about seeing clearly; it's also about maintaining your overall brain health. As we age, our vision deteriorates, and our eyes and brain can experience a decline in function, but there are steps you can take to support your visual and cognitive health. Regular eye exams are crucial for detecting and treating vision problems early on, and making healthy choices such as eating a nutritious diet and exercising regularly can also help. However, with busy schedules, it can be difficult to find the time to devote to a healthy lifestyle. This is where the Sight Care supplement comes in. It's designed to support both vision and brain health with its blend of natural ingredients that have been shown to promote healthy vision and cognitive function You must not compromise your eye health for momentary exhilaration. If you are glued to digital screens day and night, you must take measures to prevent eye diseases like age-related macular degeneration. The SightCare vision supplement has been made using 100% natura
Nathan Goodyear

The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic... - 0 views

  • orally active competitive opioid receptor antagonist
  • 4.5 mg, though the dosage can vary a few milligrams below or above that common value
  • At the low dosage level, naltrexone exhibits paradoxical properties, including analgesia and anti-inflammatory actions
  • ...10 more annotations...
  • LDN may be an effective treatment for FM
  • In addition to the antagonist effect on mu-opioid and other opioid receptors, naltrexone simultaneously has an antagonist effect on non-opioid receptors (Toll-like receptor 4 or TLR4) that are found on macrophages such as microglia
  • It is via the non-opioid antagonist path that LDN is thought to exert its anti-inflammatory effects
  • Once activated, microglia produce inflammatory and excitatory factors that can cause sickness behaviors such as pain sensitivity, fatigue, cognitive disruption, sleep disorders, mood disorders, and general malaise
  • The neuroprotective action appears to result when microglia activation in the brain and spinal cord is inhibited
  • By suppressing microglia activation, naloxone reduces the production of reactive oxygen species and other potentially neuroexcitatory and neurotoxic chemicals
  • suppressed TNF-alpha, IL-6, MCP-1, and other inflammatory agents in peripheral macrophages
  • individuals with greater ESR at baseline experienced a greater drop in pain when taking LDN
  • LDN has been reported to reduce not only self-reported pain in that condition but also objective markers of inflammation and disease severity
  • Naltrexone has also shown some promise in improving disease severity in multiple sclerosis
  •  
    LDN maybe useful in treating chronic pain via anti-inflammatory effects on microglia.
Nathan Goodyear

NETosis and Neutrophil Extracellular Traps in COVID-19: Immunothrombosis and Beyond - PMC - 0 views

  • Pneumonia is a typical symptom of COVID-19 infection, while acute respiratory distress syndrome (ARDS) and multiple organ failure are common in severe COVID-19 patients
  • NETs are important for preventing pathogen invasion, their excessive formation can result in a slew of negative consequences, such as autoimmune inflammation and tissue damage
  • SARS-CoV-2 infection has also been linked to increased neutrophil-to-lymphocyte ratios, which is associated with disease severity and clinical prognosis
  • ...40 more annotations...
  • NETosis is a special form of programmed cell death in neutrophils, which is characterized by the extrusion of DNA, histones, and antimicrobial proteins in a web-like structure known as neutrophil extracellular traps (NETs)
    • Nathan Goodyear
       
      Definition
  • increased generation of reactive oxygen species (ROS) is a crucial intracellular process that causes NETosis
  • Another indirect route of SARS-CoV-2-induced NET production is platelet activation
  • When NETs are activated in the circulation, they can also induce hypercoagulability and thrombosis
  • In COVID-19, major NET protein cargos of NETs (i.e., NE, MPO, and histones) are significantly elevated.
  • SARS-CoV-2 can also infect host cells through noncanonical receptors such as C-type lectin receptors
  • Immunopathological manifestations, including cytokine storms and impaired adaptive immunity, are the primary drivers behind COVID-19, with neutrophil infiltration being suggested as a significant cause
  • NETosis and NETs are increasingly recognized as causes of vascular injury
  • SARS-CoV-2 and its components (e.g., spike proteins and viral RNA) attach to platelets and increase their activation and aggregation in COVID-19, resulting in vascular injury and thrombosis, both of which are linked to NET formation
    • Nathan Goodyear
       
      Connects SARS-CoV-2 to TLR on Platelets to NETosis to metastasis.
  • NET formation may be caused by activated platelets rather than SARS-CoV-2 itself
  • NETosis, leading to aberrant immunity such as cytokine storms, autoimmune disorders, and immunosuppression.
  • early bacterial coinfections were more prevalent in COVID-19 patients than those infected with other viruses
  • NETosis and NETs may also have a role in the development of post COVID-19 syndromes, including lung fibrosis, neurological disorders, tumor growth, and worsening of concomitant disease
    • Nathan Goodyear
       
      NETosis-> tumor growth
  • NETs and other by-products of NETosis have been shown to act as direct inflammation amplifiers. Hyperinflammation
  • “cytokine storm”
  • SARS-CoV-2 drives NETosis and NET formation to allow for the release of free DNA and by-products (e.g., elastases and histones). This may trigger surrounding macrophages and endothelial cells to secrete excessive proinflammatory cytokines and chemokines, which, in turn, enhance NET formation and form a positive feedback of cytokine storms in COVID-19
    • Nathan Goodyear
       
      Cycle of hyperinflammation
  • NET release enables self-antigen exposure and autoantibody production, thereby increasing the autoinflammatory response
  • patients with COVID-19 who have higher anti-NET antibodies are more likely to be detected with positive autoantibodies [e.g., antinuclear antibodies (ANA) and anti-neutrophil cytoplasmic antibodies (ANCA)]
  • COVID-19 NETs may act as potential inducers for autoimmune responses
  • have weakened adaptive immunity as well as a high level of inflammation
    • Nathan Goodyear
       
      Immunomodulation
  • tumor-associated NETosis and NETs promote an immunosuppressive environment in which anti-tumor immunity is compromised
  • NETs have also been shown to enhance macrophage pyroptosis in sepsis
  • facilitating an immunosuppressive microenvironment
  • persistent immunosuppression may result in bacterial co-infection or secondary infection
  • can enhance this process by interacting with neutrophils through toll-like receptor 4 (TLR4), platelet factor 4 (PF4), and extracellular vesicle-dependent processes
  • NET-induced immunosuppression in COVID-19 in the context of co-existing bacterial infection
  • Following initial onset of COVID-19, an estimated 50% or more of COVID-19 survivors may develop multi-organ problems (e.g., pulmonary dysfunction and neurologic impairment) or have worsening concomitant chronic illness
  • NETs in the bronchoalveolar lavage fluid of severe COVID-19 patients cause EMT in lung epithelial cells
  • decreased E-cadherin (an epithelial marker) expression
    • Nathan Goodyear
       
      Leads to emt
  • COVID-19 also has a long-term influence on tumor progression
  • Patients with tumors have been shown to be more vulnerable to SARS-CoV-2 infection and subsequent development of severe COVID-19
  • patients who have recovered from COVID-19 may have an increased risk of developing cancer or of cancer progression and metastasis
  • awaken cancer cells
  • NETs have been shown to change the tumor microenvironment
  • enhance tumor progression and metastasis
  • vitamin C has been tested in phase 2 clinical trials aimed at reducing COVID-19-associated mortality by reducing excessive activation of the inflammatory response
  • vitamin C is an antioxidant that significantly attenuates PMA-induced NETosis in healthy neutrophils by scavenging ROS
  • vitamin C may also inhibit NETosis and NET production in COVID-19
  • Metformin
  • Vitamin C
  •  
    NETosis intimately involved in progressive COVID, long COVID, autoimmunity, and cancer
Nathan Goodyear

ingentaconnect Adipose Tissue Macrophages, Low Grade Inflammation and Insulin Re... - 0 views

  • “M1” or “classically activated” macrophages
  • PPAR-gamma agonists
  • “M2” or an “alternatively activated” anti-inflammatory phenotype
  •  
    ATMs and obesity induced inflammation initiates insulin resistance and thus type II diabetes. The bodies reaction to a fat cell is no different than a bacterial, viral, or parasitic infection.  The body recognizes something (fat) that shouldn't be there and it attempts to destroy it and remove it.
Nathan Goodyear

The molecular basis of neurodegeneration in multiple sclerosis - 0 views

  • Inflammation is the most predominant feature during the early (relaping) phases of the disease and declines with aging of the patients and disease duration
  • in the process of oligodendrocyte destruction and demyelination in MS lesions iron is liberated from its intracellular ferritin bound stores into the extracellular space, where it is taken up by microglia and macrophages and again stored together with ferritin. When this happens in MS lesions in an environment, where free radicals are produced by oxidative burst, iron can be liberated from ferritin and transformed into reactive Fe++[114], which reacts with hydrogen peroxide to generate highly reactive hydroxyl radicals [36] and thus amplifies oxidative damage and associated cellular injury
  • anti-inflammatory or immunomodulatory treatments are effective in the relapsing stage, but the benefit is lost when the patients have entered the progressive phase
  • ...1 more annotation...
  • Inflammation will remain a key target, since the data suggest that microglia activation and oxidative burst is driven by inflammation throughout all stages of the disease.
  •  
    Very nice review of the neurodegenerative process in MS.  
Nathan Goodyear

How We Read Oncologic FDG PET/CT | Cancer Imaging | Full Text - 0 views

  • In early PET literature focusing on analysis of solitary pulmonary nodules, some researchers defined malignancy based on a SUVmax threshold of greater than 2.5
  • We contend that SUV analysis has virtually no role in this setting.
  • tumours grow as spheres, whereas inflammatory processes are typically linear
  • ...35 more annotations...
  • Far more important than the SUVmax is the pattern rather than intensity of metabolic abnormality and the correlative CT findings
  • Descriptively, we define SUV < 5 as “low intensity”, 5–10 as “moderate”, 10–15 as “intense” and >15 as “very intense”
  • Evolving literature suggests that intensity of uptake is an independent prognostic factor and in some tumour subtypes superior to histopathologic characterisation.
  • aerobic glycolysis
  • Our practice of thresholding the grey and colour scale to liver as detailed above results in similar image intensity to a fixed upper SUV threshold of 8 to 10
  • The advantage of using the liver as a reference tissue is also aided by this organ having rather low variability in metabolic activity
  • When the liver is abnormal and cannot be used as a reference organ, we use the default SUV setting of an upper SUV threshold of 8
  • One of the most challenging aspects of oncologic FDG PET/CT review, however, is to recognise all the patterns of metabolic activity that are not malignant and which consequently confound interpretation
  • Many benign and inflammatory processes are also associated with high glycolytic activity
  • Future articles in the “How I Read” series will address the specific details of reading PET/CT in various cancers
  • The intensity of uptake in metastases usually parallels that in the primary site of disease
  • For example, discordant low-grade activity in an enlarged lymph node in the setting of intense uptake in the primary tumour suggests it is unlikely malignant and more likely inflammatory or reactive
  • By CT criteria the enlarged node is ‘pathologic’ but the discordantly low metabolic signature further characterises this is as non-malignant since such a node is not subject to partial volume effects and therefore the intensity of uptake should be similar to the primary site
  • The exception is when the lymph node is centrally necrotic as a small rim of viable tumour is subject to partial volume effects with expectant lower intensity of uptake; integrating the CT morphology is therefore critical to reaching an accurate interpretation
  • Small nodes that are visualised on PET are conversely much more likely to be metastatic as such nodes are subject to partial volume effects.
  • The exception to this rule is tumours with a propensity for tumour heterogeneity at different sites
  • The combination of FDG and a more specific tracer, which visualises the well-differentiated disease can be very useful to characterise this phenomenon
  • “metabolic signature”
  • For the majority of malignant processes, the intensity of metabolic abnormality correlates with degree of aggressiveness or proliferative rate.
  • a negative PET/CT study in a patient with biopsy proven malignancy would be considered false-negative
  • Warburg effect
  • There, however, are a significant minority of tumours that utilise substrates other glucose such as glutamine or fatty acids as a source of the carbon atoms required for growth and proliferation
  • This includes a subset of diffuse gastric adenocarcinomas, signet cell colonic adenocarcinomas and some sarcomas, particularly liposarcoma
  • There may be a role for other radiotracers such as fluorothymidine (FLT) or amino acid substrates in this setting.
  • Some tumours harbour mutations that result in defective aerobic mitochondrial energy metabolism, effectively simulating the Warburg effect
  • patients with hereditary paraganglioma and pheochromocytoma highlight this phenomenon
  • These have intense uptake on FDG PET/CT despite often having low proliferative rate.
  • Uterine fibroids, hepatic adenomas, fibroadenomas of the breast and desmoid tumours are benign or relatively benign lesions that can have quite high FDG-avidity.
  • Metabolic activity switches off rapidly following initiation of therapy
  • Common examples where patients have commenced active therapy but the referrer is requesting “staging” includes hormonal therapy (eg. tamoxifen) in breast cancer, oral capecitabine in colorectal cancer or high dose steroids in Hodgkin’s lymphoma
  • It is therefore critical to perform PET staging before commencement of anti-tumour therapy
  • The potential advantage of routine diagnostic CT is improved anatomic localisation and definition
  • Without intravenous contrast, additional identification of typical oncologic complications such as pulmonary embolism or venous thrombosis cannot be identified
  • If the study is performed as an “interim” restaging study after commencement of therapy but before completion, in order to reach a valid or clinically useful conclusion findings must be interpreted in the context of known changes that occur at a specific timing and type of therapy
  • The most well studied use of interim PET is in Hodgkin’s lymphoma where repeat PET after two cycles of ABVD-chemotherapy provides powerful prognostic information and may improve outcomes by enabling early change of management
  •  
    good read on the PET/CT scan reading.  They mention that tumors are spheres and inflammation is linear, yet inflammation coexists with cancer; hard to simply delineate these on simple terms. I do agree aon the metabolic signature of the PET/CT scan
1 - 20 of 96 Next › Last »
Showing 20 items per page