Skip to main content

Home/ Dr. Goodyear/ Group items tagged CNS

Rss Feed Group items tagged

Nathan Goodyear

Stuck at the bench: Potential natural neuroprotective compounds for concussion - 0 views

  • Long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are highly enriched in neuronal synaptosomal plasma membranes and vesicles
  • The predominant CNS polyunsaturated fatty acid is DHA
  • effective supplementation and/or increased ingestion of dietary sources rich in EPA and DHA, such as cold-water fish species and fish oil, may help improve a multitude of neuronal functions, including long-term potentiation and cognition.
  • ...45 more annotations...
  • multiple preclinical studies have suggested that DHA and/or EPA supplementation may have potential benefit through a multitude of diverse, but complementary mechanisms
  • pre-injury dietary supplementation with fish oil effectively reduces post-traumatic elevations in protein oxidation
  • The benefits of pre-traumatic DHA supplementation have not only been independently confirmed,[150] but DHA supplementation has been shown to significantly reduce the number of swollen, disconnected and injured axons when administered following traumatic brain injury.
  • DHA has provided neuroprotection in experimental models of both focal and diffuse traumatic brain injury
  • potential mechanisms of neuroprotection, in addition to DHA and EPA's well-established anti-oxidant and anti-inflammatory properties
  • Despite abundant laboratory evidence supporting its neuroprotective effects in experimental models, the role of dietary DHA and/or EPA supplementation in human neurological diseases remains uncertain
  • Several population-based, observational studies have suggested that increased dietary fish and/or omega-3 polyunsaturated fatty acid consumption may reduce risk for ischemic stroke in several populations
  • Randomized control trials have also demonstrated significant reductions in ischemic stroke recurrence,[217] relative risk for ischemic stroke,[2] and reduced incidence of both symptomatic vasospasm and mortality following subarachnoid hemorrhage
  • Clinical trials in Alzheimer's disease have also been largely ineffective
  • The clinical evidence thus far appears equivocal
  • curcumin has gained much attention from Western researchers for its potential therapeutic benefits in large part due to its potent anti-oxidant[128,194,236] and anti-inflammatory properties
  • Curcumin is highly lipophilic and crosses the blood-brain barrier enabling it to exert a multitude of different established neuroprotective effects
  • in the context of TBI, a series of preclinical studies have suggested that pre-traumatic and post-traumatic curcumin supplementation may bolster the brain's resilience to injury and serve as a valuable therapeutic option
  • Curcumin may confer significant neuroprotection because of its ability to act on multiple deleterious post-traumatic, molecular cascades
  • studies demonstrated that both pre- and post-traumatic curcumin administration resulted in a significant reduction of neuroinflammation via inhibition of the pro-inflammatory molecules interleukin 1β and nuclear factor kappa B (NFκB)
  • no human studies have been conducted with respect to the effects of curcumin administration on the treatment of TBI, subarachnoid or intracranial hemorrhage, epilepsy or stroke
  • studies have demonstrated that resveratrol treatment reduces brain edema and lesion volume, as well as improves neurobehavioral functional performance following TBI
  • green tea consumption or supplementation with its derivatives may bolster cognitive function acutely and may slow cognitive decline
  • At least one population based study, though, did demonstrate that increased green tea consumption was associated with a reduced risk for Parkinson's disease independent of total caffeine intake
  • a randomized, placebo-controlled trial demonstrated that administration of green tea extract and L-theanine, over 16 weeks of treatment, improved indices of memory and brain theta wave activity on electroencephalography, suggesting greater cognitive alertness
  • Other animal studies have also demonstrated that theanine, another important component of green tea extract, exerts a multitude of neuroprotective benefits in experimental models of ischemic stroke,[63,97] Alzheimer's disease,[109] and Parkinson's disease
  • Theanine, like EGCG, contains multiple mechanisms of neuroprotective action including protection from excitotoxic injury[97] and inhibition of inflammation
  • potent anti-oxidant EGCG which is capable of crossing the blood-nerve and blood-brain barrier,
  • Epigallocatechin-3-gallate also displays neuroprotective properties
  • More recent research has suggested that vitamin D supplementation and the prevention of vitamin D deficiency may serve valuable roles in the treatment of TBI and may represents an important and necessary neuroprotective adjuvant for post-TBI progesterone therapy
  • Progesterone is one of the few agents to demonstrate significant reductions in mortality following TBI in human patients in preliminary trials
  • in vitro and in vivo studies have suggested that vitamin D supplementation with progesterone administration may significantly enhance neuroprotection
  • Vitamin D deficiency may increase inflammatory damage and behavioral impairment following experimental injury and attenuate the protective effects of post-traumatic progesterone treatment.[37]
  • emerging evidence has suggested that daily intravenous administration of vitamin E following TBI significantly decreases mortality and improves patient outcomes
  • high dose vitamin C administration following injury stabilized or reduced peri-lesional edema and infarction in the majority of patients receiving post-injury treatment
  • it has been speculated that combined vitamin C and E therapy may potentiate CNS anti-oxidation and act synergistically with regards to neuroprotection
  • one prospective human study has found that combined intake of vitamin C and E displays significant treatment interaction and reduces the risk of stroke
  • Pycnogenol has demonstrated the ability to slow or reduce the pathological processes associated with Alzheimer's disease
  • Pcynogenol administration, in a clinical study of elderly patients, led to improved cognition and reductions in markers of lipid peroxidase
  • One other point of consideration is that in neurodegenerative disease states like Alzheimer's disease and Parkinson's disease, where there are high levels of reactive oxygen species generation, vitamin E can tend to become oxidized itself. For maximal effectiveness and to maintain its anti-oxidant capacity, vitamin E must be given in conjunction with other anti-oxidants like vitamin C or flavonoids
  • These various factors might account for the null effects of alpha-tocopherol supplementation in patients with MCI and Alzheimer's disease
  • preliminary results obtained in a pediatric population have suggested that post-traumatic oral creatine administration (0.4 g/kg) given within four hours of traumatic brain injury and then daily thereafter, may improve both acute and long-term outcomes
  • Acutely, post-traumatic creatine administration seemed to reduce duration of post-traumatic amnesia, length of time spent in the intensive care unit, and duration of intubation
  • At three and six months post-injury, subjects in the creatine treatment group demonstrated improvement on indices of self care, communication abilities, locomotion, sociability, personality or behavior and cognitive function when compared to untreated controls
  • patients in the creatine-treatment group were less likely to experience headaches, dizziness and fatigue over six months of follow-up
  • CNS creatine is derived from both its local biosynthesis from the essential amino acids methionine, glycine and arginine
  • Studies of patients with CNS creatine deficiency and/or murine models with genetic ablation of creatine kinase have consistently demonstrated significant neurological impairment in the absence of proper creatine, phosphocreatine, or creatine kinase function; thus highlighting its functional importance
  • chronic dosing may partially reverse neurological impairments in human CNS creatine deficiency syndromes
  • Several studies have suggested that creatine supplementation may also reduce oxidative DNA damage and brain glutamate levels in Huntington disease patients
  • Another study highlighted that creatine supplementation marginally improved indices of mood and reduced the need for increased dopaminergic therapy in patients with Parkinson's disease
  •  
    great review of natural therapies in the treatment of concussions
Rahul Sharma

Hydrophobic Edge CN Membrane Filters - Axiva - 0 views

  •  
    Axiva Hydrophobic Edge CN Membrane Filters are used for sterility testing of antibiotics and drugs containing bacteria-stats. The hydrophobic edge does not allow the drug to seep under the rim of filter holder.
Nathan Goodyear

Inflammatory cause of metabolic syndrome via brain stress and NF-κB - 0 views

  • Mechanistic studies further showed that such metabolic inflammation is related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect under prolonged nutritional excess
  • intracellular stress-inflammation process for metabolic syndrome has been established in the central nervous system (CNS) and particularly in the hypothalamus
  • the CNS and the comprised hypothalamus are known to govern various metabolic activities of the body including appetite control, energy expenditure, carbohydrate and lipid metabolism, and blood pressure homeostasis
  • ...56 more annotations...
  • Reactive oxygen species (ROS) refer to a class of radical or non-radical oxygen-containing molecules that have high oxidative reactivity with lipids, proteins, and nucleic acids
  • a large measure of intracellular ROS comes from the leakage of mitochondrial electron transport chain (ETC)
  • Another major source of intracellular ROS is the intentional generation of superoxides by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
  • there are other ROS-producing enzymes such as cyclooxygenases, lipoxygenases, xanthine oxidase, and cytochrome p450 enzymes, which are involved with specific metabolic processes
  • To counteract the toxic effects of molecular oxidation by ROS, cells are equipped with a battery of antioxidant enzymes such as superoxide dismutases, catalase, peroxiredoxins, sulfiredoxin, and aldehyde dehydrogenases
  • intracellular oxidative stress has been indicated to contribute to metabolic syndrome and related diseases, including T2D [72; 73], CVDs [74-76], neurodegenerative diseases [69; 77-80], and cancers
  • intracellular oxidative stress is highly associated with the development of neurodegenerative diseases [69] and brain aging
  • dietary obesity was found to induce NADPH oxidase-associated oxidative stress in rat brain
  • mitochondrial dysfunction in hypothalamic proopiomelanocortin (POMC) neurons causes central glucose sensing impairment
  • Endoplasmic reticulum (ER) is the cellular organelle responsible for protein synthesis, maturation, and trafficking to secretory pathways
  • unfolded protein response (UPR) machinery
  • ER stress has been associated to obesity, insulin resistance, T2D, CVDs, cancers, and neurodegenerative diseases
  • brain ER stress underlies neurodegenerative diseases
  • under environmental stress such as nutrient deprivation or hypoxia, autophagy is strongly induced to breakdown macromolecules into reusable amino acids and fatty acids for survival
  • intact autophagy function is required for the hypothalamus to properly control metabolic and energy homeostasis, while hypothalamic autophagy defect leads to the development of metabolic syndrome such as obesity and insulin resistance
  • prolonged oxidative stress or ER stress has been shown to impair autophagy function in disease milieu of cancer or aging
  • TLRs are an important class of membrane-bound pattern recognition receptors in classical innate immune defense
  • Most hypothalamic cell types including neurons and glia cells express TLRs
  • overnutrition constitutes an environmental stimulus that can activate TLR pathways to mediate the development of metabolic syndrome related disorders such as obesity, insulin resistance, T2D, and atherosclerotic CVDs
  • Isoforms TLR1, 2, 4, and 6 may be particularly pertinent to pathogenic signaling induced by lipid overnutrition
  • hypothalamic TLR4 and downstream inflammatory signaling are activated in response to central lipid excess via direct intra-brain lipid administration or HFD-feeding
  • overnutrition-induced metabolic derangements such as central leptin resistance, systemic insulin resistance, and weight gain
  • these evidences based on brain TLR signaling further support the notion that CNS is the primary site for overnutrition to cause the development of metabolic syndrome.
  • circulating cytokines can limitedly travel to the hypothalamus through the leaky blood-brain barrier around the mediobasal hypothalamus to activate hypothalamic cytokine receptors
  • significant evidences have been recently documented demonstrating the role of cytokine receptor pathways in the development of metabolic syndrome components
  • entral administration of TNF-α at low doses faithfully replicated the effects of central metabolic inflammation in enhancing eating, decreasing energy expenditure [158;159], and causing obesity-related hypertension
  • Resistin, an adipocyte-derived proinflammatory cytokine, has been found to promote hepatic insulin resistance through its central actions
  • both TLR pathways and cytokine receptor pathways are involved in central inflammatory mechanism of metabolic syndrome and related diseases.
  • In quiescent state, NF-κB resides in the cytoplasm in an inactive form due to inhibitory binding by IκBα protein
  • IKKβ activation via receptor-mediated pathway, leading to IκBα phosphorylation and degradation and subsequent release of NF-κB activity
  • Research in the past decade has found that activation of IKKβ/NF-κB proinflammatory pathway in metabolic tissues is a prominent feature of various metabolic disorders related to overnutrition
  • it happens in metabolic tissues, it is mainly associated with overnutrition-induced metabolic derangements, and most importantly, it is relatively low-grade and chronic
  • this paradigm of IKKβ/NF-κB-mediated metabolic inflammation has been identified in the CNS – particularly the comprised hypothalamus, which primarily accounts for to the development of overnutrition-induced metabolic syndrome and related disorders such as obesity, insulin resistance, T2D, and obesity-related hypertension
  • evidences have pointed to intracellular oxidative stress and mitochondrial dysfunction as upstream events that mediate hypothalamic NF-κB activation in a receptor-independent manner under overnutrition
  • In the context of metabolic syndrome, oxidative stress-related NF-κB activation in metabolic tissues or vascular systems has been implicated in a broad range of metabolic syndrome-related diseases, such as diabetes, atherosclerosis, cardiac infarct, stroke, cancer, and aging
  • intracellular oxidative stress seems to be a likely pathogenic link that bridges overnutrition with NF-κB activation leading to central metabolic dysregulation
  • overnutrition is an environmental inducer for intracellular oxidative stress regardless of tissues involved
  • excessive nutrients, when transported into cells, directly increase mitochondrial oxidative workload, which causes increased production of ROS by mitochondrial ETC
  • oxidative stress has been shown to activate NF-κB pathway in neurons or glial cells in several types of metabolic syndrome-related neural diseases, such as stroke [185], neurodegenerative diseases [186-188], and brain aging
  • central nutrient excess (e.g., glucose or lipids) has been shown to activate NF-κB in the hypothalamus [34-37] to account for overnutrition-induced central metabolic dysregulations
  • overnutrition can present the cell with a metabolic overload that exceeds the physiological adaptive range of UPR, resulting in the development of ER stress and systemic metabolic disorders
  • chronic ER stress in peripheral metabolic tissues such as adipocytes, liver, muscle, and pancreatic cells is a salient feature of overnutrition-related diseases
  • recent literature supports a model that brain ER stress and NF-κB activation reciprocally promote each other in the development of central metabolic dysregulations
  • when intracellular stresses remain unresolved, prolonged autophagy upregulation progresses into autophagy defect
  • autophagy defect can induce NF-κB-mediated inflammation in association with the development of cancer or inflammatory diseases (e.g., Crohn's disease)
  • The connection between autophagy defect and proinflammatory activation of NF-κB pathway can also be inferred in metabolic syndrome, since both autophagy defect [126-133;200] and NF-κB activation [20-33] are implicated in the development of overnutrition-related metabolic diseases
  • Both TLR pathway and cytokine receptor pathways are closely related to IKKβ/NF-κB signaling in the central pathogenesis of metabolic syndrome
  • Overnutrition, especially in the form of HFD feeding, was shown to activate TLR4 signaling and downstream IKKβ/NF-κB pathway
  • TLR4 activation leads to MyD88-dependent NF-κB activation in early phase and MyD88-indepdnent MAPK/JNK pathway in late phase
  • these studies point to NF-κB as an immediate signaling effector for TLR4 activation in central inflammatory response
  • TLR4 activation has been shown to induce intracellular ER stress to indirectly cause metabolic inflammation in the hypothalamus
  • central TLR4-NF-κB pathway may represent one of the early receptor-mediated events in overnutrition-induced central inflammation.
  • cytokines and their receptors are both upstream activating components and downstream transcriptional targets of NF-κB activation
  • central administration of TNF-α at low dose can mimic the effect of obesity-related inflammatory milieu to activate IKKβ/NF-κB proinflammatory pathways, furthering the development of overeating, energy expenditure decrease, and weight gain
  • the physiological effects of IKKβ/NF-κB activation seem to be cell type-dependent, i.e., IKKβ/NF-κB activation in hypothalamic agouti-related protein (AGRP) neurons primarily leads to the development of energy imbalance and obesity [34]; while in hypothalamic POMC neurons, it primarily results in the development of hypertension and glucose intolerance
  • the hypothalamus, is the central regulator of energy and body weight balance [
  •  
    Great article chronicles the biochemistry of "over nutrition" and inflammation through NF-kappaB activation and its impact on the brain.
Rahul Sharma

Cellulose Nitrate - CN Gridded Membrane Filters - 0 views

  •  
    Buy best quality CN Gridded Membrane Filters at Axiva. This membrane filters are ideal for analytical method requiring qualitative, enrichment method microorganism counts for the detection of microbial contamination in food beverages, pharmaceuticals and cosmetics.
Nathan Goodyear

ScienceDirect.com - Frontiers in Neuroendocrinology - Progesterone receptors: Form and ... - 0 views

  •  
    progesterone through progesterone receptors, shown to have protective, anti-inflammatory effects in the CNS.
Nathan Goodyear

Lead exposure, polymorphisms in genes related to oxidative stress and risk of adult bra... - 0 views

  •  
    another study that showed that lead exposure in susceptible individuals increased risk of CNS tumors, including menngiomas, and gliomas.  The apparent mechanism in this study was proposed through oxidative damage.  
Nathan Goodyear

Oxidative stress and neurodegeneration: where are we now? - Halliwell - 2006 - Journal ... - 0 views

  •  
    Fantastic review of oxidative damage and the CNS.  This is a 2006 review of our understanding of how neurodegeneration occurs through oxidative stress and of course poor detoxification.
Nathan Goodyear

Are there negative CNS impacts of aluminum adjuvants used in vaccines and immunotherapy... - 0 views

  •  
    concerns about CNS effects of the adjuvant Aluminum
Nathan Goodyear

Progesterone exerts neuroprotective effects after brain injury 10.1016/j.brainresrev.20... - 0 views

  •  
    progesterone shown to have neuroprotective and  healing properties in the CNS.  This has implications in Stroke, and possibly even excitotoxic disease such as Parkinson's, Alzhemier's...
Nathan Goodyear

Central Nervous system control of food intake - 0 views

  •  
    For you biochemistry junkies. A great review of how the Gut and CNS communicate to regulate food intake
Nathan Goodyear

Vitamin D in the healthy and inflamed central nervous system: access and function - 0 views

  •  
    Vitamin D3 helpful in treatment of an inflamed CNS, such as in TBI, MS...Vitamin D protects against the development of MS and the progression of MS.
Nathan Goodyear

Central nervous system disease in patients with macrop... [Brain. 2001] - PubMed - NCBI - 0 views

  •  
    Macrophagic myofasciitis and CNS disease. This study describes disease that mimics MS as a result of aluminum.
Nathan Goodyear

Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems - 0 views

  •  
    Good review of the toxic effects of Hg on the CNS and cardiovascular system.
Nathan Goodyear

Diet-induced obesity and low testosterone increase neuroinflammation and impair neural ... - 0 views

  • both obesity and low testosterone are also risk factors for neural dysfunction, including cognitive impairment [58–61] and development of AD
  • Levels of obesity and testosterone are often inversely correlated
  • diet-induced obesity causes significant metabolic disturbances and impairs central and peripheral nervous systems.
  • ...23 more annotations...
  • both obesity and low testosterone are linked with promotion of inflammatory pathways [70–72] and exert harmful actions on the central [73–75] and peripheral [29,76] nervous systems
  • In general, obesity-related changes were worsened by low testosterone and improved by testosterone treatment; however, this relationship was not statistically significant in several instances. Further, our data suggest that a common pathway that may contribute to obesity and testosterone effects is regulation of inflammation
  • fasting blood glucose levels were independently and additively increased by GDX-induced testosterone depletion and high-fat diet
  • testosterone treatment significantly reduced fasting glucose under both the normal and high-fat diets, demonstrating potential therapeutic efficacy of testosterone supplementation
  • fasting insulin, insulin resistance (HOMA index), and glucose tolerance, low testosterone tended to exacerbate and or testosterone treatment improved outcomes.
  • testosterone status did not significantly affect body weight
  • testosterone’s effects likely do not indicate an indirect result on adiposity but rather regulatory action(s) on other aspects of metabolic homeostasis
  • Prior work in rodents has shown diet-induced obesity induces insulin resistance in rat brain [63] and that testosterone replacement improves insulin sensitivity in obese rats [64]. Our findings are consistent with the human literature, which indicates that (i) testosterone levels are inversely correlated to insulin resistance and T2D in healthy [30,65] as well as obese men [66], and (ii) androgen therapy can improve some metabolic measures in overweight men with low testosterone
  • it has been shown that TNFα has inhibitory effects on neuron survival, differentiation, and neurite outgrowth
  • Our data demonstrate that low testosterone and obesity independently increased cerebrocortical mRNA levels of both TNFα and IL-1β
  • Testosterone status also affected metabolic and neural measures
  • many beneficial effects of testosterone, including inhibition of proinflammatory cytokine expression
  • neuroprotection [80,81], are dependent upon androgen receptors, the observed effects of testosterone in this study may involve androgen receptor activation
  • testosterone can be converted by the enzyme aromatase into estradiol, which is also known to exert anti-inflammatory [82] and neuroprotective [83] actions
  • glia are the primary sources of proinflammatory molecules in the CNS
  • poorer survival of neurons grown on glia from mice maintained on high-fat diet
  • Since testosterone can affect glial function [86] and improve neuronal growth and survival [87–89], it was unexpected that testosterone status exhibited rather modest effects on neural health indices with the only significant response being an increase in survival in the testosterone-treated, high-fat diet group
  • significantly increased expression of TNFα and IL-1β in glia cultures derived from obese mice
  • testosterone treatment significantly lowered TNFα and IL-1β expression to near basal levels even in obese mice, indicating a protective benefit of testosterone across diet conditions
  • IL-1β treatment has been shown to induce synapse loss and inhibit differentiation of neurons
  • Testosterone status and diet-induced obesity were associated with significant regulation of macrophage infiltration
  • testosterone prevented and/or restored thermal nociception in both diet groups
  • a possible mechanism by which obesity and testosterone levels may affect the health of both CNS and PNS
  •  
    Study points to obesity and low Testosterone contribution of neuroinflammation.  No effect of body weight was seen with TRT.  This animal model found similar positive effects of TRT in insulin sensitivity.  Obesity and low T increase inflammatory cytokine production: this study found an increase in TNF-alpha and IL-1beta and TRT reduced TNF-alpha and IL-1beta to near base-line.  Testosterone is neuroprotective and this study reviewed the small volume of evaded that pointed to benefit from estradiol.  Testosterone's effect on glial survival was positive but not significant.  Obesity and low T were found to be associated with increased macrophage infiltration in the PNS with increased TNF-alpha and IL-1beta.   Testosterone therapy improved peripheral neuropathy via its positive effects on nocicieption.
Nathan Goodyear

Macrophagic myofasciitis: characterization and pathophysiology - 0 views

  •  
    Aluminum in vaccines shown to stimulate a massive autoimmune reaction.  These reactions can be localized or distant from site of injection.  Accumulation occurs in the brain and CNS.  The name give is macrophagic myofasciitis.
Nathan Goodyear

Access : Central nervous system control of food intake : Nature - 0 views

  •  
    great review on CNS regulation of food intake
Nathan Goodyear

Access : The neurobiology of appetite: hunger as addiction : International Journal of O... - 0 views

  •  
    complex interplay between behavior, genetics, and CNS play role in over-eating.  Add in environment as well.
Nathan Goodyear

Inflammatory cause of metabolic syndrome via brain stress and NF-?B - AGING Journal - 0 views

  •  
    Inflammation plays key role in development of Metabolic syndrome at the level of the CNS.
Nathan Goodyear

Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treat... - 0 views

  •  
    Huperzine reduces CNS iron.  This is in addition to the other neuroprotective effects of Huperzine A
1 - 20 of 56 Next › Last »
Showing 20 items per page