Skip to main content

Home/ Dr. Goodyear/ Group items matching "behavioral" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
Nathan Goodyear

ScienceDirect - Behavioral Neuroscience : General and Persistent Effects of High-Intensity Sweeteners on Body Weight Gain and Caloric Compensation in Rats - 0 views

  •  
    artificial sweetners promote weight gain
Nathan Goodyear

ScienceDirect - Brain, Behavior, and Immunity : Omega-3 supplementation lowers inflammation and anxiety in medical students: A randomized controlled trial - 0 views

  •  
    Omega-3 lowers anxiety and inflammation
Nathan Goodyear

Prenatal Exposure to Phthalates is Associated with Reduced Masculine Behavior in Boys - 0 views

  •  
    phthalate exposure associated with reduced masculinity of boys
Nathan Goodyear

Arch Gen Psychiatry -- Abstract: Neural Correlates of Food Addiction, April 4, 2011, Gearhardt et al. 0 (2011): archgenpsychiatry.2011.32v1 - 0 views

  • Similar patterns of neural activation are implicated in addictive-like eating behavior and substance dependence: elevated activation in reward circuitry in response to food cues and reduced activation of inhibitory regions in response to food intake.
  •  
    Similar neurochemical changes with food as seen in other addictions
Nathan Goodyear

Reduced anxiety-like behavior and central neurochemical change in germ-free mice - Neufeld - 2010 - Neurogastroenterology & Motility - Wiley Online Library - 0 views

  •  
    Gut health linked to brain health
Nathan Goodyear

Do Artificial Food Colors Promote Hyperactivity in Children... : Journal of Developmental & Behavioral Pediatrics - 0 views

  • his study is consistent with accumulating evidence that neurobehavioral toxicity may characterize a variety of widely distributed chemicals.
  •  
    ADD and ADHD are a product of chemicals we eat
Nathan Goodyear

ScienceDirect - Acta Astronautica : Behavioral and biological effects of autonomous versus scheduled mission management in simulated space-dwelling groups - 0 views

  • salivary cortisol
  •  
    not again: NASA using salivary cortisol testing to evaluate astronaut stress
Nathan Goodyear

PLoS ONE: Metabolic and Behavioral Compensations in Response to Caloric Restriction: Implications for the Maintenance of Weight Loss - 0 views

  •  
    exercise and muscle very important to maintaining weight loss long-term.  Calorie restriction results in muscle mass loss and this will impair the ability to maintain weight loss long term
Nathan Goodyear

Behavioral effects of L-alpha-glycer... [Pharmacol Biochem Behav. 1992] - PubMed - NCBI - 0 views

  •  
    animal study finds improvement in learning and memory with alpha-GPC after 20 days of therapy.
Nathan Goodyear

Effects of progesterone on neuropathic pain responses in an experimental animal model for peripheral neuropathy in the rat: A behavioral and electrophysiological study - 0 views

  •  
    Progesterone shown to improve neuropathy in animal model.
onlinemedzonline

buy adderall online at onlinemedzonline .com - 0 views

Adderall is a drug which is composed of two closely related components - amphetamine and dextroamphetamine. The drug mainly contains amphetamine in the percentage of 25% and dextroamphetamine in th...

health Disease hormones hormone cancer Testosterone Men inflammation obesity low Male

started by onlinemedzonline on 12 Mar 19 no follow-up yet
Nathan Goodyear

The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer - 0 views

  • WNT signaling
  • early colon cancers commonly display loss of function of the tumor suppressor Adenomatous polyposis coli (APC), a key component of the β-CATENIN destruction complex
  • Other cancers also show an active canonical WNT pathway; these include carcinomas of the lung, stomach, cervix, endometrium, and lung as well as melanomas and gliomas
  • ...31 more annotations...
  • In normal embryogenesis and homeostasis, the canonical WNT pathway is activated by secreted WNT ligands produced in highly controlled context-dependent manners and in precise amounts. WNT activity is transduced in the cytoplasm, inactivates the APC destruction complex, and results in the translocation of activate β-CATENIN to the nucleus, where it cooperates with DNA-binding TCF/LEF factors to regulate WNT-TCF targets and the ensuing genomic response
  • beyond the loss of activity of the APC destruction complex, for instance throughAPC mutation, phosphorylation of β-CATENIN at C-terminal sites is required for the full activation of WNT-TCF signaling and the ensuing WNT-TCF responses in cancer.
  • The WNT-TCF response blockade that we describe for low doses of Ivermectin suggests an action independent to the deregulation of chloride channels
  • involve the repression of the levels of C-terminally phosphorylated β-CATENIN forms and of CYCLIN D1, a critical target that is an oncogene and positive cell cycle regulator.
  • the Avermectin single-molecule derivative Selamectin, a drug widely used in veterinarian medicine (Nolan & Lok, 2012), is ten times more potent acting in the nanomolar range
  • Ivermectin also diminished the protein levels of CYCLIN D1, a direct TCF target and oncogene, in both HT29 and H358 tumor cells
  • Activated Caspase3 was used as a marker of apoptosis by immunohistochemistry 48 h after drug treatment. Selamectin and Ivermectin induced up to a sevenfold increase in the number of activated Caspase3+ cells in two primary (CC14 and CC36) and two cell line (DLD1 and Ls174T) colon cancer cell types (Fig​(Fig2C).2C). All changes were significative
  • The strong downregulation of the expression of the intestinal stem cell genesASCL2 andLGR5 (van der Flieret al, 2009; Scheperset al, 2012; Zhuet al, 2012b) by Ivermectin and Selamectin (Fig​(Fig2D)2D) raised the possibility that these drugs could affect WNT-TCF-dependent colon cancer stem cell behavior
  • Pre-established H358 tumors responded to Ivermectin showing a ˜ 50% repression of growth
  • Ivermectin hasin vivo efficacy against human colon cancer xenografts sensitive to TCF inhibition with no discernable side effects
  • Ivermectin (Campbellet al, 1983), an off-patent drug approved for human use, and related macrocyclic lactones, have WNT-TCF pathway response blocking and anti-cancer activities
  • these drugs block WNT-TCF pathway responses, likely acting at the level of β-CATENIN/TCF function, affecting β-CATENIN phosphorylation status.
  • anti-WNT-TCF activities of Ivermectin and Selamectin
  • Ivermectin has a well-known anti-parasitic activity mediated via the deregulation of chloride channels, leading to paralysis and death (Hibbs & Gouaux, 2011; Lynagh & Lynch, 2012). The same mode of action has been suggested to underlie the toxicity of Ivermectin for liquid tumor cells and the potentiation or sensitization effect of Avermectin B1 on classical chemotherapeutics
  • the specificity of the blockade of WNT-TCF responses we document, at low micromolar doses for Ivermectin and low nanomolar doses for Selamectin, indicate that the blockade of WNT-TCF responses and chloride channel deregulation are distinct modes of action
  • What is key then is to find a dose and a context where the use of Ivermectin has beneficial effects in patients, paralleling our results with xenografts in mice.
  • Cell toxicity appears at doses greater (> 10 μM for 12 h or longer or > 5 μM for 48 h or longer for Ivermectin) than those required to block TCF responses and induce apoptosis.
  • Our data point to a repression of WNT-β-CATENIN/TCF transcriptional responses by Ivermectin, Selamectin and related macrocylic lactones.
  • (i) The ability of Avermectin B1 to inhibit the activation of WNT-TCF reporter activity by N-terminal mutant (APC-insensitive) β-CATENIN as detected in our screen
  • (ii) The ability of Avermectin B1, Ivermectin, Doramectin, Moxidectin and Selamectin to parallel the modulation of WNT-TCF targets by dnTCF
  • (iii) The finding that the specific WNT-TCF response blockade by low doses of Ivermectin and Selamectin is reversed by constitutively active TCF
  • (iv) The repression of key C-terminal phospho-isoforms of β-CATENIN resulting in the repression of the TCF target and positive cell cycle regulator CYCLIN D1 by Ivermectin and Selamectin
  • (v) The specific inhibition ofin-vivo-TCF-dependent, but notin-vivo-TCF-independent cancer cells by Ivermectin in xenografts.
  • These results together with the reduction of the expression of the colon cancer stem cell markersASCL2 andLGR5 (e.g., Hirschet al, 2013; Ziskinet al, 2013) raise the possibility of an inhibitory effect of Ivermectin, Selamectin and related macrocyclic lactones on TCF-dependent cancer stem cells.
  • the capacity of cancer cells to form 3D spheroids in culture, as well as the growth of these, is also WNT-TCF-dependent (Kanwaret al, 2010) and they were also affected by Ivermectin treatment
  • If Ivermectin is specific, it should only block TCF-dependent tumor growth. Indeed, the sensitivity and insensitivity of DLD1 and CC14 xenografts to Ivermectin treatment, respectively, together with the desensitization to Ivermectin actionin vivo by constitutively active TCF provide evidence of the specificity of this drug to block an activated WNT-TCF pathway in human cancer.
  • Ivermectin has a good safety profile since onlyin-vivo-dnTCF-sensitive cancer xenografts are responsive to Ivermectin treatment, and we have not detected side effects in Ivermectin-treated mice at the doses used
  • previous work has shown that side effects from systemic treatments with clinically relevant doses in humans are rare (Yang, 2012), that birth defects were not observed after exposure of pregnant mothers (Pacquéet al, 1990) and that this drug does not cross the blood–brain barrier (Kokozet al, 1999). Similarly, only dogs with mutantABCB1 (MDR1) alleles leading to a broken blood–brain barrier show Ivermectin neurotoxicity (Mealeyet al, 2001; Orzechowskiet al, 2012)
  • Indications may include treatment for incurable β-CATENIN/TCF-dependent advanced and metastatic human tumors of the lung, colon, endometrium, and other organs.
  • Ivermectin, Selamectin, or related macrocyclic lactones could also serve as topical agents for WNT-TCF-dependent skin lesions and tumors such as basal cell carcinomas
  • they might also be useful as routine prophylactic agents, for instance against nascent TCF-dependent intestinal tumors in patients with familial polyposis and against nascent sporadic colon tumors in the general aging population
  •  
    Ivermectin, a common anti-parasitic, found to inhibit WTF-TCF pathway and decrease c-terminal phosophorylaiton of Beta-CATENIN all resulting in increased aptosis and inhibition of cancer growth in colon cancer cell lines and lung cancer cell lines.
Nathan Goodyear

Press-pulse: a novel therapeutic strategy for the metabolic management of cancer | Nutrition & Metabolism | Full Text - 0 views

  • A “press” disturbance was considered a chronic environmental stress on all organisms in an ecological community
  • “pulse” disturbances were considered acute events that disrupted biological communities to produce high mortality
  • Neoplasia involving dysregulated cell growth is the biological endpoint of the disease
  • ...84 more annotations...
  • Data from the American Cancer Society show that the rate of increase in cancer deaths/year (3.4%) was two-fold greater than the rate of increase in new cases/year (1.7%) from 2013 to 2017
  • cancer is predicted to overtake heart disease as the leading cause of death in Western societies
  • cancer can also be recognized as a metabolic disease.
  • glucose is first split into two molecules of pyruvate through the Embden–Meyerhof–Parnas glycolytic pathway in the cytosol
  • Aerobic fermentation, on the other hand, involves the production of lactic acid under normoxic conditions
  • persistent lactic acid production in the presence of adequate oxygen is indicative of abnormal respiration
  • Otto Warburg first proposed that all cancers arise from damage to cellular respiration
  • The Crabtree effect is an artifact of the in vitro environment and involves the glucose-induced suppression of respiration with a corresponding elevation of lactic acid production even under hyperoxic (pO2 = 120–160 mmHg) conditions associated with cell culture
  • the Warburg theory of insufficient aerobic respiration remains as the most credible explanation for the origin of tumor cells [2, 37, 51, 52, 53, 54, 55, 56, 57].
  • The main points of Warburg’s theory are; 1) insufficient respiration is the predisposing initiator of tumorigenesis and ultimately cancer, 2) energy through glycolysis gradually compensates for insufficient energy through respiration, 3) cancer cells continue to produce lactic acid in the presence of oxygen, and 4) respiratory insufficiency eventually becomes irreversible
  • Efraim Racker coined the term “Warburg effect”, which refers to the aerobic glycolysis that occurs in cancer cells
  • Warburg clearly demonstrated that aerobic fermentation (aerobic glycolysis) is an effect, and not the cause, of insufficient respiration
  • all tumor cells that have been examined to date contain abnormalities in the content or composition of cardiolipin
  • The evidence supporting Warburg’s original theory comes from a broad range of cancers and is now overwhelming
  • respiratory insufficiency, arising from any number mitochondrial defects, can contribute to the fermentation metabolism seen in tumor cells.
  • data from the nuclear and mitochondrial transfer experiments suggest that oncogene changes are effects, rather than causes, of tumorigenesis
  • Normal mitochondria can suppress tumorigenesis, whereas abnormal mitochondria can enhance tumorigenesis
  • In addition to glucose, cancer cells also rely heavily on glutamine for growth and survival
  • Glutamine is anapleurotic and can be rapidly metabolized to glutamate and then to α-ketoglutarate for entry into the TCA cycle
  • Glucose and glutamine act synergistically for driving rapid tumor cell growth
  • Glutamine metabolism can produce ATP from the TCA cycle under aerobic conditions
  • Amino acid fermentation can generate energy through TCA cycle substrate level phosphorylation under hypoxic conditions
  • Hif-1α stabilization enhances aerobic fermentation
  • targeting glucose and glutamine will deprive the microenvironment of fermentable fuels
  • Although Warburg’s hypothesis on the origin of cancer has created confusion and controversy [37, 38, 39, 40], his hypothesis has never been disproved
  • Warburg referred to the phenomenon of enhanced glycolysis in cancer cells as “aerobic fermentation” to highlight the abnormal production of lactic acid in the presence of oxygen
  • Emerging evidence indicates that macrophages, or their fusion hybridization with neoplastic stem cells, are the origin of metastatic cancer cells
  • Radiation therapy can enhance fusion hybridization that could increase risk for invasive and metastatic tumor cells
  • Kamphorst et al. in showing that pancreatic ductal adenocarcinoma cells could obtain glutamine under nutrient poor conditions through lysosomal digestion of extracellular proteins
  • It will therefore become necessary to also target lysosomal digestion, under reduced glucose and glutamine conditions, to effectively manage those invasive and metastatic cancers that express cannibalism and phagocytosis.
  • Previous studies in yeast and mammalian cells show that disruption of aerobic respiration can cause mutations (loss of heterozygosity, chromosome instability, and epigenetic modifications etc.) in the nuclear genome
  • The somatic mutations and genomic instability seen in tumor cells thus arise from a protracted reliance on fermentation energy metabolism and a disruption of redox balance through excess oxidative stress.
  • According to the mitochondrial metabolic theory of cancer, the large genomic heterogeneity seen in tumor cells arises as a consequence, rather than as a cause, of mitochondrial dysfunction
  • A therapeutic strategy targeting the metabolic abnormality common to most tumor cells should therefore be more effective in managing cancer than would a strategy targeting genetic mutations that vary widely between tumors of the same histological grade and even within the same tumor
  • Tumor cells are more fit than normal cells to survive in the hypoxic niche of the tumor microenvironment
  • Hypoxic adaptation of tumor cells allows for them to avoid apoptosis due to their metabolic reprograming following a gradual loss of respiratory function
  • The high rates of tumor cell glycolysis and glutaminolysis will also make them resistant to apoptosis, ROS, and chemotherapy drugs
  • Despite having high levels of ROS, glutamate-derived from glutamine contributes to glutathione production that can protect tumor cells from ROS
    • Nathan Goodyear
       
      reason to eliminate glutamine in cancer patients and even GSH with cancer patients
  • It is clear that adaptability to environmental stress is greater in normal cells than in tumor cells, as normal cells can transition from the metabolism of glucose to the metabolism of ketone bodies when glucose becomes limiting
  • Mitochondrial respiratory chain defects will prevent tumor cells from using ketone bodies for energy
  • glycolysis-dependent tumor cells are less adaptable to metabolic stress than are the normal cells. This vulnerability can be exploited for targeting tumor cell energy metabolism
  • In contrast to dietary energy reduction, radiation and toxic drugs can damage the microenvironment and transform normal cells into tumor cells while also creating tumor cells that become highly resistant to drugs and radiation
  • Drug-resistant tumor cells arise in large part from the damage to respiration in bystander pre-cancerous cells
  • Because energy generated through substrate level phosphorylation is greater in tumor cells than in normal cells, tumor cells are more dependent than normal cells on the availability of fermentable fuels (glucose and glutamine)
  • Ketone bodies and fats are non-fermentable fuels
  • Although some tumor cells might appear to oxidize ketone bodies by the presence of ketolytic enzymes [181], it is not clear if ketone bodies and fats can provide sufficient energy for cell viability in the absence of glucose and glutamine
  • Apoptosis under energy stress is greater in tumor cells than in normal cells
  • A calorie restricted ketogenic diet or dietary energy reduction creates chronic metabolic stress in the body
  • . This energy stress acts as a press disturbance
  • Drugs that target availability of glucose and glutamine would act as pulse disturbances
  • Hyperbaric oxygen therapy can also be considered another pulse disturbance
  • The KD can more effectively reduce glucose and elevate blood ketone bodies than can CR alone making the KD potentially more therapeutic against tumors than CR
  • Campbell showed that tumor growth in rats is greater under high protein (>20%) than under low protein content (<10%) in the diet
  • Protein amino acids can be metabolized to glucose through the Cori cycle
  • The fats in KDs used clinically also contain more medium chain triglycerides
  • Calorie restriction, fasting, and restricted KDs are anti-angiogenic, anti-inflammatory, and pro-apoptotic and thus can target and eliminate tumor cells through multiple mechanisms
  • Ketogenic diets can also spare muscle protein, enhance immunity, and delay cancer cachexia, which is a major problem in managing metastatic cancer
  • GKI values of 1.0 or below are considered therapeutic
  • The GKI can therefore serve as a biomarker to assess the therapeutic efficacy of various diets in a broad range of cancers.
  • It is important to remember that insulin drives glycolysis through stimulation of the pyruvate dehydrogenase complex
  • The water-soluble ketone bodies (D-β-hydroxybutyrate and acetoacetate) are produced largely in the liver from adipocyte-derived fatty acids and ketogenic dietary fat. Ketone bodies bypass glycolysis and directly enter the mitochondria for metabolism to acetyl-CoA
  • Due to mitochondrial defects, tumor cells cannot exploit the therapeutic benefits of burning ketone bodies as normal cells would
  • Therapeutic ketosis with racemic ketone esters can also make it feasible to safely sustain hypoglycemia for inducing metabolic stress on cancer cells
    • Nathan Goodyear
       
      Ketones are much more than energy adaptabilit, but actually are therapeutic.
  • ketone bodies can inhibit histone deacetylases (HDAC) [229]. HDAC inhibitors play a role in targeting the cancer epigenome
  • Therapeutic ketosis reduces circulating inflammatory markers, and ketones directly inhibit the NLRP3 inflammasome, an important pro-inflammatory pathway linked to carcinogenesis and an important target for cancer treatment response
  • Chronic psychological stress is known to promote tumorigenesis through elevations of blood glucose, glucocorticoids, catecholamines, and insulin-like growth factor (IGF-1)
  • In addition to calorie-restricted ketogenic diets, psychological stress management involving exercise, yoga, music etc. also act as press disturbances that can help reduce fatigue, depression, and anxiety in cancer patients and in animal models
  • Ketone supplementation has also been shown to reduce anxiety behavior in animal models
  • This physiological state also enhances the efficacy of chemotherapy and radiation therapy, while reducing the side effects
  • lower dosages of chemotherapeutic drugs can be used when administered together with calorie restriction or restricted ketogenic diets (KD-R)
  • Besides 2-DG, a range of other glycolysis inhibitors might also produce similar therapeutic effects when combined with the KD-R including 3-bromopyruvate, oxaloacetate, and lonidamine
    • Nathan Goodyear
       
      oxaloacetate is a glycolytic inhibitor, as is doxycycline, and IVC.
  • A synergistic interaction of the KD diet plus radiation was seen
  • It is important to recognize, however, that the radiotherapy used in glioma patients can damage the respiration of normal cells and increase availability of glutamine in the microenvironment, which can increase risk of tumor recurrence especially when used together with the steroid drug dexamethasone
  • Poff and colleagues demonstrated that hyperbaric oxygen therapy (HBOT) enhanced the ability of the KD to reduce tumor growth and metastasis
  • HBOT also increases oxidative stress and membrane lipid peroxidation of GBM cells in vitro
  • The effects of the KD and HBOT can be enhanced with administration of exogenous ketones, which further suppressed tumor growth and metastasis
  • Besides HBOT, intravenous vitamin C and dichloroacetate (DCA) can also be used with the KD to selectively increase oxidative stress in tumor cells
  • Recent evidence also shows that ketone supplementation may enhance or preserve overall physical and mental health
  • Some tumors use glucose as a prime fuel for growth, whereas other tumors use glutamine as a prime fuel [102, 186, 262, 263, 264]. Glutamine-dependent tumors are generally less detectable than glucose-dependent under FDG-PET imaging, but could be detected under glutamine-based PET imaging
  • GBM and use glutamine as a major fuel
  • Many of the current treatments used for cancer management are based on the view that cancer is a genetic disease
  • Emerging evidence indicates that cancer is a mitochondrial metabolic disease that depends on availability of fermentable fuels for tumor cell growth and survival
  • Glucose and glutamine are the most abundant fermentable fuels present in the circulation and in the tumor microenvironment
  • Low-carbohydrate, high fat-ketogenic diets coupled with glycolysis inhibitors will reduce metabolic flux through the glycolytic and pentose phosphate pathways needed for synthesis of ATP, lipids, glutathione, and nucleotides
  •  
    Cancer is a mitochondrial disease? So says the well published Dr Seyfried. Glucose and glutamine drive cancer growth.
Nathan Goodyear

Microbial-Host Co-metabolites Are Prodromal Markers Predicting Phenotypic Heterogeneity in Behavior, Obesity, and Impaired Glucose Tolerance: Cell Reports - 0 views

  •  
    Gut bacteria metabolites predicts risk from poor diet.
Nathan Goodyear

The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain - 0 views

  • orally active competitive opioid receptor antagonist
  • 4.5 mg, though the dosage can vary a few milligrams below or above that common value
  • At the low dosage level, naltrexone exhibits paradoxical properties, including analgesia and anti-inflammatory actions
  • ...10 more annotations...
  • LDN may be an effective treatment for FM
  • In addition to the antagonist effect on mu-opioid and other opioid receptors, naltrexone simultaneously has an antagonist effect on non-opioid receptors (Toll-like receptor 4 or TLR4) that are found on macrophages such as microglia
  • It is via the non-opioid antagonist path that LDN is thought to exert its anti-inflammatory effects
  • Once activated, microglia produce inflammatory and excitatory factors that can cause sickness behaviors such as pain sensitivity, fatigue, cognitive disruption, sleep disorders, mood disorders, and general malaise
  • The neuroprotective action appears to result when microglia activation in the brain and spinal cord is inhibited
  • By suppressing microglia activation, naloxone reduces the production of reactive oxygen species and other potentially neuroexcitatory and neurotoxic chemicals
  • suppressed TNF-alpha, IL-6, MCP-1, and other inflammatory agents in peripheral macrophages
  • individuals with greater ESR at baseline experienced a greater drop in pain when taking LDN
  • LDN has been reported to reduce not only self-reported pain in that condition but also objective markers of inflammation and disease severity
  • Naltrexone has also shown some promise in improving disease severity in multiple sclerosis
  •  
    LDN maybe useful in treating chronic pain via anti-inflammatory effects on microglia.
Nathan Goodyear

Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2 | npj Precision Oncology - 0 views

  • Chen et al. have revealed that ascorbate at pharmacologic concentrations (0.3–20 mM) achieved only by intravenously (i.v.) administration selectively kills a variety of cancer cell lines in vitro, but has little cytotoxic effect on normal cells.
  • Ascorbic acid (the reduced form of vitamin C) is specifically transported into cells by sodium-dependent vitamin C transporters (SVCTs)
  • SVCT-1 is predominantly expressed in epithelial tissues
  • ...41 more annotations...
  • whereas the expression of SVCT-2 is ubiquitous
  • differential sensitivity to VC may result from variations in VC flow into cells, which is dependent on SVCT-2 expression.
  • high-dose VC significantly impaired both the tumorspheres initiation (Fig. 4d, e) and the growth of established tumorspheres derived from HCC cells (Fig. 4f, g) in a time-dependent and dose-dependent manner.
  • Hepatocellular carcinoma (HCC)
  • The antioxidant, N-acetyl-L-cysteine (NAC), preventing VC-induced ROS production (a ROS scavenger), completely restored the viability and colony formation among VC-treated cells
  • DNA double-strand damage was found following VC treatment
  • DNA damage was prevented by NAC
  • Interestingly, the combination of VC and cisplatin was even more effective in reducing tumor growth and weight
  • Consistent with the in vitro results, stemness-related genes expressions in tumor xenograft were remarkably reduced after VC or VC+cisplatin treatment, whereas conventional cisplatin therapy alone led to the increase of CSCs
  • VC is one of the numerous common hepatoprotectants.
  • Interestingly, at extracellular concentrations greater than 1 mM, VC induces strong cytotoxicity to cancer cells including liver cancer cells
  • we hypothesized that intravenous VC might reduce the risk of recurrence in HCC patients after curative liver resection.
  • Intriguingly, the 5-year disease-free survival (DFS) for patients who received intravenous VC was 24%, as opposed to 15% for no intravenous VC-treated patients
  • Median DFS time for VC users was 25.2 vs. 18 months for VC non-users
  • intravenous VC use is linked to improved DFS in HCC patients.
  • In this study, based on the elevated expression of SVCT-2, which is responsible for VC uptake, in liver CSCs, we revealed that clinically achievable concentrations of VC preferentially eradicated liver CSCs in vitro and in vivo
    • Nathan Goodyear
       
      the authors here made similar mistakes to the Mayo authors i.e. under doses here in this study.  They dosed at only 2 grams IVC.  A woefully low dose of IVC.
  • Additionally, we found that intravenous VC reduced the risk of post-surgical HCC progression in a retrospective cohort study.
    • Nathan Goodyear
       
      positive results despite a low dose used.
    • Nathan Goodyear
       
      Their comfort zone was 1mM.  They should have targeted 20-40 mM.
  • Three hundred thirty-nine participants (55.3%) received 2 g intravenous VC for 4 or more days after initial hepatectomy
  • As the key protein responsible for VC uptake in the liver, SVCT-2 played crucial roles in regulating the sensitivity to ascorbate-induced cytotoxicity
  • we also observed that SVCT-2 was highly expressed in human HCC samples and preferentially elevated in liver CSCs
  • SVCT-2 might serve as a potential CSC marker and therapeutic target in HCC
  • CSCs play critical roles in regulating tumor initiation, relapse, and chemoresistance
  • we revealed that VC treatment dramatically reduced the self-renewal ability, expression levels of CSC-associated genes, and percentages of CSCs in HCC, indicating that CSCs were more susceptible to VC-induced cell death
  • as a drug for eradicating CSCs, VC may represent a promising strategy for treatment of HCC, alone or particularly in combination with chemotherapeutic drugs
  • In HCC, we found that VC-generated ROS caused genotoxic stress (DNA damage) and metabolic stress (ATP depletion), which further activated the cyclin-dependent kinase inhibitor p21, leading to G2/M phase cell cycle arrest and caspase-dependent apoptosis in HCC cells
  • we demonstrated a synergistic effect of VC and chemotherapeutic drug cisplatin on killing HCC both in vitro and in vivo
  • Intravenous VC has also been reported to reduce chemotherapy-associated toxicity of carboplatin and paclitaxel in patients,38 but the specific mechanism needs further investigation
    • Nathan Goodyear
       
      so, exclude the benefit to patients until the exact mechanism of action, which will never be fully elicited?!?!?
  • Our retrospective cohort study also showed that intravenous VC use (2 g) was related to the improved DFS in HCC patients after initial hepatectomy
    • Nathan Goodyear
       
      Terribly inadequate dose.  Target is 20-40 mM which other studies have found occur with 50-75 grams of IVC.
  • several clinical trials of high-dose intravenous VC have been conducted in patients with advanced cancer and have revealed improved quality of life and prolonged OS
  • high-dose VC was not toxic to immune cells and major immune cell subpopulations in vivo
  • high recurrence rate and heterogeneity
  • tumor progression, metastasis, and chemotherapy-resistance
  • SVCT-2 was highly expressed in HCC samples in comparison to peri-tumor tissues
  • high expression (grade 2+/3+) of SVCT-2 was in agreement with poorer overall survival (OS) of HCC patients (Fig. 1c) and more aggressive tumor behavior
  • SVCT-2 is enriched in liver CSCs
  • these data suggest that SVCT-2 is preferentially expressed in liver CSCs and is required for the maintenance of liver CSCs.
  • pharmacologic concentrations of plasma VC higher than 0.3 mM are achievable only from i.v. administration
  • The viabilities of HCC cells were dramatically decreased after exposure to VC in dose-dependent manner
  • VC and cisplatin combination further caused cell apoptosis in tumor xenograft
  • These results verify that VC inhibits tumor growth in HCC PDX models and SVCT-2 expression level is associated with VC response
  • qPCR and IHC analysis demonstrated that expression levels of CSC-associated genes and percentages of CSCs in PDXs dramatically declined after VC treatment, confirming the inhibitory role of VC in liver CSCs
  •  
    IV vitamin C in vitro and in vivo found to "preferentially" eradicate cancer stem cells.  In addition, IV vitamin C was found to be adjunctive to chemotherapy, found to be hepatoprotectant.  This study also looked at SVCT-2, which is the transport protein important in liver C uptake.
Nathan Goodyear

Effects of zinc supplementation on sexual behavior of male rats - 0 views

  •  
    rat study finds that zinc supplementation increases Testosterone and prolactin levels, which increase sexual performance.
Nathan Goodyear

Hyperbaric oxygen therapy promotes neurogenesis: where do we stand? - 0 views

  • Numerous in vivo and in vitro studies confirm that HBOT induces neurogenesis
  • HIF-1α is the principal mediator of cellular hypoxia adaptations
  • activated by hypoxia, HIF-1α causes the transcription of its regulated downstream genes, including erythropoietin (EPO) and VEGF which are known to promote neurogenesis
  • ...10 more annotations...
  • The safety of HBOT was also evaluated and it was pointed out that, if given at proper paradigms, like 1.5 ATA for 60 minutes, HBOT will not cause oxygen toxicity
  • Rockswold et al., on the other hand, found that HBOT might be potentially beneficial for severe TBI patients
  • McDonagh et al., concluded that there was insufficient evidence to establish the effectiveness of HBOT in the treatment of TBI
  • The first multicenter, randomized, double-blind, controlled trial in 2009 found that 40-hour HBOT of 24% oxygen at 1.3 ATM produced significant improvement in children's overall functioning, receptive language, social interaction, eye contact, and sensory/cognitive awareness compared to those received slightly pressurized room air
  • Another study in 2010 on 16 autism patients, adopting a similar treatment paradigm, showed no effect on a wide array of behavioral evaluations
  • To date, there is little evidence that HBOT causes malignant growth or metastasis. A history of malignancy should therefore not be considered as a contraindication for HBOT
  • HBOT enhances the production of reactive oxygen species (ROS) and causes oxidative stress in body tissues
  • Excessive accumulation of oxidative stress may contribute to neurodegenerative processes and cell death in the brain, as seen in diseases like Alzheimer's disease (AD) and Parkinson's disease (PD)
  • Hormesis
  • process that results in a functional improvement of cellular stress resistance, survival, and longevity in response to sub-lethal levels of stress
  •  
    great review of hbot, brain injury, neuroplasticity and neurogenesis.
« First ‹ Previous 41 - 60 of 60
Showing 20 items per page