Skip to main content

Home/ Dr. Goodyear/ Group items tagged action

Rss Feed Group items tagged

Nathan Goodyear

Testosterone: a vascular hormone in health and disease - 0 views

  • Testosterone has beneficial effects on several cardiovascular risk factors, which include cholesterol, endothelial dysfunction and inflammation
  • In clinical studies, acute and chronic testosterone administration increases coronary artery diameter and flow, improves cardiac ischaemia and symptoms in men with chronic stable angina and reduces peripheral vascular resistance in chronic heart failure.
  • testosterone is an L-calcium channel blocker and induces potassium channel activation in vascular smooth muscle cells
  • ...54 more annotations...
  • Animal studies have consistently demonstrated that testosterone is atheroprotective, whereas testosterone deficiency promotes the early stages of atherogenesis
  • there is no compelling evidence that testosterone replacement to levels within the normal healthy range contributes adversely to the pathogenesis of CVD (Carson & Rosano 2011) or prostate cancer (Morgentaler & Schulman 2009)
  • bidirectional effect between decreased testosterone concentrations and disease pathology exists as concomitant cardiovascular risk factors (including inflammation, obesity and insulin resistance) are known to reduce testosterone levels and that testosterone confers beneficial effects on these cardiovascular risk factors
  • Achieving a normal physiological testosterone concentration through the administration of testosterone replacement therapy (TRT) has been shown to improve risk factors for atherosclerosis including reducing central adiposity and insulin resistance and improving lipid profiles (in particular, lowering cholesterol), clotting and inflammatory profiles and vascular function
  • It is well known that impaired erectile function and CVD are closely related in that ED can be the first clinical manifestation of atherosclerosis often preceding a cardiovascular event by 3–5 years
  • no decrease in the response (i.e. no tachyphylaxis) of testosterone and that patient benefit persists in the long term.
  • free testosterone levels within the physiological range, has been shown to result in a marked increase in both flow- and nitroglycerin-mediated brachial artery vasodilation in men with CAD
  • Clinical studies, however, have revealed either small reductions of 2–3 mm in diastolic pressure or no significant effects when testosterone is replaced within normal physiological limits in humans
  • Endothelium-independent mechanisms of testosterone are considered to occur primarily via the inhibition of voltage-operated Ca2+ channels (VOCCs) and/or activation of K+ channels (KCs) on smooth muscle cells (SMCs)
  • Testosterone shares the same molecular binding site as nifedipine
  • Testosterone increases the expression of endothelial nitric oxide synthase (eNOS) and enhances nitric oxide (NO) production
  • Testosterone also inhibited the Ca2+ influx response to PGF2α
  • one of the major actions of testosterone is on NO and its signalling pathways
  • In addition to direct effects on NOS expression, testosterone may also affect phosphodiesterase type 5 (PDE5 (PDE5A)) gene expression, an enzyme controlling the degradation of cGMP, which acts as a vasodilatory second messenger
  • the significance of the action of testosterone on VSMC apoptosis and proliferation in atherosclerosis is difficult to delineate and may be dependent upon the stage of plaque development
  • Several human studies have shown that carotid IMT (CIMT) and aortic calcification negatively correlate with serum testosterone
  • t long-term testosterone treatment reduced CIMT in men with low testosterone levels and angina
  • neither intracellular nor membrane-associated ARs are required for the rapid vasodilator effect
  • acute responses appear to be AR independent, long-term AR-mediated effects on the vasculature have also been described, primarily in the context of vascular tone regulation via the modulation of gene transcription
  • Testosterone and DHT increased the expression of eNOS in HUVECs
  • oestrogens have been shown to activate eNOS and stimulate NO production in an ERα-dependent manner
  • Several studies, however, have demonstrated that the vasodilatory actions of testosterone are not reduced by aromatase inhibition
  • non-aromatisable DHT elicited similar vasodilation to testosterone treatment in arterial smooth muscle
  • increased endothelial NOS (eNOS) expression and phosphorylation were observed in testosterone- and DHT-treated human umbilical vein endothelial cells
  • Androgen deprivation leads to a reduction in neuronal NOS expression associated with a decrease of intracavernosal pressure in penile arteries during erection, an effect that is promptly reversed by androgen replacement therapy
  • Observational evidence suggests that several pro-inflammatory cytokines (including interleukin 1β (IL1β), IL6, tumour necrosis factor α (TNFα), and highly sensitive CRP) and serum testosterone levels are inversely associated in patients with CAD, T2DM and/or hypogonadism
  • patients with the highest IL1β concentrations had lower endogenous testosterone levels
  • TRT has been reported to significantly reduce TNFα and elevate the circulating anti-inflammatory IL10 in hypogonadal men with CVD
  • testosterone treatment to normalise levels in hypogonadal men with the MetS resulted in a significant reduction in the circulating CRP, IL1β and TNFα, with a trend towards lower IL6 compared with placebo
  • parenteral testosterone undecanoate, CRP decreased significantly in hypogonadal elderly men
  • Higher levels of serum adiponectin have been shown to lower cardiovascular risk
  • Research suggests that the expression of VCAM-1, as induced by pro-inflammatory cytokines such as TNFα or interferon γ (IFNγ (IFNG)) in endothelial cells, can be attenuated by treatment with testosterone
  • Testosterone also inhibits the production of pro-inflammatory cytokines such as IL6, IL1β and TNFα in a range of cell types including human endothelial cells
  • decreased inflammatory response to TNFα and lipopolysaccharide (LPS) in human endothelial cells when treated with DHT
  • The key to unravelling the link between testosterone and its role in atherosclerosis may lay in the understanding of testosterone signalling and the cross-talk between receptors and intracellular events that result in pro- and/or anti-inflammatory actions in athero-sensitive cells.
  • testosterone functions through the AR to modulate adhesion molecule expression
  • pre-treatment with DHT reduced the cytokine-stimulated inflammatory response
  • DHT inhibited NFκB activation
  • DHT could inhibit an LPS-induced upregulation of MCP1
  • Both NFκB and AR act at the transcriptional level and have been experimentally found to be antagonistic to each other
  • As the AR and NFκB are mutual antagonists, their interaction and influence on functions can be bidirectional, with inflammatory agents that activate NFκB interfering with normal androgen signalling as well as the AR interrupting NFκB inflammatory transcription
  • prolonged exposure of vascular cells to the inflammatory activation of NFκB associated with atherosclerosis may reduce or alter any potentially protective effects of testosterone
  • DHT and IFNγ also modulate each other's signalling through interaction at the transcriptional level, suggesting that androgens down-regulate IFN-induced genes
  • (Simoncini et al. 2000a,b). Norata et al. (2010) suggest that part of the testosterone-mediated atheroprotective effects could depend on ER activation mediated by the testosterone/DHT 3β-derivative, 3β-Adiol
  • TNFα-induced induction of ICAM-1, VCAM-1 and E-selectin as well as MCP1 and IL6 was significantly reduced by a pre-incubation with 3β-Adiol in HUVECs
  • 3β-Adiol also reduced LPS-induced gene expression of IL6, TNFα, cyclooxygenase 2 (COX2 (PTGS2)), CD40, CX3CR1, plasminogen activator inhibitor-1, MMP9, resistin, pentraxin-3 and MCP1 in the monocytic cell line U937 (Norata et al. 2010)
  • This study suggests that testosterone metabolites, other than those generated through aromatisation, could exert anti-inflammatory effects that are mediated by ER activation.
  • The authors suggest that DHT differentially effects COX2 levels under physiological and pathophysiological conditions in human coronary artery smooth muscle cells and via AR-dependent and -independent mechanisms influenced by the physiological state of the cell
  • There are, however, a number of systematic meta-analyses of clinical trials of TRT that have not demonstrated an increased risk of adverse cardiovascular events or mortality
  • The TOM trial, which was designed to investigate the effect of TRT on frailty in elderly men, was terminated prematurely as a result of an increased incidence of cardiovascular-related events after 6 months in the treatment arm
  • trials of TRT in men with either chronic stable angina or chronic cardiac failure have also found no increase in either cardiovascular events or mortality in studies up to 12 months
  • Evidence may therefore suggest that low testosterone levels and testosterone levels above the normal range have an adverse effect on CVD, whereas testosterone levels titrated to within the mid- to upper-normal range have at least a neutral effect or, taking into account the knowledge of the beneficial effects of testosterone on a series of cardiovascular risk factors, there may possibly be a cardioprotective action
  • The effect of testosterone on human vascular function is a complex issue and may be dependent upon the underlying androgen and/or disease status.
  • the majority of studies suggest that testosterone may display both acute and chronic vasodilatory effects upon various vascular beds at both physiological and supraphysiological concentrations and via endothelium-dependent and -independent mechanisms
  •  
    Good deep look into the testosterone and CVD link.
Nathan Goodyear

Testosterone: a metabolic hormone in health and disease - 0 views

  • E2 and the inflammatory adipocytokines tumour necrosis factor α (TNFα) and interleukin 6 (IL6) inhibit hypothalamic production of GNRH and subsequent release of LH and FSH from the pituitary
  • Leptin, an adipose-derived hormone with a well-known role in regulation of body weight and food intake, also induces LH release under normal conditions via stimulation of hypothalamic GNRH neurons
  • In human obesity, whereby adipocytes are producing elevated amounts of leptin, the hypothalamic–pituitary axis becomes leptin resistant
  • ...39 more annotations...
  • there is evidence from animal studies that leptin resistance, inflammation and oestrogens inhibit neuronal release of kisspeptin
  • Beyond hypothalamic action, leptin also directly inhibits the stimulatory action of gonadotrophins on the Leydig cells of the testis to decrease testosterone production; therefore, elevated leptin levels in obesity may further diminish androgen status
  • Prostate cancer patients with pre-existing T2DM show a further deterioration of insulin resistance and worsening of diabetic control following ADT
  • ADT for the treatment of prostatic carcinoma in some large epidemiological studies has been shown to be associated with an increased risk of developing MetS and T2DM
  • Non-diabetic men undergoing androgen ablation show increased occurrence of new-onset diabetes and demonstrate elevated insulin levels and worsening glycaemic control
  • increasing insulin resistance assessed by glucose tolerence test and hypoglycemic clamp was shown to be associated with a decrease in Leydig cell testosterone secretion in men
  • The response to testosterone replacement of insulin sensitivity is in part dependent on the androgen receptor (AR)
  • Low levels of testosterone have been associated with an atherogenic lipoprotein profile, characterised by high LDL and triglyceride levels
  • a positive correlation between serum testosterone and HDL has been reported in both healthy and diabetic men
  • up to 70% of the body's insulin sensitivity is accounted for by muscle
  • Testosterone deficiency is associated with a decrease in lean body mass
  • relative muscle mass is inversely associated with insulin resistance and pre-diabetes
  • GLUT4 and IRS1 were up-regulated in cultured adipocytes and skeletal muscle cells following testosterone treatment at low dose and short-time incubations
  • local conversion of testosterone to DHT and activation of AR may be important for glucose uptake
  • inverse correlation between testosterone levels and adverse mitochondrial function
  • orchidectomy of male Wistar rats and associated testosterone deficiency induced increased absorption of glucose from the intestine
  • (Kelley & Mandarino 2000). Frederiksen et al. (2012a) recently demonstrated that testosterone may influence components of metabolic flexibility as 6 months of transdermal testosterone treatment in aging men with low–normal bioavailable testosterone levels increased lipid oxidation and decreased glucose oxidation during the fasting state.
  • Decreased lipid oxidation coupled with diet-induced chronic FA elevation is linked to increased accumulation of myocellular lipid, in particular diacylglycerol and/or ceramide in myocytes
  • In the Chang human adult liver cell line, insulin receptor mRNA expression was significantly increased following exposure to testosterone
  • Testosterone deprivation via castration of male rats led to decreased expression of Glut4 in liver tissue, as well as adipose and muscle
  • oestrogen was found to increase the expression of insulin receptors in insulin-resistant HepG2 human liver cell line
  • FFA decrease hepatic insulin binding and extraction, increase hepatic gluconeogenesis and increase hepatic insulin resistance.
  • Only one, albeit large-scale, population-based cross-sectional study reports an association between low serum testosterone concentrations and hepatic steatosis in men (Völzke et al. 2010)
  • This suggests that testosterone may confer some of its beneficial effects on hepatic lipid metabolism via conversion to E2 and subsequent activation of ERα.
  • hypogonadal men exhibiting a reduced lean body mass and an increased fat mass, abdominal or central obesity
  • visceral adipose tissue was inversely correlated with bioavailable testosterone
  • there was no change in visceral fat mass in aged men with low testosterone levels following 6 months of transdermal TRT, yet subcutaneous fat mass was significantly reduced in both the thigh and the abdominal areas when analysed by MRI (Frederiksen et al. 2012b)
  • ADT of prostate cancer patients increased both visceral and subcutaneous abdominal fat in a 12-month prospective observational study (Hamilton et al. 2011)
  • Catecholamines are the major lipolysis regulating hormones in man and regulate adipocyte lipolysis through activation of adenylate cyclase to produce cAMP
  • deficiency of androgen action decreases lipolysis and is primarily responsible for the induction of obesity (Yanase et al. 2008)
  • may be some regional differences in the action of testosterone on subcutaneous and visceral adipose function
  • proinflammatory adipocytokines IL1, IL6 and TNFα are increased in obesity with a downstream effect that stimulates liver production of CRP
  • observational evidence suggests that IL1β, IL6, TNFα and CRP are inversely associated with serum testosterone levels in patients
  • TRT has been reported to significantly reduce these proinflammatory mediators
  • This suggests a role for AR in the metabolic actions of testosterone on fat accumulation and adipose tissue inflammatory response
  • testosterone treatment may have beneficial effects on preventing the pathogenesis of obesity by inhibiting adipogenesis, decreasing triglyceride uptake and storage, increasing lipolysis, influencing lipoprotein content and function and may directly reduce fat mass and increase muscle mass
  • Early interventional studies suggest that TRT in hypogonadal men with T2DM and/or MetS has beneficial effects on lipids, adiposity and parameters of insulin sensitivity and glucose control
  • Evidence that whole-body insulin sensitivity is reduced in testosterone deficiency and increases with testosterone replacement supports a key role of this hormone in glucose and lipid metabolism
  • Impaired insulin sensitivity in these three tissues is characterised by defects in insulin-stimulated glucose transport activity, in particular into skeletal muscle, impaired insulin-mediated inhibition of hepatic glucose production and stimulation of glycogen synthesis in liver, and a reduced ability of insulin to inhibit lipolysis in adipose tissue
  •  
    Great review of the Hypogonadal-obesity-adipocytokine hypothesis.
Nathan Goodyear

Progesterone Receptor-A and -B Have Opposite Effects on Proinflammatory Gene Expression... - 0 views

  •  
    Progesterone is known to have anti-inflammatory action.  This study looked at the anti-inflammatory action of progesterone on the myometrium of the uterus during pregnancy.  The anti-inflammatory effect, in this study, was through Progesterone Receptor B.  There was a change in the dominance to PR A late in pregnancy.  This would promote inflammatory signaling and thus contractions with the onset of labor.
Nathan Goodyear

Bisphenol A Promotes Human Prostate Stem-Progenitor Cell Self-Renewal and Increases In ... - 0 views

  • these findings show that estrogen stimulates human prostate epithelial stem cell self-renewal and progenitor cell amplification (prostasphere size), with the greatest effects observed at lower E2 doses.
  • Similar to E2, BPA increased prostasphere number and size with significant and maximal effects observed at 10 nM BPA
  • Taken together, these results provide strong evidence that, similar to E2, BPA increases stem cell self-renewal and progenitor amplification in normal human prostate epithelial cells
  • ...13 more annotations...
  • these findings provide further support that E2 and BPA maintain the stem-like state within the normal prostate epithelial cell population
  • Our previous findings demonstrated that normal prostate stem-progenitor cells within the prostaspheres expressed ERα and ERβ, implicating them as direct targets for E2 and BPA action
  • p-Akt and p-Erk, well established downstream targets of membrane-associated ERs
  • BPA and E2 had equimolar capacity for activation of these rapid signaling pathways in human prostaspheres, thus identifying a dynamic and robust signaling pathway initiated by low-dose BPA exposure in prostate stem-progenitor cells.
  • these findings indicate that both rapid membrane-initiated estrogen action and genomic ER signaling pathways are operative in human prostate progenitor cells.
  • these results document the fact that levels of bioactive BPA in the present study are similar to levels found in human umbilical cord blood and newborns in the general population
  • the present findings identify for the first time that in vivo exposure of the human prostate epithelium to low doses of BPA significantly increases the susceptibility of the human prostate epithelium to hormonal carcinogenesis.
  • The current study provides clear evidence that, similar to E2, normal human prostate stem and progenitor cells are direct targets for BPA action
  • Both hormones increased stem-like cell numbers in primary prostate epithelial cultures in a dose-dependent manner and augmented the number and size of 3-D cultured prostaspheres, markers of stem cell self-renewal and progenitor cell proliferation, respectively
  • signaling pathways engaged by estrogens through these separate receptors are multiple and complex, including both membrane-initiated signaling and genomic activation via ER transcriptional activity
  • Estrogen action is mediated by ERα and ERβ
  • the current results indicate that developmental exposure to BPA, at doses routinely found in humans, significantly increases the cancer risk in human prostate epithelium in response to elevated estrogen levels in an androgen-supported milieu. Because relative estrogen levels rise in aging men, we suggest that humans may be susceptible to BPA-driven prostate disease in a manner similar to that in the rodent models.
  • We propose that early-life perturbations in estrogen signaling including inappropriate exposure to BPA have the potential to amplify and modify the stem-progenitor cell populations within the human prostate gland and, in so doing, alter the normal homeostatic mechanisms that maintain a growth neutral state throughout life
  •  
    Bisphenol A exposure in utero found to increase prostate cancer risk later in life.  This exposure occurred at typical life exposure levels as found in umbilical cord blood sampling,  This occurred through stem cell self-renewal and progenitor amplification
Nathan Goodyear

Progesterone metabolites in breast cancer - 1 views

  • P metabolites produced within breast tissues might be independently active hormones functioning as cancer-promoting or -inhibiting regulatory agents
  • these P metabolites function as independent pro-or anti-cancer autocrine/paracrine hormones that regulate cell proliferation, adhesion, apoptosis and cytoskeletal, and other cell status molecules via novel receptors located in the cell membrane and intrinsically linked to cell signaling pathways
  • only a fraction of all breast cancer patients respond to this estrogen-based therapy and the response is only temporary
  • ...30 more annotations...
  • P serves as the precursor for the major steroid hormones (androgens, estrogens, corticosteroids) produced by the gonadal and adrenal cortical tissues.
  • 5α-pregnane, 5β-pregnane, and 4-pregnene metabolites of P
  • These P-metabolizing enzymes included 5α-reductase, 5β-reductase, 3α-hydroxysteroid oxido-reductase (3α-HSO), 3β-HSO, 20α-HSO, 20β-HSO, 6α(β)-, 11β-, 17-, and 21-hydroxylase, and C17–20-lyase
  • Reduction of P to 5α-pregnanes is catalyzed by 5α-reductase and the direct 5α-reduced metabolite of P is 5α-pregnane-3,20-dione (5αP). The 5α-reductase reaction is irreversible
  • The two 4-pregnenes resulting from direct P conversion are 4-pregnen-3α-ol-20-one (3αHP) and 4-pregnen-20α-ol-3-one (20αHP), catalyzed by the actions of 3α-HSO and 20α-HSO respectively
  • the P-metabolizing enzyme activities identified in human breast tissues and cell lines were: 5α-reductase, 3α-HSO, 3β-HSO, 20α-HSO, and 6α-hydroxylase
  • In normal breast tissue, conversion to 4-pregnenes greatly exceeded the conversion to 5α-pregnanes, whereas in tumorous tissue, conversion to 5α-pregnanes greatly exceeded that to 4-pregnenes
  • The results indicated that P 5α-reductase activity is significantly higher, whereas P 3α-HSO and 20α-HSO activities are significantly lower in tumor than in normal tissues
  • he results showed that production of 5α-pregnanes was higher and that of 4-pregnenes was lower in tumorigenic (e.g. MCF-7) than in nontumorigenic (e.g. MCF-10A) cells (Fig. 3c⇑), while differences in ER/P status did not appear to play a role
  • The 5α-pregnane-to-4-pregnene ratios were 7- to 20-fold higher in the tumorigenic than in the nontumorigenic cell lines
  • altered direction in P metabolism, and hence in metabolite ratios, was due to significantly elevated 5α-reductase and depressed 3α- and 20α-HSO activities in breast tumor tissues and tumorigenic cells. It appeared, therefore, that changes in P-metabolizing enzyme activities might be related to the shift toward mammary cell tumorigenicity and neoplasia
  • In vivo, changes in enzyme activity can result from changes in levels of the enzyme due to changes in expression of the mRNA coding for the enzyme, or from changes in the milieu in which the enzyme operates (such as temperature and pH, and concentrations of cofactors, substrates, products, competitors, ions, phospholipids, and other molecules)
  • Overall, the enzyme activity and expression studies strongly suggest that 5α-reductase stimulation and 3α- and 20α-HSO suppression are associated with the transition from normalcy to cancer of the breast
  • The level of expression of 5α-reductase is up-regulated by estradiol and P in the uterus (Minjarez et al. 2001) and by 5α-dihydrotestosterone (DHT) in the prostate
  • 3αHP inhibited whereas 5αP-stimulated proliferation
  • Stimulation in cell numbers was also observed when cells were treated with other 5α-pregnanes, such as 5α-pregnan-3α-ol-20-one, 5α-pregnan-20α-ol-3-one, and 5α-pregnane-3α,20α-diol, whereas other 4-pregnenes such as 20α-HP and 4-pregnene-3α,20α-diol resulted in suppression of cell proliferation
  • Stimulation of cell proliferation with 5αP and inhibition with 3αHP were also observed in all other breast cell lines examined, whether ER/P-negative (MCF-10A, MDA-MB-231) or ER/P-positive (T47D, ZR-75-1) and whether requiring estrogen for tumorigenicity (MCF-7, T47D) or not (MDA-MB-231), or whether they are nontumorigenic (
  • αHP resulted in significant increases in apoptosis and decreases in mitosis, leading to significant decreases in total cell numbers. In contrast, treatment with 5αP resulted in decreases in apoptosis and increases in mitosis.
  • The opposing actions of 5αP and 3αHP on both cell anchorage and proliferation strengthen the hypothesis that the direction of P metabolism in vivo toward higher 5α-pregnane and lower 4-pregnene concentrations could promote breast neoplasia and lead to malignancy.
  • he effects on proliferation and adhesion were not due to P, but due to the 5α-reduced metabolites
  • The studies showed that binding of 5αP or 3αHP occurs in the plasma membrane fractions, but not in the nuclear or cytosolic compartments
  • separate high-specificity, high-affinity, low- capacity receptors for 5αP and 3αHP that are distinct from each other and from the well-studied nuclear/cytosolic P, estrogen, and androgen and corticosteroid receptors
  • The studies thus provided the first demonstration of the existence of specific P metabolite receptors
  • the receptor results suggest that the putative tumorigenic actions of 5αP may be significantly augmented by the estradiol-induced increases in 5αP binding and decreases in 3αHP binding.
  • Estradiol and 5αP resulted in significant dose-dependent increases, whereas 3αHP and 20αHP each resulted in dose-dependent decreases in total ER
  • In combination, estradiol + 5αP or 3αHP + 20αHP resulted in additive increases or decreases respectively in ER numbers.
  • The data suggest that the action of 5αP on breast cancer cells involves modulation of the MAPK signaling pathway
  • current evidence does not appear to support the notion that increased 5α-reductase activity/ expression might significantly alter androgen influences on breast tumor growth.
  • both testosterone and DHT inhibit cell growth more or less to the same extent
  • Note that 5α-reductase reaction is not reversible
  •  
    Fantastic read on the effects of progesterone metabolism on tumor and cancer growth.  Tumorigenesis is not just about the hormone, hormone balance, but about the metabolism of hormones.  This is why premarin is so carcinogenic: it is primarily metabolized by the 4-OH estrone pathway.
Nathan Goodyear

The Androgen 5α-Dihydrotestosterone and Its Metabolite 5α-Androstan-3β, 17β-D... - 0 views

  • Sex steroid hormones are primarily responsible for sex difference in adult HPA function; androgens inhibit whereas estrogens enhance HPA axis activation after a stressor
  • the PVN contains relatively high levels of AR (Bingaman et al., 1994; Zhou et al., 1994) and ERβ (Alves et al., 1998; Hrabovszky et al., 1998; Somponpun and Sladek, 2003) but is essentially devoid of ERα
  • the nonaromatizable androgen DHT and the nonselective ER ligand E2 influence HPA reactivity by acting on neurons within or surrounding the PVN
  • ...9 more annotations...
  • inhibitory action of DHT is detectable at both the level of hormone secretion as well as PVN c-fos mRNA expression
  • the inhibition can be mimicked by the DHT metabolite 3β-diol and by the subtype selective ERβ agonist DPN
  • E2 acts to enhance HPA reactivity
  • the ability of the ER antagonist tamoxifen, but not the AR antagonist flutamide, to block the inhibitory actions of DHT, speaks to the intracellular mechanism by which this inhibitory signal might be transduced.
    • Nathan Goodyear
       
      that is because the interaction with the DHT metabolite is not with the AR, but with the ER-beta.
  • the DHT metabolite 3β-diol and the ERβ-subtype-selective agonist DPN suppressed ACTH, corticosterone, and c-fos mRNA responses to restraint stress in a manner similar to DHT
  • metabolism of DHT to 3β-diol and subsequent binding to ERβ can be inhibitory to HPA reactivity, and this is one possible mechanism for the action of DHT.
  • Our data also suggest that E2 enhances the reactivity of the HPA axis to stress by acting on or near neurons of the PVN
  • the actions of E2 appear to be through an ERα-dependent mechanism
  • these studies suggest that ERβ, within the male hypothalamus, acts to inhibit the HPA axis and that the inhibitory effects of DHT may be, at least in part, via its intracellular conversion to 3β-diol and subsequent binding to ERβ
  •  
    DHT metabolites: particularly 3beta-androstanediol inhibit HPA axis through ER-beta.
Nathan Goodyear

Biologic and Pharmacologic Principles of ET for Menopause: Estrogen Steroidogenesis and... - 0 views

  •  
    biologic and pharmacologic principles of ET for Menopause: Estrogen synthesis and action
Nathan Goodyear

Activation of estrogen re... [J Steroid Biochem Mol Biol. 2007 Nov-Dec] - PubMed - NCBI - 0 views

  •  
    It is always important to work out the biochemical mechanism of action.  Study finds Siberian Rhubarbs mechanism of action is through activation ER-beta receptors.  No activity/affinity for ER-alpha found in this study.  This is important as the ER-beta provides an anti-inflammatory, antigrowth signal.
Nathan Goodyear

Leptin and Androgens in Male Obesity: Evidence for Leptin Contribution to Reduced Andro... - 0 views

  • in male obesity basal and LH-stimulated androgen levels are reduced and inversely correlated with circulating leptin
  • functional leptin receptors are present in rodent Leydig cells
  • it is conceivable that in males high leptin concentrations may have a direct inhibitory effect(s) on Leydig cell function.
  • ...18 more annotations...
  • insulin is an important inhibitor of the synthesis of SHBG
  • no correlation between leptin and SHBG levels
  • SHBG reduction in obesity is a minor determinant of lowered androgen levels
  • SHBG can explain only up to 3% of the correlation
  • testicular T de novo production is impaired in obese men and that leptin seems to be the best hormonal predictor of this blunted response to LH stimulation
  • The low basal 17-OH-P levels found in massively obese men are consistent with a global impairment of Leydig cell steroidogenic function in this group of subjects.
  • These findings indicate that obese men have a FM-related defect in the enzymatic conversion of 17-OH-P to T, which is revealed by hCG stimulation.
  • Other studies have investigated the adrenal function in male obesity and have shown that basal cortisol and 17-OH-progesterone levels tend to decrease with the increase in the degree of obesity
  • High E2 can inhibit the expression and activity of the 17,20-lyase and may be responsible for this steroidogenic lesion
  • However, stimulated E2 levels were not higher in the obese than in controls, excluding the fact that the lower androgen response was due to an increased aromatization of T to E2 and that estrogens have a major role in the observed defect of 17,20-lyase activity in obese men.
  • the percentage increase in the 17-OH-progesterone to T molar ratio paralleled the increase in leptin levels of obese men
  • Multiple regression analysis indicated that the best hormonal predictor of the obesity-related reduction in T and FT basal levels and androgen changes after hCG stimulation was serum leptin concentration
  • insulin has no negative influences on androgen production in obese men
  • insulin is known to have stimulatory actions on T production that have been demonstrated in obese and normal weight men (57) and in Leydig cells in culture
  • the negative correlation between insulin and basal T can be partly explained by the inhibitory action of insulin on SHBG production
  • hypogonadal men have higher circulating leptin levels compared with hypogonadal patients under effective androgen substitution therapy
  • The impaired androgen response to LH stimulus was due to a defect in the enzymatic conversion of 17-OH-progesterone to T, which was disclosed by a leptin-related increase in 17-OH-progesterone to T ratio
  • Estrogens, which are inhibitory modulators of LH pulsatility and bioactivity
  •  
    Leptin appears to be a good marker of low Testosterone.  This study proposes that the mechanism of action is potentially 2 fold: first, a decrease in LH release by leptin (kisspeptin?) and 2nd, a directed decrease in Testosterone production by the leydig cells in the testes.
Nathan Goodyear

The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pa... - 0 views

  • WNT signaling
  • early colon cancers commonly display loss of function of the tumor suppressor Adenomatous polyposis coli (APC), a key component of the β-CATENIN destruction complex
  • Other cancers also show an active canonical WNT pathway; these include carcinomas of the lung, stomach, cervix, endometrium, and lung as well as melanomas and gliomas
  • ...31 more annotations...
  • In normal embryogenesis and homeostasis, the canonical WNT pathway is activated by secreted WNT ligands produced in highly controlled context-dependent manners and in precise amounts. WNT activity is transduced in the cytoplasm, inactivates the APC destruction complex, and results in the translocation of activate β-CATENIN to the nucleus, where it cooperates with DNA-binding TCF/LEF factors to regulate WNT-TCF targets and the ensuing genomic response
  • beyond the loss of activity of the APC destruction complex, for instance throughAPC mutation, phosphorylation of β-CATENIN at C-terminal sites is required for the full activation of WNT-TCF signaling and the ensuing WNT-TCF responses in cancer.
  • The WNT-TCF response blockade that we describe for low doses of Ivermectin suggests an action independent to the deregulation of chloride channels
  • involve the repression of the levels of C-terminally phosphorylated β-CATENIN forms and of CYCLIN D1, a critical target that is an oncogene and positive cell cycle regulator.
  • the Avermectin single-molecule derivative Selamectin, a drug widely used in veterinarian medicine (Nolan & Lok, 2012), is ten times more potent acting in the nanomolar range
  • Ivermectin also diminished the protein levels of CYCLIN D1, a direct TCF target and oncogene, in both HT29 and H358 tumor cells
  • Activated Caspase3 was used as a marker of apoptosis by immunohistochemistry 48 h after drug treatment. Selamectin and Ivermectin induced up to a sevenfold increase in the number of activated Caspase3+ cells in two primary (CC14 and CC36) and two cell line (DLD1 and Ls174T) colon cancer cell types (Fig​(Fig2C).2C). All changes were significative
  • The strong downregulation of the expression of the intestinal stem cell genesASCL2 andLGR5 (van der Flieret al, 2009; Scheperset al, 2012; Zhuet al, 2012b) by Ivermectin and Selamectin (Fig​(Fig2D)2D) raised the possibility that these drugs could affect WNT-TCF-dependent colon cancer stem cell behavior
  • Pre-established H358 tumors responded to Ivermectin showing a ˜ 50% repression of growth
  • Ivermectin hasin vivo efficacy against human colon cancer xenografts sensitive to TCF inhibition with no discernable side effects
  • Ivermectin (Campbellet al, 1983), an off-patent drug approved for human use, and related macrocyclic lactones, have WNT-TCF pathway response blocking and anti-cancer activities
  • these drugs block WNT-TCF pathway responses, likely acting at the level of β-CATENIN/TCF function, affecting β-CATENIN phosphorylation status.
  • anti-WNT-TCF activities of Ivermectin and Selamectin
  • Ivermectin has a well-known anti-parasitic activity mediated via the deregulation of chloride channels, leading to paralysis and death (Hibbs & Gouaux, 2011; Lynagh & Lynch, 2012). The same mode of action has been suggested to underlie the toxicity of Ivermectin for liquid tumor cells and the potentiation or sensitization effect of Avermectin B1 on classical chemotherapeutics
  • the specificity of the blockade of WNT-TCF responses we document, at low micromolar doses for Ivermectin and low nanomolar doses for Selamectin, indicate that the blockade of WNT-TCF responses and chloride channel deregulation are distinct modes of action
  • What is key then is to find a dose and a context where the use of Ivermectin has beneficial effects in patients, paralleling our results with xenografts in mice.
  • Cell toxicity appears at doses greater (> 10 μM for 12 h or longer or > 5 μM for 48 h or longer for Ivermectin) than those required to block TCF responses and induce apoptosis.
  • Our data point to a repression of WNT-β-CATENIN/TCF transcriptional responses by Ivermectin, Selamectin and related macrocylic lactones.
  • (i) The ability of Avermectin B1 to inhibit the activation of WNT-TCF reporter activity by N-terminal mutant (APC-insensitive) β-CATENIN as detected in our screen
  • (ii) The ability of Avermectin B1, Ivermectin, Doramectin, Moxidectin and Selamectin to parallel the modulation of WNT-TCF targets by dnTCF
  • (iii) The finding that the specific WNT-TCF response blockade by low doses of Ivermectin and Selamectin is reversed by constitutively active TCF
  • (iv) The repression of key C-terminal phospho-isoforms of β-CATENIN resulting in the repression of the TCF target and positive cell cycle regulator CYCLIN D1 by Ivermectin and Selamectin
  • (v) The specific inhibition ofin-vivo-TCF-dependent, but notin-vivo-TCF-independent cancer cells by Ivermectin in xenografts.
  • These results together with the reduction of the expression of the colon cancer stem cell markersASCL2 andLGR5 (e.g., Hirschet al, 2013; Ziskinet al, 2013) raise the possibility of an inhibitory effect of Ivermectin, Selamectin and related macrocyclic lactones on TCF-dependent cancer stem cells.
  • the capacity of cancer cells to form 3D spheroids in culture, as well as the growth of these, is also WNT-TCF-dependent (Kanwaret al, 2010) and they were also affected by Ivermectin treatment
  • If Ivermectin is specific, it should only block TCF-dependent tumor growth. Indeed, the sensitivity and insensitivity of DLD1 and CC14 xenografts to Ivermectin treatment, respectively, together with the desensitization to Ivermectin actionin vivo by constitutively active TCF provide evidence of the specificity of this drug to block an activated WNT-TCF pathway in human cancer.
  • Ivermectin has a good safety profile since onlyin-vivo-dnTCF-sensitive cancer xenografts are responsive to Ivermectin treatment, and we have not detected side effects in Ivermectin-treated mice at the doses used
  • previous work has shown that side effects from systemic treatments with clinically relevant doses in humans are rare (Yang, 2012), that birth defects were not observed after exposure of pregnant mothers (Pacquéet al, 1990) and that this drug does not cross the blood–brain barrier (Kokozet al, 1999). Similarly, only dogs with mutantABCB1 (MDR1) alleles leading to a broken blood–brain barrier show Ivermectin neurotoxicity (Mealeyet al, 2001; Orzechowskiet al, 2012)
  • Indications may include treatment for incurable β-CATENIN/TCF-dependent advanced and metastatic human tumors of the lung, colon, endometrium, and other organs.
  • Ivermectin, Selamectin, or related macrocyclic lactones could also serve as topical agents for WNT-TCF-dependent skin lesions and tumors such as basal cell carcinomas
  • they might also be useful as routine prophylactic agents, for instance against nascent TCF-dependent intestinal tumors in patients with familial polyposis and against nascent sporadic colon tumors in the general aging population
  •  
    Ivermectin, a common anti-parasitic, found to inhibit WTF-TCF pathway and decrease c-terminal phosophorylaiton of Beta-CATENIN all resulting in increased aptosis and inhibition of cancer growth in colon cancer cell lines and lung cancer cell lines.
fitspresso

https://www.fitspresso-co.com/ - 0 views

  •  
    FitSpresso™ | Official Site fitspresso-co.com FitSpresso Only $39/Bottle Limited Time Offer! FitSpresso Special Deal + Special 51% Discount Save $660 + 180 Days Money Back Guarantee FitSpresso Herpesyl Five Star A dietary product formulated to assist users in reducing weight can increase other advantages that can support overall health. This product can assist users in getting closer to the desirable body weight. Regular Price: 149/per bottle Only for: $39/per bottle Buy Now What IsFitSpresso? FitSpresso is promoted as a natural supplement that comes in the form of diet pills, and it can aid in rapid and efficient weight loss, similar to many other supplements. The term "natural supplements refers to a nutritional supplement that is made entirely of natural, chemical-free materials. You can utilize these organic ingredients to aid in natural weight loss. It can speed up your body's metabolism and assist with other crucial processes. All parts of our bodies are impacted by weight increase, and not only do we need to deal with the increased weight, but we also need to deal with the numerous problems and illnesses that come along with it. This refers to the risk of developing chronic cardiac conditions, low blood pressure, and, in some circumstances, problems with blood sugar. However, FitSpresso even with its bright and bold claims, can help you efficiently manage your weight and completely avoid these extra uncomfortable problems. FitSpresso is a supplement that comes in the form of a pill, which makes it tasty, simple to swallow, and handy. According to the manufacturer, these diet tablets are GMO-free and toxic-free, making them edible. This is why we have things such as weight loss supplements. Thanks to modern advancements, we can just take a dietary supplement pill to bring about significant weight loss in a completely healthy and natural manner. Not only this, but dietary supplements can also support healthy blood sugar levels and help with
Nathan Goodyear

Beyond the male sex hormone: deciphering the metabolic and vascular actions of testoste... - 0 views

  • androgen deprivation therapy results in unfavorable changes in body composition, insulin resistance, and dyslipidemia and predisposes men to develop atherosclerosis and an increased risk of cardiovascular mortality
  • The hypogonadal–obesity cycle hypothesis was originally proposed by Cohen in 1999 to explain the relationship between low testosterone levels and metabolic disease. It was based on the finding that obesity impairs testosterone levels by increasing the aromatization of testosterone to estradiol, while low testosterone levels promote increased fat deposition
  • adipocytokines contribute to low testosterone levels as well as to the processes underlying metabolic syndromes and type 2 diabetes
  • ...15 more annotations...
  • hypogonadal–obesity–adipocytokine hypothesis
  • The presence of estradiol and the adipocytokines TNF-α, IL6, and leptin (as a result of leptin resistance in obesity) inhibits the hypothalamic–pituitary–testicular axis response to decreasing androgen levels
  • An increasing number of studies have illustrated the potential for applying metabolomics to the field of androgen research
  • As early as the 1940s, the therapeutic use of testosterone was reported to improve angina pectoris in men with coronary artery disease
  • most of the epidemiological studies reported increased cardiovascular risk and mortality in men with low testosterone levels
  • long-term testosterone replacement appears to be a safe and effective means of treating hypogonadal elderly men
  • a recent interventional trial showed that testosterone treatment was associated with decreased mortality when compared with no testosterone treatment in an observational cohort of men with low testosterone levels
  • a number of short-term studies conducted support the notion that testosterone therapy reduces the cardiovascular risk
  • The majority of animal studies support the hypothesis that the actions of testosterone on vascular relaxation are both endothelium-dependent and -independent vasodilatory effects
  • Endothelial-dependent actions of testosterone increase the expression or activity of endothelial nitric oxide synthase and enhance nitric oxide production, which in turn activates cyclic guanosine monophosphate to induce vasorelaxation in smooth muscle cells
  • Endothelial-independent mechanisms of testosterone are believed to occur primarily via inhibition of voltage-operated Ca2+ channels and/or activation of K+ channels in smooth muscle cells
  • Testosterone may also inhibit intracellular Ca2+ influx via store-operated Ca2+ channels by blocking the response to prostaglandin F2α
  • testosterone has demonstrated anti-inflammatory effects to protect against atherogenesis in animal studies
  • both genomic AR activation to modulate gene transcription and non-genomic activation to modulate the rapid intracellular signaling pathways of ion channels may mediate testosterone effects on vascular function and inflammation.
  • Butenandt & Ruzicka first showed how testosterone is synthesized and responsible for masculine characteristics in the early 1930s
  •  
    Awesome review on the current understanding of Testosterone and Diabetes, metabolic syndrome, and CVD.  This article even goes into the literature on androgen receptors.
Nathan Goodyear

Oral estrogen antagonizes the metabolic actions of growth hormone in growth hormone-def... - 0 views

  •  
    One really wonders if estrogen should ever be given orally at all.  Though this study is small, this is consistent with other studies that show that estrogen therapy, particularly oral therapy interferes with growth hormone signaling and thus action.  Oral estrogen decreases IGF-1, increases growth hormone binding protein, lowers metabolism and reduces protein metabolism as monitored by leucine turnover.
wheelchairindia9

Tynor Foot Drop Splint Right-Left - 0 views

  •  
    Tynor Foot Drop Splint Right/Left Applications Prevention and correction of foot drop. Peripheral nerve paralysis. Nerve/Muscle damage. Ankle or Plantar flexion contracture. Functional Alignment of the foot. Post operative care. Burn patients. Tynor Foot Drop Splint Right/Left Features Effective foot lift. Strong leaf spring action. Customizable. Thin walled, worn in a shoe. Tynor Foot Drop Splint Right/Left Measurements Measure shoe size Size Chart - Sizes European American Small 34-36 2.8-4.4 Medium 37-39 5.3-6.8 Large 40-42 7.5-9.0
Nathan Goodyear

Thyroid Hormone Action in the Heart - 0 views

  •  
    Paper reviews thyroid hormone action on the heart.
Nathan Goodyear

ERβ Has Nongenomic Action in Caveolae: Molecular Endocrinology: Vol 16, No 5 - 0 views

  •  
    Estrogen receptors are primarily located inside the nucleus and in the cytoplasm; not on the cell membrane surface. This article specifically focus' on the non-genomic action of ER-beta.  ER-alpha and ER-beta are classic transcription factors.
Nathan Goodyear

Diet-induced obesity and low testosterone increase neuroinflammation and impair neural ... - 0 views

  • both obesity and low testosterone are also risk factors for neural dysfunction, including cognitive impairment [58–61] and development of AD
  • Levels of obesity and testosterone are often inversely correlated
  • diet-induced obesity causes significant metabolic disturbances and impairs central and peripheral nervous systems.
  • ...23 more annotations...
  • both obesity and low testosterone are linked with promotion of inflammatory pathways [70–72] and exert harmful actions on the central [73–75] and peripheral [29,76] nervous systems
  • In general, obesity-related changes were worsened by low testosterone and improved by testosterone treatment; however, this relationship was not statistically significant in several instances. Further, our data suggest that a common pathway that may contribute to obesity and testosterone effects is regulation of inflammation
  • fasting blood glucose levels were independently and additively increased by GDX-induced testosterone depletion and high-fat diet
  • testosterone treatment significantly reduced fasting glucose under both the normal and high-fat diets, demonstrating potential therapeutic efficacy of testosterone supplementation
  • fasting insulin, insulin resistance (HOMA index), and glucose tolerance, low testosterone tended to exacerbate and or testosterone treatment improved outcomes.
  • testosterone status did not significantly affect body weight
  • testosterone’s effects likely do not indicate an indirect result on adiposity but rather regulatory action(s) on other aspects of metabolic homeostasis
  • Prior work in rodents has shown diet-induced obesity induces insulin resistance in rat brain [63] and that testosterone replacement improves insulin sensitivity in obese rats [64]. Our findings are consistent with the human literature, which indicates that (i) testosterone levels are inversely correlated to insulin resistance and T2D in healthy [30,65] as well as obese men [66], and (ii) androgen therapy can improve some metabolic measures in overweight men with low testosterone
  • it has been shown that TNFα has inhibitory effects on neuron survival, differentiation, and neurite outgrowth
  • Our data demonstrate that low testosterone and obesity independently increased cerebrocortical mRNA levels of both TNFα and IL-1β
  • Testosterone status also affected metabolic and neural measures
  • many beneficial effects of testosterone, including inhibition of proinflammatory cytokine expression
  • neuroprotection [80,81], are dependent upon androgen receptors, the observed effects of testosterone in this study may involve androgen receptor activation
  • testosterone can be converted by the enzyme aromatase into estradiol, which is also known to exert anti-inflammatory [82] and neuroprotective [83] actions
  • glia are the primary sources of proinflammatory molecules in the CNS
  • poorer survival of neurons grown on glia from mice maintained on high-fat diet
  • Since testosterone can affect glial function [86] and improve neuronal growth and survival [87–89], it was unexpected that testosterone status exhibited rather modest effects on neural health indices with the only significant response being an increase in survival in the testosterone-treated, high-fat diet group
  • significantly increased expression of TNFα and IL-1β in glia cultures derived from obese mice
  • testosterone treatment significantly lowered TNFα and IL-1β expression to near basal levels even in obese mice, indicating a protective benefit of testosterone across diet conditions
  • IL-1β treatment has been shown to induce synapse loss and inhibit differentiation of neurons
  • Testosterone status and diet-induced obesity were associated with significant regulation of macrophage infiltration
  • testosterone prevented and/or restored thermal nociception in both diet groups
  • a possible mechanism by which obesity and testosterone levels may affect the health of both CNS and PNS
  •  
    Study points to obesity and low Testosterone contribution of neuroinflammation.  No effect of body weight was seen with TRT.  This animal model found similar positive effects of TRT in insulin sensitivity.  Obesity and low T increase inflammatory cytokine production: this study found an increase in TNF-alpha and IL-1beta and TRT reduced TNF-alpha and IL-1beta to near base-line.  Testosterone is neuroprotective and this study reviewed the small volume of evaded that pointed to benefit from estradiol.  Testosterone's effect on glial survival was positive but not significant.  Obesity and low T were found to be associated with increased macrophage infiltration in the PNS with increased TNF-alpha and IL-1beta.   Testosterone therapy improved peripheral neuropathy via its positive effects on nocicieption.
Nathan Goodyear

Dietary Strategy to Repair Plasma Membrane After Brain Trauma - 0 views

  • concussive brain injury is a major cause of neuropsychological disability in spite of no obvious neuronal death
  • TBI elicits oxidative damage to plasma membrane phospholipids
  • DHA is the most abundant polyunsaturated fatty acid (PUFA) in the brain, where the DHA-containing phospholipids contribute to plasma membrane biogenesis and receptor signaling
  • ...10 more annotations...
  • curcumin has potent anti-inflammatory and antioxidant activities that can function to reduce oxidative damage and cognitive deficits associated with neurological disorders
  • Curcumin provided in the diet before TBI can reduce oxidative damage and counteract TBI-related cognitive dysfunction
  • Our previous study indicated that n-3 fatty acids supplemented in the diet counteracted learning disability after TBI
  • curcumin contributes to enhance the effects of DHA on TBI by promoting phosphorylation of the BDNF receptor TrkB in the hippocampus
  • previous evidence indicates that curcumin10 and DHA5 counteract TBI-related learning disability by involving BDNF
  • Our findings indicate that curcumin counteracted the TBI-related reduction in n-3 DPA.
  • curcumin may promote the conversion of n-3 DPA to DHA
  • the combination of both nutrients has been reported to produce anti-inflammatory action
  • the enhanced actions of curcumin and DHA in reducing cholesterol levels could be interpreted as preservation of levels of phospholipids in the plasma membrane
  • curcumin and DHA may contribute to reduce inflammation associated with the action of cholesterol in the pathology of TBI.
  •  
    Curcumin and DHA shown to protect against TBI through a reduction in inflammation and maintenance of brain phospholipid membranes.  BDNF is increases also.
Nathan Goodyear

Ovulatory and metabolic effects of D-chiro-inosito... [N Engl J Med. 1999] - PubMed result - 0 views

  • Chiro-inositol increases the action of insulin in patients with the polycystic ovary syndrome, thereby improving ovulatory function and decreasing serum androgen concentrations, blood pressure, and plasma triglyceride concentrations.
  •  
    Chiro-inositol increases the action of insulin in patients with the polycystic ovary syndrome
Nathan Goodyear

Mechanisms of Leptin Action and Leptin Resistance - Annual Review of Physiology, 70(1):537 - 0 views

  • The failure of elevated leptin levels to suppress feeding and mediate weight loss in common forms of obesity defines a state of so-called leptin resistance.
  •  
    mechanisms of Leptin action and Leptin Resistance
1 - 20 of 277 Next › Last »
Showing 20 items per page