Skip to main content

Home/ Dr. Goodyear/ Group items tagged IL-1

Rss Feed Group items tagged

Nathan Goodyear

http://www.diabetologia-journal.org/files/Narendran.pdf - 0 views

  •  
    Exercise is not just for calories out.  Exercise increases growth hormone, IGF-1, glucagon-like peptide 1, IL-6, and IL-1ra.  The effect is to GH increases beta islet cell mass and protects beta cell lines against IL-1beta, Interferon-gamma and TNF-alhpa induced apoptosis.  IL-6 increased production increases GLP-1 and IL-1ra which counters IL-1beta.  Interleukin-1beta induces islet cell apoptosis and thus IL-1ra counters this pro-inflammatory signal.
Nathan Goodyear

The Complex Role of Estrogens in Inflammation - 0 views

  • These studies suggest inflammation-dependent up-regulation of ERβ relative to ERα.
  • up-regulation of ERβ relative to ERα under hypoxic conditions, which might lead to a preponderance of signaling through ERβ pathways
  • it seems that E2 at periovulatory to pregnancy levels inhibited proinflammatory cytokines from PBMCs
  • ...26 more annotations...
  • it is clear that E2 can stimulate antibody production by B cells, probably by inhibiting T cell suppression of B cells
  • In cycling women, the largest quantities of Ig were detected before ovulation
  • In contrast, E2 at high concentrations leads to a suppression of B-lymphocyte lineage precursors
  • E2 at periovulatory to pregnancy serum levels is able to stimulate antibody secretion under healthy conditions but also in autoimmune diseases, whereas similar serum levels of E2 lead to a suppression of bone marrow B cell lineage precursors
  • In chronic inflammatory disorders, where B cells play a decisive role, E2 would promote the disease when autoaggressive B cells are already present, whereas chronically elevated E2 would inhibit initiation of an autoimmune disease when no such B cells are available. This might be a good reason why particularly B cell-dependent diseases such as SLE, mixed connective tissue disease (Sharp syndrome), IgA nephropathy, dermatitis herpetiformis, gluten sensitive enteropathy, myasthenia gravis, and thyroiditis appear in women in the reproductive years, predominantly, in the third or fourth decades of life
  • Th17 cells are thought to be the main responsible cells for chronic inflammatory tissue destruction in autoimmune diseases
  • IFN-γ, IL-12, and TNF were allocated to Th1 reactions
  • IL-4, IL-5, and IL-10 to Th2 responses
  • antiinflammatory T regulatory cells producing TGF-β and proinflammatory T helper type 17 cells (Th17) producing IL-17
  • no direct effects of estrogens on Th17 cells or IL-17 secretion have been described until now.
  • So-called Th17 cells producing IL-17 are the main T cells responsible for chronic inflammation.
  • Because IFN-γ has been allocated a Th17-inhibiting role (Fig. 1⇑), its increase by E2 at pregnancy doses and the E2-mediated inhibition of TNF must be viewed as a favorable effect in chronic inflammation
  • in humans and mice, E2 at periovulatory to pregnancy levels stimulates IL-4, IL-10, and IFN-γ but inhibits TNF from CD4+ T cells
  • In humans and mice, E3 and E2, respectively, at pregnancy levels inhibit T cell-dependent delayed type hypersensitivity
  • increased IL-4, IL-10, and IFN-γ in the presence of low TNF support an antiaggressive immune response
  • secretion of IL-1β is increased at periovulatory/proestrus to early pregnancy levels, whereas IL-1 secretion is inhibited at high pregnancy levels
  • The dichotomous effect of E2 on IL-1β and TNF at high and low concentrations is most probably due to inhibition of NF-κB at high concentrations
  • experiments with mouse and rat macroglial and microglial cells demonstrate that E2 at proestrus to pregnancy levels exerts neuroprotective effects by increasing TGF-β and by inhibiting iNOS and NO release, and reducing expression of proinflammatory cytokines and prostaglandin E2 production.
  • E2 at periovulatory to pregnancy levels inhibits NF-κB activation, which must be viewed as an antiinflammatory signal
  • It was shown that E2 concentrations equal to or above 10−10 m are necessary to inhibit NF-κB activation
  • important proinflammatory cytokines are typically inhibited at periovulatory (proestrus) to pregnancy levels of E2, which is evident for IL-6, IL-8, and TNF
  • low E2 concentrations were demonstrated to have no or even stimulatory effects
  • This renders a woman in the postmenopausal phase to a more proinflammatory situation
  • most in vitro studies demonstrated a stimulatory effect of E2 on secretion of IL-4, IL-10, and TGF-β typically at periovulatory to pregnancy levels
  • E2 at periovulatory to pregnancy levels has an ameliorating effect on chronic inflammatory diseases as long as B cell-dependent immunity or an overshooting fibrotic tissue repair process do not play a crucial pathogenic role. However, when the B cell plays an important role, E2 might even stimulate the disease process as substantiated by flare-ups in SLE during pregnancy
    • Nathan Goodyear
       
      SLE, mixed connective tissue disease (Sharp syndrome), IgA nephropathy, dermatitis herpetiformis, gluten sensitive enteropathy, myasthenia gravis, and thyroiditis
  • Short-term administration of E2 at pregnancy levels was shown to induce an inflammatory response specific to the lateral prostate of the castrated male rat
  •  
    great review of the complex interaction between Estrogens and inflammation.  Reference here is in females.
Nathan Goodyear

Role of IL-2 in cancer immunotherapy: OncoImmunology: Vol 5, No 6 - 1 views

  • IL-2 is one of the key cytokines with pleiotropic effects on the immune system
  • IL-2 as “T-cell growth factor”
  • approved for the treatment of metastatic renal cell carcinoma (1992) and later for metastatic melanoma (1998) by FDA
  • ...13 more annotations...
  • It is produced predominately by antigen-simulated CD4+ T cells, while it can also be produced by CD8+ cells, natural killer (NK) cells, and activated dendritic cells (DC)
  • IL-2 is an important factor for the maintenance of CD4+ regulatory T cells
  • plays a critical role in the differentiation of CD4+ T cells into a variety of subsets
  • It can promote CD8+ T-cell and NK cell cytotoxicity activity, and modulate T-cell differentiation programs in response to antigen, promoting naive CD4+ T-cell differentiation into T helper-1 (Th1) and T helper-2 (Th2) cells while inhibiting T helper-17 (Th17) differentiation
  • Of note, Tregs, which act to dampen the immune response, constitutively express high levels of α chain
  • IL-2Rα is unique to IL-2 and is expressed by a number of immune cells including T regulatory cells (Treg), activated CD4+ and CD8+T cells, B cells, mature DCs, endothelial cells
  • some investigators evaluated the efficacy of regimens containing low-dose IL-2
  • IL-2 can promote the activation and cell growth of T and NK cells
  • Unfortunately, not all of patients would benefit from targeted therapy and nearly all patients who initially respond to targeted inhibitors inevitably develop acquired resistance to the treatment
  • IL-2 also stimulates T-regulatory cells that constitutively express CTLA-4 and can suppress immune reactions. Hence, IL-2 might enhance antitumor reactivity in the presence of CTLA-4 blockade
  • both HD and low-dose IL-2 therapy preferentially induce the expansion of CD4+CD25+Foxp3+ Treg and the Treg level remains elevated after each cycle of HD IL-2 therapy
  • Due to rapid elimination and metabolism via the kidney, IL-2 has a short serum half-life of several minutes
  • HD IL-2-induced severe toxicities including vascular leak syndrome (VLS), pulmonary edema, hypotension, and heart toxicities
  •  
    Great historical and functional role of IL-2 in the fight against cancer.
Nathan Goodyear

How is the Immune System Suppressed by Cancer - 1 views

  • nitric oxide (NO) released by tumor cells
  • Excellent work by Prof de Groot of Essen, indicated by adding exogenous xanthine oxidase ( XO) in hepatoma cells, hydrogen peroxide was produced to destroy the hepatoma cells
  • NO from eNOS in cancer cells can travel through membranes and over long distances in the body
  • ...43 more annotations...
  • NO also is co linked to VEGF which in turn increases the antiapoptotic gene bcl-2
  • The other important influence of NO is in its inhibition of the proapoptoic caspases cascade. This in turn protects the cells from intracellular preprogrammed death.
  • nitric oxide in immune suppression in relation to oxygen radicals is its inhibitory effect on the binding of leukocytes (PMN) at the endothelial surface
  • Inhibition of inducible Nitric Oxide Synthase (iNOS)
  • NO from the tumor cells actually suppresses the iNOS, and in addition it reduces oxygen radicals to stop the formation of peroxynitrite in these cells. But NO is not the only inhibitor of iNOS in cancer.
  • Spermine and spermidine, from the rate limiting enzyme for DNA synthases, ODC, also inhibit iNOS
  • tolerance in the immune system that decreases the immune response to antigens on the tumors
  • Freund’s adjuvant
  • increase in kinases in these cells which phosphorylate serine, and tyrosine
  • responsible for activation of many growth factors and enzymes
  • phosphorylated amino acids suppress iNOS activity
  • Hexokinase II
  • Prostaglandin E2, released from tumor cells is also an inhibitor of iNOS, as well as suppressing the immune system
  • Th-1 subset of T-cells. These cells are responsible for anti-viral and anti-cancer activities, via their cytokine production including Interleukin-2, (IL-2), and Interleukin-12 which stimulates T-killer cell replication and further activation and release of tumor fighting cytokines.
    • Nathan Goodyear
       
      Th1 cells stimulate NK and other tumor fighting macrophages via IL-2 and IL-12; In contrast, Th2, which is stimulated in allergies and parasitic infections, produce IL-4 and IL-10.  IL-4 and IL-10 inhibit TH-1 activation and the histamine released from mast cell degranulation upregulates T suppressor cells to further immune suppression.
  • Th-2 subset of lymphocytes, on the other hand are activated in allergies and parasitic infections to release Interleukin-4 and Interleukin-10
  • These have respectively inhibitory effects on iNOS and lymphocyte Th-1 activation
  • Mast cells contain histamine which when released increases the T suppressor cells, to lower the immune system and also acts directly on many tumor Histamine receptors to stimulate tumor growth
  • Tumor cells release IL-10, and this is thought to be one of the important areas of Th-1 suppression in cancer patients
  • IL-10 is also increased in cancer causing viral diseases such as HIV, HBV, HCV, and EBV
  • IL-10 is also a central regulator of cyclooxygenase-2 expression and prostaglandin production in tumor cells stimulating their angiogenesis and NO production
  • nitric oxide in tumor cells even prevents the activation of caspases responsible for apoptosis
    • Nathan Goodyear
       
      NO produced by cancer cells inhibits proapoptotic pathways such as the caspases.
  • early stages of carcinogenesis, which we call tumor promotion, one needs a strong immune system, and fewer oxygen radicals to prevent mutations but still enough to destroy the tumor cells should they develop
  • later stages of cancer development, the oxygen radicals are decreased around the tumors and in the tumor cells themselves, and the entire cancer fighting Th-1 cell replication and movement are suppressed. The results are a decrease in direct toxicity and apoptosis, which is prevented by NO, a suppression of the macrophage and leukocyte toxicity and finally, a suppression of the T-cell induced tumor toxicity
  • cGMP is increased by NO
  • NO in cancer is its ability to increase platelet-tumor cell aggregates, which enhances metastases
  • the greater the malignancies and the greater the metastatic potential of these tumors
  • The greater the NO production in many types of tumors,
  • gynecological
  • elevated lactic acid which neutralizes the toxicity and activity of Lymphocyte immune response and mobility
  • The lactic acid is also feeding fungi around tumors and that leads to elevated histamine which increases T-suppressor cells.  Histamine alone stimulates many tumor cells.
    • Nathan Goodyear
       
      The warburg effect in cancer cells results in the increase in local lactic acid production which suppresses lymphocyte activity and toxicity as well as stimulates histamine production with further stimulates tumor cell growth.
  • T-regulatory cells (formerly,T suppressor cells) down regulate the activity of Natural killer cells
  • last but not least, the Lactic acid from tumor cells and acidic diets shifts the lymphocyte activity to reduce its efficacy against cancer cells and pathogens in addition to altering the bacteria of the intestinal tract.
  • intestinal tract bacteria in cancer cells release sterols that suppress the immune system and down regulate anticancer activity from lymphocytes.
  • In addition to the lactic acid, adenosine is also released from tumors. Through IL-10, adenosine and other molecules secreted by regulatory T cells, the CD8+ cells can be inactivated to an anergic state
  • Adenosine up regulates the PD1 receptor in T-1 Lymphocytes and inhibits their activity
  • Adenosine is a purine nucleoside found within the interstitial fluid of solid tumors at concentrations that are able to inhibit cell-mediated immune responses to tumor cells
  • Adenosine appears to up-regulate the PD1 receptor in T-1 Lymphocytes and inhibits the immune system further
  • Mast cells with their release of histamine lower the immune system and also stimulate tumor growth and activate the metalloproteinases involved in angiogenesis and metastases
  • COX 2 inhibitors or all trans-retinoic acid
  • Cimetidine, an antihistamine has been actually shown to increase in apoptosis in MDSC via a separate mechanism than the antihistamine effect
    • Nathan Goodyear
       
      cimetidine is an H2 blocker
  • interleukin-8 (IL-8), a chemokine related to invasion and angiogenesis
  • In vitro analyses revealed a striking induction of IL-8 expression in CAFs and LFs by tumor necrosis factor-alpha (TNF-alpha)
  • these data raise the possibility that the majority of CAFs in CLM originate from resident LFs. TNF-alpha-induced up-regulation of IL-8 via nuclear factor-kappaB in CAFs is an inflammatory pathway, potentially permissive for cancer invasion that may represent a novel therapeutic target
  •  
    Great review of the immunosuppression in cancer driven by the likes of NO.
Nathan Goodyear

Cytokine profiles in localized scleroderma and relationship to clinical features - 0 views

  • Evaluation of the literature reveals a Th2 predominant cytokine profile in the biological specimens (sera, PBMCs, and tissue) of those with SSc
  • the literature available from studies in LS show that Th1, Th2, and Th17 cytokines may contribute equally to the pathogenesis of the disease
  • Classically, Th1 cells have been known to secrete IL-2, IFN-γ, and TNF-α, and are stimulated by IL-2 and IL-12
  • ...3 more annotations...
  • Th2 cells have been shown to be activated by IL-4 and produce IL-4, IL-5, IL-10 and IL-13
  • Th17 cells, a more recently identified Th cell subset that has altered the classic Th1/Th2 paradigm, produce IL-17 A/F, IL-21, and IL-22. IL-1, IL-6, IL-23, and TGF-β are now known to play important roles in the differentiation and propagation of the Th17 cell lineage
  • there is an overall notion that pro-inflammatory Th1 and Th17 associated cytokines are elevated during the early stages of scleroderma, whereas Th2 cytokines mainly correlate with disease damage and fibrosis extent
  •  
    morphea
Nathan Goodyear

IL-2: The First Effective Immunotherapy for Human Cancer | The Journal of Immunology - 0 views

  • IL-2 is a 15.5-kDa cytokine secreted predominately by Ag-simulated CD4+ T cells, but it can also be produced by CD8+ cells, NK cells, and activated dendritic cells
  • The side effects were transient and returned to baseline following treatment
  • A generalized capillary leak syndrome was induced by IL-2 in vivo that resulted in interstitial pulmonary infiltrates and substantial weight gain in patients
  • ...4 more annotations...
  • IL-2 is the predominant factor responsible for the maintenance of CD4+ regulatory T cells
  • Tumors do not express IL-2 receptors and thus the antitumor activity was the result of IL-2 stimulation of immune cell
  • Patients with metastatic melanoma or metastatic renal cell cancer were uniquely responsive to high-dose IL-2 administration, and except for patients with advanced non-Hodgkin’s lymphomas (35) only rare responses were seen in patients with other tumor types
  • The underlying toxicity of IL-2 results from a capillary leak that leads to fluid extravasation into visceral organs that can compromise their function
  •  
    Great review of the history of IL-2 in the treatment of cancer.  IL-2 stimulates the immune system to attack cancer.  Don't reinvent the wheel; use what is already present and available.
Nathan Goodyear

Testosterone: a vascular hormone in health and disease - 0 views

  • Testosterone has beneficial effects on several cardiovascular risk factors, which include cholesterol, endothelial dysfunction and inflammation
  • In clinical studies, acute and chronic testosterone administration increases coronary artery diameter and flow, improves cardiac ischaemia and symptoms in men with chronic stable angina and reduces peripheral vascular resistance in chronic heart failure.
  • testosterone is an L-calcium channel blocker and induces potassium channel activation in vascular smooth muscle cells
  • ...54 more annotations...
  • Animal studies have consistently demonstrated that testosterone is atheroprotective, whereas testosterone deficiency promotes the early stages of atherogenesis
  • there is no compelling evidence that testosterone replacement to levels within the normal healthy range contributes adversely to the pathogenesis of CVD (Carson & Rosano 2011) or prostate cancer (Morgentaler & Schulman 2009)
  • bidirectional effect between decreased testosterone concentrations and disease pathology exists as concomitant cardiovascular risk factors (including inflammation, obesity and insulin resistance) are known to reduce testosterone levels and that testosterone confers beneficial effects on these cardiovascular risk factors
  • Achieving a normal physiological testosterone concentration through the administration of testosterone replacement therapy (TRT) has been shown to improve risk factors for atherosclerosis including reducing central adiposity and insulin resistance and improving lipid profiles (in particular, lowering cholesterol), clotting and inflammatory profiles and vascular function
  • It is well known that impaired erectile function and CVD are closely related in that ED can be the first clinical manifestation of atherosclerosis often preceding a cardiovascular event by 3–5 years
  • no decrease in the response (i.e. no tachyphylaxis) of testosterone and that patient benefit persists in the long term.
  • free testosterone levels within the physiological range, has been shown to result in a marked increase in both flow- and nitroglycerin-mediated brachial artery vasodilation in men with CAD
  • Clinical studies, however, have revealed either small reductions of 2–3 mm in diastolic pressure or no significant effects when testosterone is replaced within normal physiological limits in humans
  • Endothelium-independent mechanisms of testosterone are considered to occur primarily via the inhibition of voltage-operated Ca2+ channels (VOCCs) and/or activation of K+ channels (KCs) on smooth muscle cells (SMCs)
  • Testosterone shares the same molecular binding site as nifedipine
  • Testosterone increases the expression of endothelial nitric oxide synthase (eNOS) and enhances nitric oxide (NO) production
  • Testosterone also inhibited the Ca2+ influx response to PGF2α
  • one of the major actions of testosterone is on NO and its signalling pathways
  • In addition to direct effects on NOS expression, testosterone may also affect phosphodiesterase type 5 (PDE5 (PDE5A)) gene expression, an enzyme controlling the degradation of cGMP, which acts as a vasodilatory second messenger
  • the significance of the action of testosterone on VSMC apoptosis and proliferation in atherosclerosis is difficult to delineate and may be dependent upon the stage of plaque development
  • Several human studies have shown that carotid IMT (CIMT) and aortic calcification negatively correlate with serum testosterone
  • t long-term testosterone treatment reduced CIMT in men with low testosterone levels and angina
  • neither intracellular nor membrane-associated ARs are required for the rapid vasodilator effect
  • acute responses appear to be AR independent, long-term AR-mediated effects on the vasculature have also been described, primarily in the context of vascular tone regulation via the modulation of gene transcription
  • Testosterone and DHT increased the expression of eNOS in HUVECs
  • oestrogens have been shown to activate eNOS and stimulate NO production in an ERα-dependent manner
  • Several studies, however, have demonstrated that the vasodilatory actions of testosterone are not reduced by aromatase inhibition
  • non-aromatisable DHT elicited similar vasodilation to testosterone treatment in arterial smooth muscle
  • increased endothelial NOS (eNOS) expression and phosphorylation were observed in testosterone- and DHT-treated human umbilical vein endothelial cells
  • Androgen deprivation leads to a reduction in neuronal NOS expression associated with a decrease of intracavernosal pressure in penile arteries during erection, an effect that is promptly reversed by androgen replacement therapy
  • Observational evidence suggests that several pro-inflammatory cytokines (including interleukin 1β (IL1β), IL6, tumour necrosis factor α (TNFα), and highly sensitive CRP) and serum testosterone levels are inversely associated in patients with CAD, T2DM and/or hypogonadism
  • patients with the highest IL1β concentrations had lower endogenous testosterone levels
  • TRT has been reported to significantly reduce TNFα and elevate the circulating anti-inflammatory IL10 in hypogonadal men with CVD
  • testosterone treatment to normalise levels in hypogonadal men with the MetS resulted in a significant reduction in the circulating CRP, IL1β and TNFα, with a trend towards lower IL6 compared with placebo
  • parenteral testosterone undecanoate, CRP decreased significantly in hypogonadal elderly men
  • Higher levels of serum adiponectin have been shown to lower cardiovascular risk
  • Research suggests that the expression of VCAM-1, as induced by pro-inflammatory cytokines such as TNFα or interferon γ (IFNγ (IFNG)) in endothelial cells, can be attenuated by treatment with testosterone
  • Testosterone also inhibits the production of pro-inflammatory cytokines such as IL6, IL1β and TNFα in a range of cell types including human endothelial cells
  • decreased inflammatory response to TNFα and lipopolysaccharide (LPS) in human endothelial cells when treated with DHT
  • The key to unravelling the link between testosterone and its role in atherosclerosis may lay in the understanding of testosterone signalling and the cross-talk between receptors and intracellular events that result in pro- and/or anti-inflammatory actions in athero-sensitive cells.
  • testosterone functions through the AR to modulate adhesion molecule expression
  • pre-treatment with DHT reduced the cytokine-stimulated inflammatory response
  • DHT inhibited NFκB activation
  • DHT could inhibit an LPS-induced upregulation of MCP1
  • Both NFκB and AR act at the transcriptional level and have been experimentally found to be antagonistic to each other
  • As the AR and NFκB are mutual antagonists, their interaction and influence on functions can be bidirectional, with inflammatory agents that activate NFκB interfering with normal androgen signalling as well as the AR interrupting NFκB inflammatory transcription
  • prolonged exposure of vascular cells to the inflammatory activation of NFκB associated with atherosclerosis may reduce or alter any potentially protective effects of testosterone
  • DHT and IFNγ also modulate each other's signalling through interaction at the transcriptional level, suggesting that androgens down-regulate IFN-induced genes
  • (Simoncini et al. 2000a,b). Norata et al. (2010) suggest that part of the testosterone-mediated atheroprotective effects could depend on ER activation mediated by the testosterone/DHT 3β-derivative, 3β-Adiol
  • TNFα-induced induction of ICAM-1, VCAM-1 and E-selectin as well as MCP1 and IL6 was significantly reduced by a pre-incubation with 3β-Adiol in HUVECs
  • 3β-Adiol also reduced LPS-induced gene expression of IL6, TNFα, cyclooxygenase 2 (COX2 (PTGS2)), CD40, CX3CR1, plasminogen activator inhibitor-1, MMP9, resistin, pentraxin-3 and MCP1 in the monocytic cell line U937 (Norata et al. 2010)
  • This study suggests that testosterone metabolites, other than those generated through aromatisation, could exert anti-inflammatory effects that are mediated by ER activation.
  • The authors suggest that DHT differentially effects COX2 levels under physiological and pathophysiological conditions in human coronary artery smooth muscle cells and via AR-dependent and -independent mechanisms influenced by the physiological state of the cell
  • There are, however, a number of systematic meta-analyses of clinical trials of TRT that have not demonstrated an increased risk of adverse cardiovascular events or mortality
  • The TOM trial, which was designed to investigate the effect of TRT on frailty in elderly men, was terminated prematurely as a result of an increased incidence of cardiovascular-related events after 6 months in the treatment arm
  • trials of TRT in men with either chronic stable angina or chronic cardiac failure have also found no increase in either cardiovascular events or mortality in studies up to 12 months
  • Evidence may therefore suggest that low testosterone levels and testosterone levels above the normal range have an adverse effect on CVD, whereas testosterone levels titrated to within the mid- to upper-normal range have at least a neutral effect or, taking into account the knowledge of the beneficial effects of testosterone on a series of cardiovascular risk factors, there may possibly be a cardioprotective action
  • The effect of testosterone on human vascular function is a complex issue and may be dependent upon the underlying androgen and/or disease status.
  • the majority of studies suggest that testosterone may display both acute and chronic vasodilatory effects upon various vascular beds at both physiological and supraphysiological concentrations and via endothelium-dependent and -independent mechanisms
  •  
    Good deep look into the testosterone and CVD link.
Nathan Goodyear

Natural Killer Cells in Pregnancy and Recurrent Pregnancy Loss: Endocrine and Immunolog... - 0 views

  • NK cells have been the cells most extensively studied, primarily because they constitute the predominant leukocyte population present in the endometrium at the time of implantation and in early pregnancy
  • parental chromosomal abnormalities, uterine anatomic anomalies, endometrial infections, endocrine etiologies (luteal phase defect, thyroid dysfunction, uncontrolled diabetes mellitus), antiphospholipid syndrome, inherited thrombophilias, and alloimmune causes
  • estrogen
  • ...28 more annotations...
  • progesterone
  • prolactin
  • In summary, in vivo animal experiments have shown an inhibitory role of estrogen on peripheral NK cell lytic activity, which is partly due to suppression of NK cell output by the bone marrow and partly due to suppression of individual NK cell cytotoxicity. However, in vitro studies so far have failed to show conclusively a direct effect of estrogen on NK cells.
  • At the progesterone concentrations believed to be present in the uterus [up to 10−5 m at the maternal-fetal interface (35)], studies consistently show inhibition of lymphocyte proliferation (33) and inhibition of NK cytolytic activity in vitro
  • The exact role of prolactin in NK cell regulation is unknown.
  • The overall effects of estrogen on NK cells are likely multifactorial, therefore, and depend on the type of cell affected as well as the kind of ER expressed by that cell.
  • It is known that progesterone can directly affect T cell differentiation in vitro, suppressing development of the Th1 pathway and enhancing differentiation along the Th2 pathway (44)
  • Th1 cells predominantly produce interferon-γ (IFN-γ), IL-2, and TNF-β and are involved in cell-mediated immunity. Th2 cells produce IL-4, IL-5, IL-6, IL-10, and IL-13 and stimulate humoral immunity
  • Furthermore, in response to progesterone, γδ T cells produce progesterone-induced blocking factor (PIBF) (54
  • A defining characteristic of NK cells is their ability to lyse target cells without prior sensitization and without restriction by HLA antigens.
  • NK cell function is mainly regulated by IL-2 and IFN-γ
  • IL-2 causes both NK cell proliferation and enhanced cytotoxicity. IFN-γ augments NK cytolytic activity, but does not cause NK proliferation. The two cytokines act synergistically to augment NK cytotoxicity (6).
  • The largest leukocyte population in the endometrium consists of NK cells named large granulated lymphocytes
  • there is a significant increase in the number of uNK cells throughout the secretory phase, which peaks in early pregnancy when uNK cells comprise about 75% of uterine leukocytes (62)
  • Second, uNK cell phenotype changes during the normal menstrual cycle and early pregnancy (68)
  • general proinflammatory effect of estrogen, causing an influx of macrophages and neutrophils, which is antagonized by progesterone through its receptor (70, 71).
  • The mechanism of such a progesterone-induced local immunosuppression is unclear.
  • progesterone plays an important role in proliferation and differentiation of uNK cells (32).
  • Through promotion of a uterine Th2 environment, progesterone could indirectly affect uNK cell function
  • The mechanism of this increase in uNK cell numbers has been addressed in both human and mouse models, and is likely the result of: 1) recruitment of peripheral NK cells to the uterus, and 2) proliferation of existing uNK cells
  • prolactin system plays an important role in implantation and the maintenance of pregnancy
  • the exact pathways of hormonal regulation of NK cells remain to be delineated.
  • The exact function of uNK cells has not yet been unequivocally determined
  • uNK cells express a different cytokine profile, compared with resting peripheral NK cells. mRNAs for granulocyte CSF, M-CSF, GM-CSF, TNF-α, IFN-γ, TGF-β, and leukemia inhibitory factor (LIF) have been found in decidual CD56+ cells
  • Their increased numbers in early pregnancy, their hormonal dependence, and their close proximity to the infiltrating trophoblast all suggest that they play an important role in the regulation of the maternal immune response to the fetal allograft and the control of trophoblast growth and invasion during human pregnancy
  • role of uNK cell-derived cytokines on trophoblast growth and differentiation (114, 115, 116, 117).
  • Th1 immunity to trophoblast is associated with RPL, whereas Th2 immunity is associated with a successful pregnancy
  • RPL is associated with Th1 immunity, for which NK cells are partly responsible.
  •  
    dysregulated immune system plays role in recurrent miscarriage.  Specifically, this article discusses natural killer cells (NK).
Nathan Goodyear

Inflammation and insulin resistance 10.1016/j.febslet.2007.11.057 : FEBS Letters | Scie... - 0 views

  • A subsequent study by Yuan et al. showed that Tnf treatment of 3T3L1 adipocytes induces insulin resistance and that this could be prevented by pretreatment of cells with aspirin
  • Activation of the Tnf receptor results in stimulation of NFκB signaling via Ikkb
  • Insulin is a pleiotropic hormone
  • ...25 more annotations...
  • the percentage of macrophages in a given adipose tissue depot is positively correlated with adiposity and adipocyte size
  • Il-10 is an anti-inflammatory cytokine produced by macrophages and lymphocytes
  • Il-10 exerts its anti-inflammatory activity by inhibiting Tnf-induced NFκB activation by reducing IKK activity [38]
  • adipose tissue macrophages are responsible for nearly all adipose tissue Tnf expression and a significant portion of Nos2 and Il6 expression
  • One theory holds that the expansion of adipose tissue leads to adipocyte hypertrophy and hyperplasia and that large adipocytes outstrip the local oxygen supply leading to cell autonomous hypoxia with activation of cellular stress pathways
  • The use of the anti-inflammatory compounds, salicylate and its derivative aspirin, for treating symptoms of T2DM dates back over 100 years
  • elevated levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin (IL-8) have all been reported in various diabetic and insulin resistant states
  • overnutrition and obesity are often accompanied by elevations in tissue and circulating FFA concentrations, and saturated FFAs can directly activate pro-inflammatory responses
  • Adipokines such as resistin, leptin and adiponectin, which are secreted by adipocytes, can also affect inflammation and insulin sensitivity
  • In skeletal muscle insulin promotes glucose uptake by stimulating translocation of the GLUT4 glucose transporter
  • macrophages are also capable of undergoing a phenotypic switch from an M1 state, which was defined as the “classically activated” pro-inflammatory macrophage, to the M2 state or the “alternatively activated” non-inflammatory cell
  • saturated fatty acids are the most potent inducers of this inflammatory response
  • Several inducers of insulin resistance, including FFAs, pro-inflammatory cytokines and oxidative stress, activate the expression of Nos2, the gene that encodes iNOS (reviewed in [33]
  • Adipose tissue insulin signaling results in decreased hormone sensitive lipase activity and this anti-lipolytic effect inhibits free fatty acid (FFA) efflux out of adipocytes.
  • In the liver, insulin inhibits the expression of key gluconeogenic enzymes and, therefore, insulin resistance in liver leads to elevated hepatic glucose production
  • elevated JNK activity in liver, adipose tissue and skeletal muscle of obese insulin resistant mice, and knockout of Jnk1 (Jnk1−/−) leads to amelioration of insulin resistance in high fat diet
  • Adipose tissue from obese mice contains proportionately more M1 macrophages, whereas, lean adipose tissue contains more M2 macrophages, and increased M1 content positively correlates with inflammation, macrophage infiltration and insulin resistance
  • C-reactive protein (CRP)
  • these studies highlight the possibility that increased iNOS activity plays a direct role in the pathogenesis of insulin resistance
  • the important role of Ikkb in the development of obesity and inflammation-induced insulin resistance.
  • It is probable that local concentrations of inflammatory mediators, such as FFAs, Tnf or other cytokines/adipokines contribute to this polarity switch
  • Tnf and other cytokines/chemokines are symptomatic of inflammation, and while they propagate and/or maintain the inflammatory state, they are not the initial cause(s) of inflammation
  • Tlr4, in particular, is stimulated by lipopolysaccharide (LPS), an endotoxin released by gram-negative bacteria
  • Tlr4 belongs to the family of Toll-like receptors that function as pattern recognition receptors that guard against microorganismal infections as part of the innate immune system.
  • Tlr4 stimulation results in the activation of both Ikkb/NFκB and JNK/AP-1 signaling, culminating in the expression and secretion of pro-inflammatory cytokines/chemokines, including, Il1b, IL-6, Tnf, Mcp1, etc. (reviewed in [57
  •  
    Great review of all the known components in the inflammation, insulin resistance link
Nathan Goodyear

Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer... - 0 views

  • More than half of cancer patients are treated with IR at some point during their treatment
  • fractionation schedule is the delivery of 1.8–2.0 Gy per day, five days per week
  • Nuclear DNA is the primary target of IR; it causes DNA damage (genotoxic stress) by direct DNA ionization
  • ...121 more annotations...
  • IR also indirectly induces DNA damage by stimulating reactive oxygen species (ROS) production
  • IR is known to induce EMT in vitro
  • p53 is activated in response to IR-induced DNA damage
  • IR paradoxically also promotes tumour recurrence and metastasis
  • DNA double-strand breaks (DSBs)
  • cancer cells undergoing EMT acquire invasive and metastatic properties
  • changes in the tumour microenvironment (TME)
  • IR seems to induce EMT and CSC phenotypes by regulating cellular metabolism
  • EMT, stemness, and oncogenic metabolism are known to be associated with resistance to radiotherapy and chemotherapy
  • Hanahan and Weinberg proposed ten hallmarks of cancer that alter cell physiology to enhance malignant growth: 1) sustained proliferation, 2) evasion of growth suppression, 3) cell death resistance, 4) replicative immortality, 5) evasion of immune destruction, 6) tumour-promoting inflammation, 7) activation of invasion and metastasis, 8) induction of angiogenesis, 9) genome instability, and 10) alteration of metabolism
  • EMT is a developmental process that plays critical roles in embryogenesis, wound healing, and organ fibrosis
  • IR is known to induce stemness and metabolic alterations in cancer cells
  • transforming growth factor-β [TGF-β], epidermal growth factor [EGF]) and their associated signalling proteins (Wnt, Notch, Hedgehog, nuclear-factor kappa B [NF-κB], extracellular signal-regulated kinase [ERK], and phosphatidylinositol 3-kinase [PI3K]/Akt
  • activate EMT-inducing transcription factors, including Snail/Slug, ZEB1/δEF1, ZEB2/SIP1, Twist1/2, and E12/E47
  • Loss of E-cadherin is considered a hallmark of EMT
  • IR has been shown to induce EMT to enhance the motility and invasiveness of several cancer cells, including those of breast, lung, and liver cancer, and glioma cells
  • IR may increase metastasis in both the primary tumour site and in normal tissues under some circumstance
  • sublethal doses of IR have been shown to enhance the migratory and invasive behaviours of glioma cells
  • ROS are known to play an important role in IR-induced EMT
  • High levels of ROS trigger cell death by causing irreversible damage to cellular components such as proteins, nucleic acids, and lipids, whereas low levels of ROS have been shown to promote tumour progression—including tumour growth, invasion, and metastasis
  • hypoxia-inducible factor-1 (HIF-1) is involved in IR-induced EMT
  • Treatment with the N-acetylcysteine (NAC), a general ROS scavenger, prevents IR-induced EMT, adhesive affinity, and invasion of breast cancer cells
    • Nathan Goodyear
       
      NAC for all patients receiving radiation therapy
  • Snail has been shown to play a crucial role in IR-induced EMT, migration, and invasion
  • IR activates the p38 MAPK pathway, which contributes to the induction of Snail expression to promote EMT and invasion
  • NF-κB signalling that promotes cell migration
  • ROS promote EMT to allow cancer cells to avoid hostile environments
  • HIF-1 is a heterodimer composed of an oxygen-sensitive α subunit and a constitutively expressed β subunit.
  • Under normoxia, HIF-1α is rapidly degraded, whereas hypoxia induces stabilisation and accumulation of HIF-1α
  • levels of HIF-1α mRNA are enhanced by activation of the PI3K/Akt/mammalian target of rapamycin (mTOR)
  • IR is known to increase stabilisation and nuclear accumulation of HIF-1α, since hypoxia is a major condition for HIF-1 activation
  • IR induces vascular damage that causes hypoxia
  • ROS is implicated in IR-induced HIF-1 activation
  • IR causes the reoxygenation of hypoxic cancer cells to increase ROS production, which leads to the stabilisation and nuclear accumulation of HIF-1
  • IR increases glucose availability under reoxygenated conditions that promote HIF-1α translation by activating the Akt/mTOR pathway
  • The stabilised HIF-1α then translocates to the nucleus, dimerizes with HIF-1β, and increases gene expression— including the expression of essential EMT regulators such as Snail—to induce EMT, migration, and invasion
  • TGF-β signalling has been shown to play a crucial role in IR-induced EMT
  • AP-1 transcription factor is involved in IR-induced TGF-β1 expression
  • Wnt/β-catenin signalling is also implicated in IR-induced EMT
  • Notch signalling is known to be involved in IR-induced EMT
  • IR also increases Notch-1 expression [99]. Notch-1 is known to induce EMT by upregulating Snail
  • PAI-1 signalling is also implicated in IR-induced Akt activation that increases Snail levels to induce EMT
  • EGFR activation is known to be associated with IR-induced EMT, cell migration, and invasion by activating two downstream pathways: PI3K/Akt and Raf/MEK/ERK
  • ROS and RNS are also implicated in IR-induced EGFR activation
  • IR has also been shown to activate Hedgehog (Hh) signalling to induce EMT
  • IR has been shown to induce Akt activation through several signalling pathways (EGFR, C-X-C chemokine receptor type 4 [CXCR4]/C-X-C motif chemokine 12 [CXCL12], plasminogen activator inhibitor 1 [PAI-1]) and upstream regulators (Bmi1, PTEN) that promote EMT and invasion
  • CSCs possess a capacity for self-renewal, and they can persistently proliferate to initiate tumours upon serial transplantation, thus enabling them to maintain the whole tumour
  • Conventional cancer treatments kill most cancer cells, but CSCs survive due to their resistance to therapy, eventually leading to tumour relapse and metastasis
  • identification of CSCs, three types of markers are utilised: cell surface molecules, transcription factors, and signalling pathway molecules
  • CSCs express distinct and specific surface markers; commonly used ones are CD24, CD34, CD38, CD44, CD90, CD133, and ALDH
  • Transcription factors, including Oct4, Sox2, Nanog, c-Myc, and Klf4,
  • signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, platelet-derived growth factor receptor (PDGFR), and JAK/STAT
  • microRNAs (miRNAs), including let-7, miR-22, miR-34a, miR-128, the miR-200 family, and miR-451
  • Non-CSCs can be reprogrammed to become CSCs by epigenetic and genetic changes
  • EMT-inducing transcription factors, such as Snail, ZEB1, and Twist1, are known to confer CSC properties
  • Signalling pathways involved in EMT, including those of TGF-β, Wnt, and Notch, have been shown to play important roles in inducing the CSC phenotype
  • TGF-β1 not only increases EMT markers (Slug, Twist1, β-catenin, N-cadherin), but also upregulates CSC markers (Oct4, Sox2, Nanog, Klf4) in breast and lung cancer cells
  • some CSC subpopulations arise independently of EMT
  • IR has been shown to induce the CSC phenotype in many cancers, including breast, lung, and prostate cancers, as well as melanoma
  • Genotoxic stress due to IR or chemotherapy promotes a CSC-like phenotype by increasing ROS production
  • IR has been shown to induce reprogramming of differentiated cancer cells into CSCs
  • In prostate cancer patients, radiotherapy increases the CD44+ cell population that exhibit CSC properties
  • IR also induces the re-expression of stem cell regulators, such as Sox2, Oct4, Nanog, and Klf4, to promote stemness in cancer cells
  • EMT-inducing transcription factors and signalling pathways, including Snail, STAT3, Notch signalling, the PI3K/Akt pathway, and the MAPK cascade, have been shown to play important roles in IR-induced CSC properties
  • STAT3 directly binds to the Snail promoter and increases Snail transcription, which induces the EMT and CSC phenotypes, in cisplatin-selected resistant cells
  • Other oncogenic metabolic pathways, including glutamine metabolism, the pentose phosphate pathway (PPP), and synthesis of fatty acids and cholesterol, are also enhanced in many cancers
  • metabolic reprogramming
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • metabolic reprogramming
  • tumour cells exhibit high mitochondrial metabolism as well as aerobic glycolysis
  • occurring within the same tumour
  • CSCs can be highly glycolytic-dependent or oxidative phosphorylation (OXPHOS)-dependen
  • mitochondrial function is crucial for maintaining CSC functionality
  • cancer cells depend on mitochondrial metabolism and increase mitochondrial production of ROS that cause pseudo-hypoxia
  • HIF-1 then enhances glycolysis
  • CAFs have defective mitochondria that lead to the cells exhibiting the Warburg effect; the cells take up glucose, and then secrete lactate to 'feed' adjacent cancer cells
  • lactate transporter, monocarboxylate transporter (MCT)
  • nutrient microenvironment
  • Epithelial cancer cells express MCT1, while CAFs express MCT4. MCT4-positive, hypoxic CAFs secrete lactate by aerobic glycolysis, and MCT1-expressing epithelial cancer cells then uptake and use that lactate as a substrate for the tricarboxylic acid (TCA) cycle
  • MCT4-positive cancer cells depend on glycolysis and then efflux lactate, while MCT1-positive cells uptake lactate and rely on OXPHOS
  • metabolic heterogeneity induces a lactate shuttle between hypoxic/glycolytic cells and oxidative/aerobic tumour cells
  • bulk tumour cells exhibit a glycolytic phenotype, with increased conversion of glucose to lactate (and enhanced lactate efflux through MCT4), CSC subsets depend on oxidative phosphorylation; most of the glucose entering the cells is converted to pyruvate to fuel the TCA cycle and the electron transport chain (ETC), thereby increasing mitochondrial ROS production
  • the major fraction of glucose is directed into the pentose phosphate pathway, to produce redox power through the generation of NADPH and ROS scavengers
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • regulatory molecules involved in EMT and CSCs, including Snail, Dlx-2, HIF-1, STAT3, TGF-β, Wnt, and Akt, are implicated in the metabolic reprogramming of cancer cells
  • HIF-1 induces the expression of glycolytic enzymes, including the glucose transporter GLUT, hexokinase, lactate dehydrogenase (LDH), and MCT, resulting in the glycolytic switch
  • HIF-1 represses the expression of pyruvate dehydrogenase kinase (PDK), which inhibits pyruvate dehydrogenase (PDH), thereby inhibiting mitochondrial activity
  • STAT3 has been implicated in EMT-induced metabolic changes as well
  • TGF-β and Wnt play important roles in the metabolic alteration of cancer cells
  • Akt is also implicated in the glycolytic switch and in promoting cancer cell invasiveness
  • EMT, invasion, metastasis, and stemness
  • pyruvate kinase M2 (PKM2), LDH, and pyruvate carboxylase (PC), are implicated in the induction of the EMT and CSC phenotypes
  • decreased activity of PKM2 is known to promote an overall shift in metabolism to aerobic glycolysis
  • LDH catalyses the bidirectional conversion of lactate to pyruvate
  • High levels of LDHA are positively correlated with the expression of EMT and CSC markers
  • IR has been shown to induce metabolic changes in cancer cells
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR also elevates MCT1 expression that exports lactate into the extracellular environment, leading to acidification of the tumour microenvironment
  • IR increases intracellular glucose, glucose 6-phosphate, fructose, and products of pyruvate (lactate and alanine), suggesting a role for IR in the upregulation of cytosolic aerobic glycolysis
  • Lactate can activate latent TGF-
  • lactate stimulates cell migration and enhances secretion of hyaluronan from CAF that promote tumour metastasis
  • promote tumour survival, growth, invasion, and metastasis; enhance the stiffness of the ECM; contribute to angiogenesis; and induce inflammation by releasing several growth factors and cytokines (TGF-β, VEGF, hepatocyte growth factor [HGF], PDGF, and stromal cell-derived factor 1 [SDF1]), as well as MMP
  • tumours recruit the host tissue’s blood vessel network to perform four mechanisms: angiogenesis (formation of new vessels), vasculogenesis (de novo formation of blood vessels from endothelial precursor cells), co-option, and modification of existing vessels within tissues.
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • intrinsic immunogenicity or induce tolerance
  • cancer immunoediting’
  • three phases: 1) elimination, 2) equilibrium, and 3) escape.
  • The third phase, tumour escape, is mediated by antigen loss, immunosuppressive cells (TAM, MDSCs, and regulatory T cells), and immunosuppressive cytokines (TGF-β and IL-10).
  • IR can elicit various changes in the TME, such as CAF activity-mediated ECM remodelling and fibrosis, cycling hypoxia, and an inflammatory response
  • IR activates CAFs to promote the release of growth factors and ECM modulators, including TGF-β and MMP
  • TGF-β directly influences tumour cells and CAFs, promotes tumour immune escape, and activates HIF-1 signalling
    • Nathan Goodyear
       
      And now the receipts
  • MMPs degrade ECM that facilitates angiogenesis, tumour cell invasion, and metastasis
    • Nathan Goodyear
       
      Receipts and mechanisms
  • IR also promotes MMP-2/9 activation in cancer cells to promote EMT, invasion, and metastasis
  • IR-induced Snail increases MMP-2 expression to promote EMT
  • Radiotherapy has the paradoxical side-effect of increasing tumour aggressiveness
  • IR promotes ROS production in cancer cells, which may induce the activation of oncogenes and the inactivation of tumour suppressors, which further promote oncogenic metabolism
  • Metabolic alterations
  • oncogenic metabolism
  • elicit various changes in the TME
  • Although IR activates an antitumour immune response, this signalling is frequently suppressed by tumour escape mechanisms
  •  
    Important review article.
Nathan Goodyear

http://shammer-irsc.weebly.com/uploads/1/9/8/6/19866071/ibuprofen_use_endotoxemia_inxam... - 0 views

  •  
    ibuprofen provided no reduction in muscle damage/soreness in 29 ultra marathoners.  However, LPS, CRP, IL-6, IL-10, IL-8, IL-1ra, GSF, MCP-1, and MIP-1beta were increased in the ibuprofen group.  TNF-alpha was unaffected.
Nathan Goodyear

A randomized study of immunotherapy with low-dose subcutaneous interleukin-2 plus melat... - 1 views

  •  
    Average progression-free time and percentage of patients alive at 1 year was significantly higher in those using IL-2 and melatonin compared to chemotherapy in aggressive NSCLC. Of note, in this study, they used a repeat cycle of IL-2 and MLT as well as a once/week maintenance IL-2 and MLT.
Nathan Goodyear

The effect of testosterone replacement on endogenous inflammatory cytokines and lipid p... - 0 views

  • testosterone induced reductions in TNFalpha (-3.1 +/- 8.3 vs. 1.3 +/- 5.2 pg/ml; P = 0.01) and IL-1beta (-0.14 +/- 0.32 vs. 0.18 +/- 0.55 pg/ml; P = 0.08) and an increase in IL-10 (0.33 +/- 1.8 vs. -1.1 +/- 3.0 pg/ml; P = 0.01); the reductions of TNFalpha and IL-1beta were positively correlated
  •  
    Testosterone reduced TNF-alpha and IL-1 beta in men.
Nathan Goodyear

IL-1 family in breast cancer: Potential interplay with leptin and other adipocytokines ... - 0 views

  •  
    Obesity is biologically active, both from a hormonal and inflammatory perspective. No matter what marketing may try to say, obesity is not a "new health". Inflammatory signaling, i.e. IL-1, IL-6... are increased from the biological adipocytes in obesity. These can lead to cancer development and progression.
Nathan Goodyear

The Role of Vitamin C in Human Immunity and Its Treatment Potential Against COVID-19: A... - 0 views

  • vitamins A, B, C, E, B6, B12, folate, zinc, iron, copper, and selenium
  • White blood cells, including neutrophils and monocytes, accumulate concentrations of vitamin C up to 100 times greater than that of plasma
  • Vitamin C is a crucial component of both the innate (nonspecific) and adaptive (specific) portions of the immune system
  • ...52 more annotations...
  • play a role during the initial chemotactic response of neutrophils shortly after infection
  • following vitamin C supplementation, a 20% increase in neutrophil chemotactic activity was observed
  • also contributes to the phagocytosis and killing of microbes by neutrophils
  • low levels of vitamin C occurring in high-stress situations
  • maturation, proliferation, and viability of T cells have all been shown to be upregulated by the presence of normal physiologic concentrations of vitamin C
  • Vitamin C has been shown to directly affect the number of Igs released from B cells
  • vitamin C among healthy young adult males showed a significant increase in serum levels of IgA, IgG, and IgM
  • effects of high-dose vitamin C on cytokine levels in cancer patients, finding decreased amounts of the cytokines Interleukin-1 alpha (IL-1 alpha), IL-2, IL-8, and tumor necrosis factor-alpha (TNF-alpha) after high-dose vitamin C infusion
  • when vitamin C was supplemented with vitamin E in healthy adults, it increased the production of cytokines IL-1 beta and TNF-alpha
  • vitamin C acts to modulate the levels of cytokines to prevent them from fluctuating in either direction
  • vitamin C also acts as an important antioxidant to the cells of the immune system.
  • human leukocytes, neutrophils, in particular, possess the ability to transport the oxidized form of vitamin C across its membrane to use as a defense mechanism against ROS produced during an immune response
  • Vitamin C also can recover other endogenous antioxidants in the body such as vitamin E and glutathione, returning them to their active state
  • vitamin C can decrease the activation of NF-kB
  • can reduce harmful nitrogen-based compounds such as N-nitrosamines and nitrosamides, both of which are carcinogenic 
  • subjects taking oral vitamin C supplementation saw a 60% to 90% reduction in oxidative stress compared to a placebo control
  • subjects infused with vitamin C alone had a 516% increase in glutathione levels compared to subjects not provided the 500 mg daily supplementation
  • hydroxylating proline and lysine
  • mature and stabilize the tissue of a healing wound
  • healing
  • oral surgery
  • improved soft tissue regeneration
  • vitamin C increases the mRNA levels of type I and type III collagen in the human dermis
  • Studies have demonstrated that those with low levels of vitamin C are at a significantly higher risk of respiratory infection compared to those with normal levels
  • viral cold duration was reduced by about 8% in adults and 13.5% in children using prophylactic daily doses of 200 mg of oral vitamin C
  • prophylactically supplementing vitamin C decreases the risk of infection with respiratory viruses such as the common cold
  • combined with probiotics, oral vitamin C supplementation showed a 33% decrease in the incidence of respiratory tract infections in preschool-age children [
  • high-dose oral supplementation of vitamin C managed to prevent or reduce symptoms if taken before or just after the onset of cold- or flu-like symptoms
  • improvements in oxygen saturation and decreased IL-6 levels (a marker of inflammation) in the treatment group compared to the control group
  • 8 g doses of oral vitamin C
  • there is a negative correlation between age and serum levels of vitamin C
  • Patients with COVID-19 will likely also experience depletion in serum levels of vitamin C as a direct result of the upregulation of the immune system to combat the infection
  • Colunga et al. suggested that oral vitamin C can be combined with oral Quercetin, an antiviral flavonoid, to improve Quercetin’s ability to block viral membrane fusion of SARS-CoV-2
  • high doses of 1-2 g/day of oral vitamin C could prevent other upper respiratory infections
  • It appears vitamin C supplementation by itself does not provide a striking benefit in preventing COVID-19 infection for those without a deficiency
    • Nathan Goodyear
       
      Flawed statement. What is normal? Vitamin D. Many variables effect levels and dose, including the two compartment kinetics and absorption.
  • Hiedra et al. were able to show decreases in inflammatory biomarkers, such as D-dimer and ferritin
  • some evidence to support that prophylactic use of vitamin C helps reduce the severity of respiratory infection symptoms once a subject has already been infected
  • oral vitamin C in combination with zinc provided the largest amount of antibody titers 42 days
  • linear relationship between days of vitamin C therapy and survival duration
  • other studies were unable to find any definitive improvement concerning therapy with vitamin C
    • Nathan Goodyear
       
      Either these studies are designed to fail or the authors are lacking some basic understanding of pharmacokinetics and pharmacodynamics with vitamin C.
  • Fowler et al. aimed to see if a high-dose vitamin C infusion would benefit patients affected by ARDS, but they were unable to conclude that vitamin C infusion, compared to a placebo, could decrease vascular inflammation and damage in ARDS
    • Nathan Goodyear
       
      At what dose, duration, frequency???
  • in a sample of 67 COVID-19-positive ICU patients, 82% of them displayed plasma vitamin C levels below 0.4 mg/dL
    • Nathan Goodyear
       
      They are kind of make the point from my earlier note.
  • continuous vitamin C infusion at a rate of 60 mg/kg/day for four days decreased the need for mechanical ventilation and vasopressor use but had no significant effect on overall mortality
    • Nathan Goodyear
       
      Again, designed to fail or ignorance designed the study which failed
  • Carr et al. suggested that high-dose IV vitamin C is most effective when treating sepsis as septic patients receiving the normal daily recommendations through diet still showed decreased vitamin C levels
  • High-dose IV vitamin C treatment has also been shown by Kakodkar et al. to decrease syndecan-1, an endothelial glycocalyx that contributes to mortality in septic patients
  • combined with hydrocortisone and thiamine, septic patients treated with 1.5 g of IV vitamin C every six hours showed a distinct decrease in their SOFA scores and none of the patients treated developed organ failure
  • combined with hydrocortisone and thiamine, septic patients treated with 1.5 g of IV vitamin C every six hours showed a distinct decrease in their SOFA scores and none of the patients treated developed organ failure
  • reduced overall mortality
  • reduced overall mortality
  • propose the use for high-dose vitamin C to aid in the treatment of septic shock-induced hypotension
  • treatment of severe sepsis using a high dose (up to 200 mg/kg/day) of IV vitamin C was explored in phase I, a double-blind, randomized, placebo-controlled trial by Fowler et al. [75]. Their findings included a reduction in SOFA scores and decreased vascular injury compared to a placebo control group, all while showing minimal adverse side effects
    • Nathan Goodyear
       
      High dose here is laughable. Again, duration and frequency also.
  • Maintaining a daily intake of 75 and 100 mg for men and women, respectively, as recommended by the U.S. Institute of Medicine
    • Nathan Goodyear
       
      This recommendation is FRANK IGNORANCE
Nathan Goodyear

Limited effects of dietary curcumin on Th-1 driven colitis in IL-10 deficient mice sugg... - 0 views

  •  
    curcumin shown to inhibit NF-kappaB through a IL-10 dependent pathway.  IL-10 is required and curcumin appears to augment the inhibition of NF-kappaB
Nathan Goodyear

Cutting Edge: IL-12 Induces CD4+CD25− T Cell Activation in the Presence of T ... - 0 views

  • Whereas IL-12 instigates Th1 immune responses, CD4+CD25+ regulatory T cells (Treg)3 actively restrain them
  • Following engagement of their TCR, Treg suppress the proliferation of conventional CD4+CD25− T responder cells in vitro
  • Furthermore, they inhibit the development of CD4+ T cell responses against alloantigens, tumor, microbial, and self-Ags in vivo.
  • ...1 more annotation...
  • Treg act to prevent spontaneous autoimmunity and to limit collateral damage to healthy tissues during adaptive immunity. However, these cells also have the potential to sabotage protective antimicrobial responses
  •  
    Great T cell activiation review: Il-2 stimulates NK cells primarily release from TH1 cells and T cytotoxic lymphocytes are under the control of IL-12 released primarily from dendritic cells.  Inflammatory cytokines in the presence of Treg to stimulate CD4+CD25- T cell activation.
Nathan Goodyear

Testosterone: a metabolic hormone in health and disease - 0 views

  • E2 and the inflammatory adipocytokines tumour necrosis factor α (TNFα) and interleukin 6 (IL6) inhibit hypothalamic production of GNRH and subsequent release of LH and FSH from the pituitary
  • Leptin, an adipose-derived hormone with a well-known role in regulation of body weight and food intake, also induces LH release under normal conditions via stimulation of hypothalamic GNRH neurons
  • In human obesity, whereby adipocytes are producing elevated amounts of leptin, the hypothalamic–pituitary axis becomes leptin resistant
  • ...39 more annotations...
  • there is evidence from animal studies that leptin resistance, inflammation and oestrogens inhibit neuronal release of kisspeptin
  • Beyond hypothalamic action, leptin also directly inhibits the stimulatory action of gonadotrophins on the Leydig cells of the testis to decrease testosterone production; therefore, elevated leptin levels in obesity may further diminish androgen status
  • Prostate cancer patients with pre-existing T2DM show a further deterioration of insulin resistance and worsening of diabetic control following ADT
  • ADT for the treatment of prostatic carcinoma in some large epidemiological studies has been shown to be associated with an increased risk of developing MetS and T2DM
  • Non-diabetic men undergoing androgen ablation show increased occurrence of new-onset diabetes and demonstrate elevated insulin levels and worsening glycaemic control
  • increasing insulin resistance assessed by glucose tolerence test and hypoglycemic clamp was shown to be associated with a decrease in Leydig cell testosterone secretion in men
  • The response to testosterone replacement of insulin sensitivity is in part dependent on the androgen receptor (AR)
  • Low levels of testosterone have been associated with an atherogenic lipoprotein profile, characterised by high LDL and triglyceride levels
  • a positive correlation between serum testosterone and HDL has been reported in both healthy and diabetic men
  • up to 70% of the body's insulin sensitivity is accounted for by muscle
  • Testosterone deficiency is associated with a decrease in lean body mass
  • relative muscle mass is inversely associated with insulin resistance and pre-diabetes
  • GLUT4 and IRS1 were up-regulated in cultured adipocytes and skeletal muscle cells following testosterone treatment at low dose and short-time incubations
  • local conversion of testosterone to DHT and activation of AR may be important for glucose uptake
  • inverse correlation between testosterone levels and adverse mitochondrial function
  • orchidectomy of male Wistar rats and associated testosterone deficiency induced increased absorption of glucose from the intestine
  • (Kelley & Mandarino 2000). Frederiksen et al. (2012a) recently demonstrated that testosterone may influence components of metabolic flexibility as 6 months of transdermal testosterone treatment in aging men with low–normal bioavailable testosterone levels increased lipid oxidation and decreased glucose oxidation during the fasting state.
  • Decreased lipid oxidation coupled with diet-induced chronic FA elevation is linked to increased accumulation of myocellular lipid, in particular diacylglycerol and/or ceramide in myocytes
  • In the Chang human adult liver cell line, insulin receptor mRNA expression was significantly increased following exposure to testosterone
  • Testosterone deprivation via castration of male rats led to decreased expression of Glut4 in liver tissue, as well as adipose and muscle
  • oestrogen was found to increase the expression of insulin receptors in insulin-resistant HepG2 human liver cell line
  • FFA decrease hepatic insulin binding and extraction, increase hepatic gluconeogenesis and increase hepatic insulin resistance.
  • Only one, albeit large-scale, population-based cross-sectional study reports an association between low serum testosterone concentrations and hepatic steatosis in men (Völzke et al. 2010)
  • This suggests that testosterone may confer some of its beneficial effects on hepatic lipid metabolism via conversion to E2 and subsequent activation of ERα.
  • hypogonadal men exhibiting a reduced lean body mass and an increased fat mass, abdominal or central obesity
  • visceral adipose tissue was inversely correlated with bioavailable testosterone
  • there was no change in visceral fat mass in aged men with low testosterone levels following 6 months of transdermal TRT, yet subcutaneous fat mass was significantly reduced in both the thigh and the abdominal areas when analysed by MRI (Frederiksen et al. 2012b)
  • ADT of prostate cancer patients increased both visceral and subcutaneous abdominal fat in a 12-month prospective observational study (Hamilton et al. 2011)
  • Catecholamines are the major lipolysis regulating hormones in man and regulate adipocyte lipolysis through activation of adenylate cyclase to produce cAMP
  • deficiency of androgen action decreases lipolysis and is primarily responsible for the induction of obesity (Yanase et al. 2008)
  • may be some regional differences in the action of testosterone on subcutaneous and visceral adipose function
  • proinflammatory adipocytokines IL1, IL6 and TNFα are increased in obesity with a downstream effect that stimulates liver production of CRP
  • observational evidence suggests that IL1β, IL6, TNFα and CRP are inversely associated with serum testosterone levels in patients
  • TRT has been reported to significantly reduce these proinflammatory mediators
  • This suggests a role for AR in the metabolic actions of testosterone on fat accumulation and adipose tissue inflammatory response
  • testosterone treatment may have beneficial effects on preventing the pathogenesis of obesity by inhibiting adipogenesis, decreasing triglyceride uptake and storage, increasing lipolysis, influencing lipoprotein content and function and may directly reduce fat mass and increase muscle mass
  • Early interventional studies suggest that TRT in hypogonadal men with T2DM and/or MetS has beneficial effects on lipids, adiposity and parameters of insulin sensitivity and glucose control
  • Evidence that whole-body insulin sensitivity is reduced in testosterone deficiency and increases with testosterone replacement supports a key role of this hormone in glucose and lipid metabolism
  • Impaired insulin sensitivity in these three tissues is characterised by defects in insulin-stimulated glucose transport activity, in particular into skeletal muscle, impaired insulin-mediated inhibition of hepatic glucose production and stimulation of glycogen synthesis in liver, and a reduced ability of insulin to inhibit lipolysis in adipose tissue
  •  
    Great review of the Hypogonadal-obesity-adipocytokine hypothesis.
Nathan Goodyear

Interleukin-1 inhibits thyrotrophin-induced hum... [J Endocrinol. 1989] - PubMed - NCBI - 0 views

  •  
    IL-1, an inflammatory cytokine, down regulates TSH gene activity.  Take home: inflammation via IL-1 supresses TSH production.  
Nathan Goodyear

Suppression of thyrotropin-releasing horm... [Neuroendocrinology. 1994] - PubMed - NCBI - 0 views

  •  
    IL-1beta inhibits TRH gene activity.  Previous study has shown that IL-1 suppresses TSH production also.
1 - 20 of 79 Next › Last »
Showing 20 items per page