Skip to main content

Home/ Dr. Goodyear/ Group items tagged pathway

Rss Feed Group items tagged

Nathan Goodyear

Pathways | PPAR Resource Page | Jack Vanden Heuvel - 0 views

  •  
    great website as a resource to review PPAR pathways.  PPARs are transcription factors involved with inflammation.
Nathan Goodyear

Testosterone Induces Molecular Changes in Dopamine Signaling Pathway Molecules in the A... - 0 views

  •  
    Testosterone modulates dopaminergic pathways in the the brain.  This was a rat model.  This points to some of the euphoria experienced by men on Testosterone likely occurs through dopamine.
Nathan Goodyear

Postmenopausal circulating levels of 2- and 16α-hydroxyestrone and risk of en... - 0 views

  • our results do not support the hypothesis that greater metabolism of oestrogen via the 2-OH pathway, relative to the 16α-OH pathway, protects against endometrial cancer. Indeed our results are more suggestive of an increase in risk, rather than a decrease, with higher levels of 2-OHE1
  • women with a higher 2-OHE1 : 16α-OHE1 ratio did not have a decreased risk of endometrial cancer as compared with women with a lower ratio
  • The findings from this first prospective epidemiological study of oestrogen metabolites and endometrial cancer are in line with results from prospective studies on breast cancer, another oestrogen-related cancer. None of the seven studies on breast cancer reported significant associations overall
  • ...4 more annotations...
  • On the whole, prospective epidemiological data do not support the hypothesis that the 2-hydroxyestrogen pathway is protective, and the 16α-hydroxyestrogen pathway harmful, in hormone-dependent cancers
  • Both 2- and 4-hydroxyestrogens are catecholestrogens, and it has been suggested that catecholestrogens increase risk of oestrogen-mediated cancers through direct genotoxic effects, rather than through stimulation of cell proliferation via binding to oestrogen receptors
  • the evidence is stronger for 4-hydroxyestrogens than for 2-hydroxyestrogens
  • a significant increase in risk of breast cancer with levels of 2-OHE1 has also been reported previously, although it was limited to hormone receptor-negative tumours
  •  
    2:16 hydroxyestrone ratio not associated with uterine cancer risk.
Nathan Goodyear

Urinary Estrogens and Estrogen Metabolites and Subsequent Risk of Breast Cancer among P... - 0 views

  • both 2- and 4-catechol estrogen metabolites bind to the ER with affinities comparable with estradiol, 4-catechol estrogen metabolites have lower dissociation rates than estradiol and an enhanced ability to upregulate ER-dependent processes
  • 2-catechol estrogen metabolites act as either weak mitogens (39) or weak inhibitors of cell proliferation
  • While 16α-hydroxyestrone binds to the ER with lower affinity than estradiol, it binds covalently (41) and leads to a constitutively activated ER
  • ...15 more annotations...
  • 4-hydroxyestradiol and 16α-hydroxyestrone increasing proliferation and decreasing apoptosis in a manner similar to estradiol; however, these effects were achieved only at concentrations 10-fold higher than estradiol (39). In contrast, 2-hydroxyestradiol did not have substantial proliferative or antiapoptotic effects
  • In our study, the associations with both 2-hydroxyestrone and 16α-hydroxyestrone were nonsignificantly inverse and we did not observe a consistent trend or significant associations between the 2-hydroxyestrone:16α-hydroxyestrone ratio and breast cancer risk
  • Ratios of the 3 hydroxylation pathways were not significantly associated with risk although the 2:16-pathway and 4:16-pathway ratios were suggestively inversely associated
  • a significant inverse association with the ratio of parent estrogens to estrogen metabolites
  • several potentially estrogenic and genotoxic mechanisms
  • Estrogen metabolites also can be genotoxic
  • Catechol estrogens can be oxidized into quinones and induce DNA damage directly through the formation of DNA adducts, or indirectly via redox cycling and generation of reactive oxygen species
  • the oxidized forms of the catechol estrogens differ in their ability to damage DNA through adducts, with oxidized 2-catechols forming stable and reversible DNA adducts and oxidized 4-catechols forming unstable adducts, which lead to depurination and mutations
  • 2- and 4-catechols have been shown to produce reactive oxygen species and induce oxidative DNA damage
  • act independently from the ER
  • 16α-Hydroxyestrone also may be genotoxic
  • While the catechol estrogens have estrogenic and genotoxic potential, the methylated catechol estrogens, which are catechol estrogens with one hydroxyl group methylated, have been hypothesized to lower the risk of breast cancer
  • The suggested mechanisms are indirect, by decreasing circulating levels of catechol estrogens and thereby the opportunity for catechols to exert genotoxic or proliferative effects, or direct, by inhibiting tumor growth and inducing apoptosis
  • the balance between phase I (oxidation) and phase II (methylation) metabolism of estrogen may be important in hormonally related cancer development.
  • Despite the estrogenic and genotoxic potential of many of the estrogen metabolites, we only observed a significantly increased breast cancer risk with one estrogen metabolite, 17-epiestriol, which has particularly strong estrogenic activity and binds to both ERα and ERβ with an affinity comparable with estradiol
  •  
    review of estrogen metabolites and breast cancer risk in premenopausal women.
Nathan Goodyear

QUINOLINIC ACID AND KYNURENINE PATHWAY METABOLISM IN INFLAMMATORY AND NON-INFLAMMATORY ... - 0 views

  • QUIN and kynurenic acid are mediators of neuronal dysfunction and nerve cell death in inflammatory diseases.
  •  
    kynurenine pathway and neurological inflammation
Nathan Goodyear

Kynurenine pathway inhibition reduces central nervous system inflammation in a model of... - 0 views

  • A number of the catabolites produced along this pathway show neurotoxic or neuroprotective activities, and their role in the generation of central nervous system inflammation is well documented.
  •  
    kyneurenine pathway leads to CNS inflammation and neurotoxicity
Nathan Goodyear

The kynurenine pathway and inflammation in amyotro... [Neurotox Res. 2010] - PubMed result - 0 views

  • We show the presence of neuroinflammation in ALS and provide the first strong evidence for the involvement of the KP in ALS. These data point to an inflammation-driven excitotoxic-chelation defective mechanism in ALS, which may be amenable to inhibitors of the KP
  •  
    kynnurenine pathway, inflammation and neurodegenerative disease
Nathan Goodyear

Characterization of the Kynurenine Pathway in Human Neurons - 0 views

  •  
    review of the kynurenine pathway 
Nathan Goodyear

Anticancer mechanisms of cannabinoids - 0 views

  • modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival
  • cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals
  • Cannabis sativa L. (marijuana)
  • ...41 more annotations...
  • of the approximately 108 cannabinoids produced by C. sativa, Δ9-tetrahydrocannabinol (thc) is the most relevant because of its high potency and abundance in plant preparations
  • Tetrahydrocannabinol exerts a wide variety of biologic effects by mimicking endogenous substances—the endocannabinoids anandamide3 and 2-arachidonoylglycerol4,5—that engage specific cell-surface cannabinoid receptors
  • the cb2 receptor was initially described to be present in the immune system6, but was more recently shown to also be expressed in cells from other origins
  • transient receptor potential cation channel subfamily V, member 1
  • orphan G protein–coupled receptor 55
  • Most of the effects produced by cannabinoids in the nervous system and in non-neural tissues rely on cb1 receptor activation
  • two major cannabinoid-specific receptors—cb1 and cb2
  • cardiovascular tone, energy metabolism, immunity, and reproduction
  • cannabinoids are well known to exert palliative effects in cancer patients
  • best-established use is the inhibition of chemotherapy-induced nausea and vomiting
  • thc and other cannabinoids exhibit antitumour effects in a wide array of animal models of cancer
  • cannabinoid receptors and their endogenous ligands are both generally upregulated in tumour tissue compared with non-tumour tissue
  • cb2 promotes her2 (human epidermal growth factor receptor 2) pro-oncogenic signalling in breast cancer
  • pharmacologic activation of cannabinoid receptors decreases tumour growth
  • endocannabinoid signalling can also have a tumour-suppressive role
  • pharmacologic stimulation of cb receptors is, in most cases, antitumourigenic. Nonetheless, a few reports have proposed a tumour-promoting effect of cannabinoids
  • most prevalent effect is the induction of cancer cell death by apoptosis and the inhibition of cancer cell proliferation
  • impair tumour angiogenesis and block invasion and metastasis
  • thc and other cannabinoids induce the apoptotic death of glioma cells by cb1- and cb2-dependent stimulation
  • Autophagy is primarily a cytoprotective mechanism, although its activation can also lead to cell death
  • autophagy is important for cannabinoid antineoplastic activity
  • autophagy is upstream of apoptosis in the mechanism of cannabinoid-induced cell death
  • the effect of cannabinoids in hormone- dependent tumours might rely, at least in part, on the ability to interfere with the activation of growth factor receptors
  • glioma cells), pharmacologic blockade of either cb1 or cb2 prevents cannabinoid-induced cell death with similar efficacy
  • other types of cancer cells (pancreatic48, breast24, or hepatic43 carcinoma cells, for example), antagonists of cb2 but not of cb1 inhibit cannabinoid antitumour actions
  • thc promotes cancer cell death in a cb1- or cb2-dependent manner (or both) at lower concentrations
  • cannabidiol (cbd), a phytocannabinoid with a low affinity for cannabinoid receptors15, and other marijuana-derived cannabinoids57 have also been proposed to promote the apoptotic death of cancer cells acting independently of the cb1 and cb2 receptors
  • In cancer cells, cannabinoids block the activation of the vascular endothelial growth factor (vegf) pathway, an inducer of angiogenesi
  • In vascular endothelial cells, cannabinoid receptor activation inhibits proliferation and migration, and induces apoptosis
  • cb1 or cb2 receptor agonists (or both) reduce the formation of distant tumour masses in animal models of both induced and spontaneous metastasis, and inhibit adhesion, migration, and invasiveness of glioma64, breast65,66, lung67,68, and cervical68 cancer cells in culture
  • the ceramide/p8–regulated pathway plays a general role in the antitumour activity of cannabinoids targeting cb1 and cb2
  • cbd, by acting independently of the cb1 and cb2 receptors, produces a remarkable anti-tumour effect—including reduction of invasiveness and metastasis
  • cannabinoids can also enhance immune system–mediated tumour surveillance in some contexts
  • ability of thc to reduce inflammation75,76, an effect that might prevent certain types of cancer
  • recent observations suggest that the combined administration of cannabinoids with other anticancer drugs acts synergistically to reduce tumour growth
  • combined administration of gemcitabine (the benchmark agent for the treatment of pancreatic cancer) and various cannabinoid agonists synergistically reduced the viability of pancreatic cancer cells
  • Other reports indicated that anandamide and HU-210 might also enhance the anticancer activity of paclitaxel89 and 5-fluorouracil90 respectively
  • Combined administration of thc and cbd enhances the anticancer activity of thc and reduces the dose of thc needed to induce its tumour growth-inhibiting activity
  • Preclinical animal models have yielded data indicating that systemic (oral or intraperitoneal) administration of cannabinoids effectively decreases tumour growth
  • Combinations of cannabinoids with classical chemotherapeutic drugs such as the alkylating agent temozolomide (the benchmark agent for the management of glioblastoma80,84) have been shown to produce a strong anticancer action in animal models
  • pharmacologic inhibition of egfr, erk83, or akt enhances the cell-death-promoting action of thc in glioma cultures (unpublished observations by the authors), which suggests that targeting egfr and the akt and erk pathways could enhance the antitumour effect of cannabinoids
  •  
    Good review of the anticancer effects of cananbinoids.
Nathan Goodyear

The current state and future perspectives of cannabinoids in cancer biology - 0 views

  • The activation of each of them leads to an inhibition of adenylyl cyclase via G proteins (Gi/o), which in turn activates many metabolic pathways such as mitogen‐activated protein kinase pathway (MAPK), phosphoinositide 3‐kinase pathway (PI3K), cyclooxygenase‐2 pathway (COX‐2), accumulation of ceramide, modulation of protein kinase B (Akt), and ion channels
  • phytocannabinoids, endocannabinoids, and synthetic cannabinoids
  • Action of THC in human organism relies on mimicking endogenous agonists of CB receptors—endocannabinoids
  • ...8 more annotations...
  • The upregulated expression of CB receptors and the elevated levels of endocannabinoids have been observed in a variety of cancer cells (skin, prostate, and colon cancer, hepatocellular carcinoma, endometrial sarcoma, glioblastoma multiforme, meningioma and pituitary adenoma, Hodgkin lymphoma, chemically induced hepatocarcinoma, mantel cell lymphoma)
  • concentration of endocannabinoids, expression level of their receptors, and the enzymes involved in their metabolism frequently are associated with an aggressiveness of cancer
  • CB2 receptor contributes to human epidermal growth factor receptor (HER2) pro‐oncogenic signaling and an overexpression of CB2 increases susceptibility for leukemia development after leukemia viral infection
  • endocannabinoid‐degrading enzymes are upregulated in cancer cell lines and in human tumors
  • Many cannabinoids, ranging from phytocannabinoids (THC, CBD), endocannabinoids (2‐arachidonoylglycerol, anandamide), to synthetic cannabinoids (JWH‐133, WIN‐55,212‐2), have shown ability to inhibit proliferation, metastasis, and angiogenesis in a variety of models of cancer
  • Despite some inconsistent data, the main effect of cannabinoids in a tumor is the inhibition of cancer cells’ proliferation and induction of cancer cell death by apoptosis
  • CB1 and CB2 receptor agonists stimulate apoptotic cell death in glioma cells by induction of de novo synthesis of ceramide, sphingolipid with proapoptotic activity
  • process of autophagy is upstream of apoptosis in mechanism of cell death induced by cannabinoids
Nathan Goodyear

Niclosamide Suppresses Cancer Cell Growth By Inducing Wnt Co-Receptor LRP6 De... - 0 views

  • Wnt/β-catenin signaling plays an important role in embryonic development and can lead to tumor formation when aberrantly activated.
  • Compelling evidence has indicated that there is an abnormal up-regulation of this pathway in tumorigenesis of many types of cancer
  • disruption of Wnt/β-catenin signaling represents a great opportunity to develop novel drugs for cancer chemoprevention and therapy
  • ...2 more annotations...
  • Niclosamide (trade name Niclocide) is a teniacide in the antihelmintic family that is especially effective against cestodes, which infects humans. Niclosamide has been FDA approved for such indications and has been used in humans for nearly 50 years
  • We demonstrated for the first time that niclosamide can inhibit Wnt/β-catenin signaling by inducing LRP6 degradation, and that this activity is closely associated with its antiproliferative and apoptosis inducing activity.
  •  
    Niclosamide, an old anti-parasitic drug, found to inhibit the Wnt/B-catenin pathways so critical to cancer growth.  This triggers apoptosis of the cancer cell.
Nathan Goodyear

Curcumin Blocks the Activation of Androgen and Interlukin‐6 on Prostate‐Speci... - 0 views

  •  
    IL‐6 increases PSA and androgen receptor expression through a STAT3‐dependent pathway in the absence of androgen in LNCaP cells. Our results agreed with those of an earlier study that indicated that IL‐6 induced expression of the androgen receptor, which up‐regulated PSA promoter activity in the androgen‐independent pathway. Moreover, curcumin blocked stimulation of IL‐6 on the androgen receptor, which attenuated PSA gene expression in a ligand‐independent manner.
Nathan Goodyear

American College of Cardiology Foundation | Journal of the American College of Cardiolo... - 0 views

  • Although currently no drugs that specifically target mitochondrial biogenesis in HF are available, acceleration of this process through adenosine monophosphate–activated kinase (AMPK), endothelial nitric oxide synthase (eNOS), and other pathways may represent a promising therapeutic approach
  • Mitochondrial biogenesis can be enhanced therapeutically with the use of adenosine monophosphate kinase (AMPK) agonists, stimulants of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway (including phosphodiesteraes type 5 inhibitors), or resveratrol
  • metformin, a commonly used antidiabetic drug that activates AMPK signaling
  • ...10 more annotations...
  • Recent evidence suggests that the eNOS/NO/cGMP pathway is an important activator of mitochondrial biogenesis
  • BH4 (tetrahydrobiopterin) supplementation can prevent eNOS uncoupling and was found to reduce left ventricular hypertrophy
  • folic acid is known to replenish reduced BH4 and has been shown to protect the heart through increased eNOS activity
  • Both folate deficiency and inhibition of BH4 synthesis were associated with reduced mitochondrial number and function
  • Resveratrol, a polyphenol compound responsible for the cardioprotective properties of red wine, was recently identified as a potent stimulator of mitochondrial biogenesis
  • epidemiological studies reveal a reduced risk of cardiovascular disease in premenopausal, but not post-menopausal, women compared with men
  • post-menopausal women
    • Nathan Goodyear
       
      I would hypothesis that a change in the predominance of ER expression is one of ER beta to ER alpha: creating a more pro-inflammatory signal.
  • The majority of ROS in the heart appear to come from uncoupling of mitochondrial electron transport chain at the level of complexes I and III
  • Because the majority of ROS in HF comes from mitochondria, these organelles are the primary target of oxidative damage.
  • cardioprotective therapies such as angiotensin-converting enzyme inhibitors and ATII receptor blockers were shown to possess antioxidant properties, although it is not known whether they target mitochondrial ROS directly or indirectly
  •  
    great review of mitochondrial biogenesis, oxidative stress and heart failure.  
Nathan Goodyear

Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells - 0 views

  •  
    review of mammalian mitochondrial NAD pathways.
Nathan Goodyear

Natural Killer Cells in Pregnancy and Recurrent Pregnancy Loss: Endocrine and Immunolog... - 0 views

  • NK cells have been the cells most extensively studied, primarily because they constitute the predominant leukocyte population present in the endometrium at the time of implantation and in early pregnancy
  • parental chromosomal abnormalities, uterine anatomic anomalies, endometrial infections, endocrine etiologies (luteal phase defect, thyroid dysfunction, uncontrolled diabetes mellitus), antiphospholipid syndrome, inherited thrombophilias, and alloimmune causes
  • estrogen
  • ...28 more annotations...
  • progesterone
  • prolactin
  • In summary, in vivo animal experiments have shown an inhibitory role of estrogen on peripheral NK cell lytic activity, which is partly due to suppression of NK cell output by the bone marrow and partly due to suppression of individual NK cell cytotoxicity. However, in vitro studies so far have failed to show conclusively a direct effect of estrogen on NK cells.
  • At the progesterone concentrations believed to be present in the uterus [up to 10−5 m at the maternal-fetal interface (35)], studies consistently show inhibition of lymphocyte proliferation (33) and inhibition of NK cytolytic activity in vitro
  • The exact role of prolactin in NK cell regulation is unknown.
  • The overall effects of estrogen on NK cells are likely multifactorial, therefore, and depend on the type of cell affected as well as the kind of ER expressed by that cell.
  • It is known that progesterone can directly affect T cell differentiation in vitro, suppressing development of the Th1 pathway and enhancing differentiation along the Th2 pathway (44)
  • Th1 cells predominantly produce interferon-γ (IFN-γ), IL-2, and TNF-β and are involved in cell-mediated immunity. Th2 cells produce IL-4, IL-5, IL-6, IL-10, and IL-13 and stimulate humoral immunity
  • Furthermore, in response to progesterone, γδ T cells produce progesterone-induced blocking factor (PIBF) (54
  • A defining characteristic of NK cells is their ability to lyse target cells without prior sensitization and without restriction by HLA antigens.
  • NK cell function is mainly regulated by IL-2 and IFN-γ
  • IL-2 causes both NK cell proliferation and enhanced cytotoxicity. IFN-γ augments NK cytolytic activity, but does not cause NK proliferation. The two cytokines act synergistically to augment NK cytotoxicity (6).
  • The largest leukocyte population in the endometrium consists of NK cells named large granulated lymphocytes
  • there is a significant increase in the number of uNK cells throughout the secretory phase, which peaks in early pregnancy when uNK cells comprise about 75% of uterine leukocytes (62)
  • Second, uNK cell phenotype changes during the normal menstrual cycle and early pregnancy (68)
  • general proinflammatory effect of estrogen, causing an influx of macrophages and neutrophils, which is antagonized by progesterone through its receptor (70, 71).
  • The mechanism of such a progesterone-induced local immunosuppression is unclear.
  • progesterone plays an important role in proliferation and differentiation of uNK cells (32).
  • Through promotion of a uterine Th2 environment, progesterone could indirectly affect uNK cell function
  • The mechanism of this increase in uNK cell numbers has been addressed in both human and mouse models, and is likely the result of: 1) recruitment of peripheral NK cells to the uterus, and 2) proliferation of existing uNK cells
  • prolactin system plays an important role in implantation and the maintenance of pregnancy
  • the exact pathways of hormonal regulation of NK cells remain to be delineated.
  • The exact function of uNK cells has not yet been unequivocally determined
  • uNK cells express a different cytokine profile, compared with resting peripheral NK cells. mRNAs for granulocyte CSF, M-CSF, GM-CSF, TNF-α, IFN-γ, TGF-β, and leukemia inhibitory factor (LIF) have been found in decidual CD56+ cells
  • Their increased numbers in early pregnancy, their hormonal dependence, and their close proximity to the infiltrating trophoblast all suggest that they play an important role in the regulation of the maternal immune response to the fetal allograft and the control of trophoblast growth and invasion during human pregnancy
  • role of uNK cell-derived cytokines on trophoblast growth and differentiation (114, 115, 116, 117).
  • Th1 immunity to trophoblast is associated with RPL, whereas Th2 immunity is associated with a successful pregnancy
  • RPL is associated with Th1 immunity, for which NK cells are partly responsible.
  •  
    dysregulated immune system plays role in recurrent miscarriage.  Specifically, this article discusses natural killer cells (NK).
Nathan Goodyear

Changes in Ubiquitin Proteasome Pathway Gene Expression in Skeletal Muscle With Exercis... - 0 views

  •  
    statin therapy shown to decrease genetic expression of the ubiquitin proteasome pathway.   Not only do statins damage mitochondria through CoQ10 depletion, but this study shows a new component of the damage statins do: they actually change the human genetic expression.  This should startle you.
Nathan Goodyear

The Canonical NF-κB Pathway Governs Mammary Tumorigenesis in Transgenic Mice ... - 0 views

  •  
    NF-kappaB and the associated inflammatory pathways are associated with tumor growth, vascular growth within the tumor, and increased migration of macrophages--thus more inflammation.  When NF-kappaB inhibition was achieved, tumor macrophages and new tumor blood vessel growth was decreased.  Reduced blood vessel growth to the tumor has implications on metastasis of the tumor.
Nathan Goodyear

Access : FFA-Induced Adipocyte Inflammation and Insulin Resistance: Involvement of ER S... - 0 views

  •  
    elevated FFA (free-fatty acids) shown to produce inflammation and insulin resistance through endoplasmic reticulum stress.  The main target in this pathway is IKK-Beta overexpression.
Nathan Goodyear

Pathway Central: PPAR Pathway - 0 views

  •  
    good description of the different types of PPAR's.  PPAR's are nuclear transcription factors that regulate lipid metabolism and mitochondrial function.
Nathan Goodyear

KEGG PATHWAY: Glutathione metabolism - Reference pathway - 0 views

  •  
    Glutathione metabolism: not for the faint of heart
‹ Previous 21 - 40 of 365 Next › Last »
Showing 20 items per page