Skip to main content

Home/ Dr. Goodyear/ Group items tagged pathway

Rss Feed Group items tagged

Nathan Goodyear

Inflammatory cause of metabolic syndrome via brain stress and NF-κB - 0 views

  • Mechanistic studies further showed that such metabolic inflammation is related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect under prolonged nutritional excess
  • intracellular stress-inflammation process for metabolic syndrome has been established in the central nervous system (CNS) and particularly in the hypothalamus
  • the CNS and the comprised hypothalamus are known to govern various metabolic activities of the body including appetite control, energy expenditure, carbohydrate and lipid metabolism, and blood pressure homeostasis
  • ...56 more annotations...
  • Reactive oxygen species (ROS) refer to a class of radical or non-radical oxygen-containing molecules that have high oxidative reactivity with lipids, proteins, and nucleic acids
  • a large measure of intracellular ROS comes from the leakage of mitochondrial electron transport chain (ETC)
  • Another major source of intracellular ROS is the intentional generation of superoxides by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
  • there are other ROS-producing enzymes such as cyclooxygenases, lipoxygenases, xanthine oxidase, and cytochrome p450 enzymes, which are involved with specific metabolic processes
  • To counteract the toxic effects of molecular oxidation by ROS, cells are equipped with a battery of antioxidant enzymes such as superoxide dismutases, catalase, peroxiredoxins, sulfiredoxin, and aldehyde dehydrogenases
  • intracellular oxidative stress has been indicated to contribute to metabolic syndrome and related diseases, including T2D [72; 73], CVDs [74-76], neurodegenerative diseases [69; 77-80], and cancers
  • intracellular oxidative stress is highly associated with the development of neurodegenerative diseases [69] and brain aging
  • dietary obesity was found to induce NADPH oxidase-associated oxidative stress in rat brain
  • mitochondrial dysfunction in hypothalamic proopiomelanocortin (POMC) neurons causes central glucose sensing impairment
  • Endoplasmic reticulum (ER) is the cellular organelle responsible for protein synthesis, maturation, and trafficking to secretory pathways
  • unfolded protein response (UPR) machinery
  • ER stress has been associated to obesity, insulin resistance, T2D, CVDs, cancers, and neurodegenerative diseases
  • brain ER stress underlies neurodegenerative diseases
  • under environmental stress such as nutrient deprivation or hypoxia, autophagy is strongly induced to breakdown macromolecules into reusable amino acids and fatty acids for survival
  • intact autophagy function is required for the hypothalamus to properly control metabolic and energy homeostasis, while hypothalamic autophagy defect leads to the development of metabolic syndrome such as obesity and insulin resistance
  • prolonged oxidative stress or ER stress has been shown to impair autophagy function in disease milieu of cancer or aging
  • TLRs are an important class of membrane-bound pattern recognition receptors in classical innate immune defense
  • Most hypothalamic cell types including neurons and glia cells express TLRs
  • overnutrition constitutes an environmental stimulus that can activate TLR pathways to mediate the development of metabolic syndrome related disorders such as obesity, insulin resistance, T2D, and atherosclerotic CVDs
  • Isoforms TLR1, 2, 4, and 6 may be particularly pertinent to pathogenic signaling induced by lipid overnutrition
  • hypothalamic TLR4 and downstream inflammatory signaling are activated in response to central lipid excess via direct intra-brain lipid administration or HFD-feeding
  • overnutrition-induced metabolic derangements such as central leptin resistance, systemic insulin resistance, and weight gain
  • these evidences based on brain TLR signaling further support the notion that CNS is the primary site for overnutrition to cause the development of metabolic syndrome.
  • circulating cytokines can limitedly travel to the hypothalamus through the leaky blood-brain barrier around the mediobasal hypothalamus to activate hypothalamic cytokine receptors
  • significant evidences have been recently documented demonstrating the role of cytokine receptor pathways in the development of metabolic syndrome components
  • entral administration of TNF-α at low doses faithfully replicated the effects of central metabolic inflammation in enhancing eating, decreasing energy expenditure [158;159], and causing obesity-related hypertension
  • Resistin, an adipocyte-derived proinflammatory cytokine, has been found to promote hepatic insulin resistance through its central actions
  • both TLR pathways and cytokine receptor pathways are involved in central inflammatory mechanism of metabolic syndrome and related diseases.
  • In quiescent state, NF-κB resides in the cytoplasm in an inactive form due to inhibitory binding by IκBα protein
  • IKKβ activation via receptor-mediated pathway, leading to IκBα phosphorylation and degradation and subsequent release of NF-κB activity
  • Research in the past decade has found that activation of IKKβ/NF-κB proinflammatory pathway in metabolic tissues is a prominent feature of various metabolic disorders related to overnutrition
  • it happens in metabolic tissues, it is mainly associated with overnutrition-induced metabolic derangements, and most importantly, it is relatively low-grade and chronic
  • this paradigm of IKKβ/NF-κB-mediated metabolic inflammation has been identified in the CNS – particularly the comprised hypothalamus, which primarily accounts for to the development of overnutrition-induced metabolic syndrome and related disorders such as obesity, insulin resistance, T2D, and obesity-related hypertension
  • evidences have pointed to intracellular oxidative stress and mitochondrial dysfunction as upstream events that mediate hypothalamic NF-κB activation in a receptor-independent manner under overnutrition
  • In the context of metabolic syndrome, oxidative stress-related NF-κB activation in metabolic tissues or vascular systems has been implicated in a broad range of metabolic syndrome-related diseases, such as diabetes, atherosclerosis, cardiac infarct, stroke, cancer, and aging
  • intracellular oxidative stress seems to be a likely pathogenic link that bridges overnutrition with NF-κB activation leading to central metabolic dysregulation
  • overnutrition is an environmental inducer for intracellular oxidative stress regardless of tissues involved
  • excessive nutrients, when transported into cells, directly increase mitochondrial oxidative workload, which causes increased production of ROS by mitochondrial ETC
  • oxidative stress has been shown to activate NF-κB pathway in neurons or glial cells in several types of metabolic syndrome-related neural diseases, such as stroke [185], neurodegenerative diseases [186-188], and brain aging
  • central nutrient excess (e.g., glucose or lipids) has been shown to activate NF-κB in the hypothalamus [34-37] to account for overnutrition-induced central metabolic dysregulations
  • overnutrition can present the cell with a metabolic overload that exceeds the physiological adaptive range of UPR, resulting in the development of ER stress and systemic metabolic disorders
  • chronic ER stress in peripheral metabolic tissues such as adipocytes, liver, muscle, and pancreatic cells is a salient feature of overnutrition-related diseases
  • recent literature supports a model that brain ER stress and NF-κB activation reciprocally promote each other in the development of central metabolic dysregulations
  • when intracellular stresses remain unresolved, prolonged autophagy upregulation progresses into autophagy defect
  • autophagy defect can induce NF-κB-mediated inflammation in association with the development of cancer or inflammatory diseases (e.g., Crohn's disease)
  • The connection between autophagy defect and proinflammatory activation of NF-κB pathway can also be inferred in metabolic syndrome, since both autophagy defect [126-133;200] and NF-κB activation [20-33] are implicated in the development of overnutrition-related metabolic diseases
  • Both TLR pathway and cytokine receptor pathways are closely related to IKKβ/NF-κB signaling in the central pathogenesis of metabolic syndrome
  • Overnutrition, especially in the form of HFD feeding, was shown to activate TLR4 signaling and downstream IKKβ/NF-κB pathway
  • TLR4 activation leads to MyD88-dependent NF-κB activation in early phase and MyD88-indepdnent MAPK/JNK pathway in late phase
  • these studies point to NF-κB as an immediate signaling effector for TLR4 activation in central inflammatory response
  • TLR4 activation has been shown to induce intracellular ER stress to indirectly cause metabolic inflammation in the hypothalamus
  • central TLR4-NF-κB pathway may represent one of the early receptor-mediated events in overnutrition-induced central inflammation.
  • cytokines and their receptors are both upstream activating components and downstream transcriptional targets of NF-κB activation
  • central administration of TNF-α at low dose can mimic the effect of obesity-related inflammatory milieu to activate IKKβ/NF-κB proinflammatory pathways, furthering the development of overeating, energy expenditure decrease, and weight gain
  • the physiological effects of IKKβ/NF-κB activation seem to be cell type-dependent, i.e., IKKβ/NF-κB activation in hypothalamic agouti-related protein (AGRP) neurons primarily leads to the development of energy imbalance and obesity [34]; while in hypothalamic POMC neurons, it primarily results in the development of hypertension and glucose intolerance
  • the hypothalamus, is the central regulator of energy and body weight balance [
  •  
    Great article chronicles the biochemistry of "over nutrition" and inflammation through NF-kappaB activation and its impact on the brain.
Nathan Goodyear

Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer... - 0 views

  • More than half of cancer patients are treated with IR at some point during their treatment
  • fractionation schedule is the delivery of 1.8–2.0 Gy per day, five days per week
  • Nuclear DNA is the primary target of IR; it causes DNA damage (genotoxic stress) by direct DNA ionization
  • ...121 more annotations...
  • IR also indirectly induces DNA damage by stimulating reactive oxygen species (ROS) production
  • IR is known to induce EMT in vitro
  • p53 is activated in response to IR-induced DNA damage
  • IR paradoxically also promotes tumour recurrence and metastasis
  • DNA double-strand breaks (DSBs)
  • cancer cells undergoing EMT acquire invasive and metastatic properties
  • changes in the tumour microenvironment (TME)
  • IR seems to induce EMT and CSC phenotypes by regulating cellular metabolism
  • EMT, stemness, and oncogenic metabolism are known to be associated with resistance to radiotherapy and chemotherapy
  • Hanahan and Weinberg proposed ten hallmarks of cancer that alter cell physiology to enhance malignant growth: 1) sustained proliferation, 2) evasion of growth suppression, 3) cell death resistance, 4) replicative immortality, 5) evasion of immune destruction, 6) tumour-promoting inflammation, 7) activation of invasion and metastasis, 8) induction of angiogenesis, 9) genome instability, and 10) alteration of metabolism
  • EMT is a developmental process that plays critical roles in embryogenesis, wound healing, and organ fibrosis
  • IR is known to induce stemness and metabolic alterations in cancer cells
  • transforming growth factor-β [TGF-β], epidermal growth factor [EGF]) and their associated signalling proteins (Wnt, Notch, Hedgehog, nuclear-factor kappa B [NF-κB], extracellular signal-regulated kinase [ERK], and phosphatidylinositol 3-kinase [PI3K]/Akt
  • activate EMT-inducing transcription factors, including Snail/Slug, ZEB1/δEF1, ZEB2/SIP1, Twist1/2, and E12/E47
  • Loss of E-cadherin is considered a hallmark of EMT
  • IR has been shown to induce EMT to enhance the motility and invasiveness of several cancer cells, including those of breast, lung, and liver cancer, and glioma cells
  • IR may increase metastasis in both the primary tumour site and in normal tissues under some circumstance
  • sublethal doses of IR have been shown to enhance the migratory and invasive behaviours of glioma cells
  • ROS are known to play an important role in IR-induced EMT
  • High levels of ROS trigger cell death by causing irreversible damage to cellular components such as proteins, nucleic acids, and lipids, whereas low levels of ROS have been shown to promote tumour progression—including tumour growth, invasion, and metastasis
  • hypoxia-inducible factor-1 (HIF-1) is involved in IR-induced EMT
  • Treatment with the N-acetylcysteine (NAC), a general ROS scavenger, prevents IR-induced EMT, adhesive affinity, and invasion of breast cancer cells
    • Nathan Goodyear
       
      NAC for all patients receiving radiation therapy
  • Snail has been shown to play a crucial role in IR-induced EMT, migration, and invasion
  • IR activates the p38 MAPK pathway, which contributes to the induction of Snail expression to promote EMT and invasion
  • NF-κB signalling that promotes cell migration
  • ROS promote EMT to allow cancer cells to avoid hostile environments
  • HIF-1 is a heterodimer composed of an oxygen-sensitive α subunit and a constitutively expressed β subunit.
  • Under normoxia, HIF-1α is rapidly degraded, whereas hypoxia induces stabilisation and accumulation of HIF-1α
  • levels of HIF-1α mRNA are enhanced by activation of the PI3K/Akt/mammalian target of rapamycin (mTOR)
  • IR is known to increase stabilisation and nuclear accumulation of HIF-1α, since hypoxia is a major condition for HIF-1 activation
  • IR induces vascular damage that causes hypoxia
  • ROS is implicated in IR-induced HIF-1 activation
  • IR causes the reoxygenation of hypoxic cancer cells to increase ROS production, which leads to the stabilisation and nuclear accumulation of HIF-1
  • IR increases glucose availability under reoxygenated conditions that promote HIF-1α translation by activating the Akt/mTOR pathway
  • The stabilised HIF-1α then translocates to the nucleus, dimerizes with HIF-1β, and increases gene expression— including the expression of essential EMT regulators such as Snail—to induce EMT, migration, and invasion
  • TGF-β signalling has been shown to play a crucial role in IR-induced EMT
  • AP-1 transcription factor is involved in IR-induced TGF-β1 expression
  • Wnt/β-catenin signalling is also implicated in IR-induced EMT
  • Notch signalling is known to be involved in IR-induced EMT
  • IR also increases Notch-1 expression [99]. Notch-1 is known to induce EMT by upregulating Snail
  • PAI-1 signalling is also implicated in IR-induced Akt activation that increases Snail levels to induce EMT
  • EGFR activation is known to be associated with IR-induced EMT, cell migration, and invasion by activating two downstream pathways: PI3K/Akt and Raf/MEK/ERK
  • ROS and RNS are also implicated in IR-induced EGFR activation
  • IR has also been shown to activate Hedgehog (Hh) signalling to induce EMT
  • IR has been shown to induce Akt activation through several signalling pathways (EGFR, C-X-C chemokine receptor type 4 [CXCR4]/C-X-C motif chemokine 12 [CXCL12], plasminogen activator inhibitor 1 [PAI-1]) and upstream regulators (Bmi1, PTEN) that promote EMT and invasion
  • CSCs possess a capacity for self-renewal, and they can persistently proliferate to initiate tumours upon serial transplantation, thus enabling them to maintain the whole tumour
  • Conventional cancer treatments kill most cancer cells, but CSCs survive due to their resistance to therapy, eventually leading to tumour relapse and metastasis
  • identification of CSCs, three types of markers are utilised: cell surface molecules, transcription factors, and signalling pathway molecules
  • CSCs express distinct and specific surface markers; commonly used ones are CD24, CD34, CD38, CD44, CD90, CD133, and ALDH
  • Transcription factors, including Oct4, Sox2, Nanog, c-Myc, and Klf4,
  • signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, platelet-derived growth factor receptor (PDGFR), and JAK/STAT
  • microRNAs (miRNAs), including let-7, miR-22, miR-34a, miR-128, the miR-200 family, and miR-451
  • Non-CSCs can be reprogrammed to become CSCs by epigenetic and genetic changes
  • EMT-inducing transcription factors, such as Snail, ZEB1, and Twist1, are known to confer CSC properties
  • Signalling pathways involved in EMT, including those of TGF-β, Wnt, and Notch, have been shown to play important roles in inducing the CSC phenotype
  • TGF-β1 not only increases EMT markers (Slug, Twist1, β-catenin, N-cadherin), but also upregulates CSC markers (Oct4, Sox2, Nanog, Klf4) in breast and lung cancer cells
  • some CSC subpopulations arise independently of EMT
  • IR has been shown to induce the CSC phenotype in many cancers, including breast, lung, and prostate cancers, as well as melanoma
  • Genotoxic stress due to IR or chemotherapy promotes a CSC-like phenotype by increasing ROS production
  • IR has been shown to induce reprogramming of differentiated cancer cells into CSCs
  • In prostate cancer patients, radiotherapy increases the CD44+ cell population that exhibit CSC properties
  • IR also induces the re-expression of stem cell regulators, such as Sox2, Oct4, Nanog, and Klf4, to promote stemness in cancer cells
  • EMT-inducing transcription factors and signalling pathways, including Snail, STAT3, Notch signalling, the PI3K/Akt pathway, and the MAPK cascade, have been shown to play important roles in IR-induced CSC properties
  • STAT3 directly binds to the Snail promoter and increases Snail transcription, which induces the EMT and CSC phenotypes, in cisplatin-selected resistant cells
  • Other oncogenic metabolic pathways, including glutamine metabolism, the pentose phosphate pathway (PPP), and synthesis of fatty acids and cholesterol, are also enhanced in many cancers
  • metabolic reprogramming
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • metabolic reprogramming
  • tumour cells exhibit high mitochondrial metabolism as well as aerobic glycolysis
  • occurring within the same tumour
  • CSCs can be highly glycolytic-dependent or oxidative phosphorylation (OXPHOS)-dependen
  • mitochondrial function is crucial for maintaining CSC functionality
  • cancer cells depend on mitochondrial metabolism and increase mitochondrial production of ROS that cause pseudo-hypoxia
  • HIF-1 then enhances glycolysis
  • CAFs have defective mitochondria that lead to the cells exhibiting the Warburg effect; the cells take up glucose, and then secrete lactate to 'feed' adjacent cancer cells
  • lactate transporter, monocarboxylate transporter (MCT)
  • nutrient microenvironment
  • Epithelial cancer cells express MCT1, while CAFs express MCT4. MCT4-positive, hypoxic CAFs secrete lactate by aerobic glycolysis, and MCT1-expressing epithelial cancer cells then uptake and use that lactate as a substrate for the tricarboxylic acid (TCA) cycle
  • MCT4-positive cancer cells depend on glycolysis and then efflux lactate, while MCT1-positive cells uptake lactate and rely on OXPHOS
  • metabolic heterogeneity induces a lactate shuttle between hypoxic/glycolytic cells and oxidative/aerobic tumour cells
  • bulk tumour cells exhibit a glycolytic phenotype, with increased conversion of glucose to lactate (and enhanced lactate efflux through MCT4), CSC subsets depend on oxidative phosphorylation; most of the glucose entering the cells is converted to pyruvate to fuel the TCA cycle and the electron transport chain (ETC), thereby increasing mitochondrial ROS production
  • the major fraction of glucose is directed into the pentose phosphate pathway, to produce redox power through the generation of NADPH and ROS scavengers
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • regulatory molecules involved in EMT and CSCs, including Snail, Dlx-2, HIF-1, STAT3, TGF-β, Wnt, and Akt, are implicated in the metabolic reprogramming of cancer cells
  • HIF-1 induces the expression of glycolytic enzymes, including the glucose transporter GLUT, hexokinase, lactate dehydrogenase (LDH), and MCT, resulting in the glycolytic switch
  • HIF-1 represses the expression of pyruvate dehydrogenase kinase (PDK), which inhibits pyruvate dehydrogenase (PDH), thereby inhibiting mitochondrial activity
  • STAT3 has been implicated in EMT-induced metabolic changes as well
  • TGF-β and Wnt play important roles in the metabolic alteration of cancer cells
  • Akt is also implicated in the glycolytic switch and in promoting cancer cell invasiveness
  • EMT, invasion, metastasis, and stemness
  • pyruvate kinase M2 (PKM2), LDH, and pyruvate carboxylase (PC), are implicated in the induction of the EMT and CSC phenotypes
  • decreased activity of PKM2 is known to promote an overall shift in metabolism to aerobic glycolysis
  • LDH catalyses the bidirectional conversion of lactate to pyruvate
  • High levels of LDHA are positively correlated with the expression of EMT and CSC markers
  • IR has been shown to induce metabolic changes in cancer cells
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR also elevates MCT1 expression that exports lactate into the extracellular environment, leading to acidification of the tumour microenvironment
  • IR increases intracellular glucose, glucose 6-phosphate, fructose, and products of pyruvate (lactate and alanine), suggesting a role for IR in the upregulation of cytosolic aerobic glycolysis
  • Lactate can activate latent TGF-
  • lactate stimulates cell migration and enhances secretion of hyaluronan from CAF that promote tumour metastasis
  • promote tumour survival, growth, invasion, and metastasis; enhance the stiffness of the ECM; contribute to angiogenesis; and induce inflammation by releasing several growth factors and cytokines (TGF-β, VEGF, hepatocyte growth factor [HGF], PDGF, and stromal cell-derived factor 1 [SDF1]), as well as MMP
  • tumours recruit the host tissue’s blood vessel network to perform four mechanisms: angiogenesis (formation of new vessels), vasculogenesis (de novo formation of blood vessels from endothelial precursor cells), co-option, and modification of existing vessels within tissues.
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • intrinsic immunogenicity or induce tolerance
  • cancer immunoediting’
  • three phases: 1) elimination, 2) equilibrium, and 3) escape.
  • The third phase, tumour escape, is mediated by antigen loss, immunosuppressive cells (TAM, MDSCs, and regulatory T cells), and immunosuppressive cytokines (TGF-β and IL-10).
  • IR can elicit various changes in the TME, such as CAF activity-mediated ECM remodelling and fibrosis, cycling hypoxia, and an inflammatory response
  • IR activates CAFs to promote the release of growth factors and ECM modulators, including TGF-β and MMP
  • TGF-β directly influences tumour cells and CAFs, promotes tumour immune escape, and activates HIF-1 signalling
    • Nathan Goodyear
       
      And now the receipts
  • MMPs degrade ECM that facilitates angiogenesis, tumour cell invasion, and metastasis
    • Nathan Goodyear
       
      Receipts and mechanisms
  • IR also promotes MMP-2/9 activation in cancer cells to promote EMT, invasion, and metastasis
  • IR-induced Snail increases MMP-2 expression to promote EMT
  • Radiotherapy has the paradoxical side-effect of increasing tumour aggressiveness
  • IR promotes ROS production in cancer cells, which may induce the activation of oncogenes and the inactivation of tumour suppressors, which further promote oncogenic metabolism
  • Metabolic alterations
  • oncogenic metabolism
  • elicit various changes in the TME
  • Although IR activates an antitumour immune response, this signalling is frequently suppressed by tumour escape mechanisms
  •  
    Important review article.
Nathan Goodyear

Estrogen Metabolism and Risk of Breast Cancer in Postmenopausal Women - 0 views

  • The ratio of the 2-hydroxylation pathway to parent estrogens was associated with a statistically significantly decreased risk of breast cancer
  • In this study, this ratio was more strongly associated with the risk of breast cancer compared with the ratio of 2-hydroxylation pathway to 16-hydroxylation pathway or unconjugated estradiol alone
  • 2-hydroxylation pathway catechols have relatively low affinities for estrogen receptors (4) and are rapidly cleared from circulation
  • ...6 more annotations...
  • In this study, the ratio of the 2-hydroxylation pathway to the 16-hydroxylation pathway was associated with a non-statistically significantly decreased risk of breast cancer
  • In this study, the ratio of catechols to methylated catechols in the 4-hydroxylation pathway was associated with statistically significantly increased risk of breast cancer.
  • This result is consistent with the hypothesis that mutagenic quinones derived from 4-hydroxylation pathway catechols contribute to pathogenesis of postmenopausal breast cancer.
  • Catechols in both the 2- and 4-hydroxylation pathways can be oxidized to form quinones; these reactive electrophiles can then react with DNA to form a variety of adducts
  • Methylation of the catechols prevents their conversion to reactive quinones
  • the most common DNA adducts derived from 4-hydroxylation pathway catechols are depurinating and highly mutagenic (7,40), most of those derived from 2-hydroxylation pathway catechols are stable and can be repaired with little error
  •  
    Lower 2-OH estrone metabolism associated with lower risk of breast cancer, but 4-OH estrone associated with increased risk of breast cancer.
Nathan Goodyear

Cancers | Free Full-Text | A Second WNT for Old Drugs: Drug Repositioning against WNT-D... - 0 views

  • To date nearly half of known human tumors show a dysregulation of the WNT signaling pathway
  • It should be also noted that the WNT pathway is not exclusively employed during development or overactivated in cancer. In adults many healthy tissues rely on it for renewal and homeostasis maintenance, most notably the intestine, haematopoietic system, hair, bones and skin. Therefore one might expect adverse reactions in all these organ systems, which has indeed been observed for many WNT-targeting compounds upon attempts to push them into the clinics
  • The intestine seems to be the most vulnerable in this regard
  • ...8 more annotations...
  • Ivermectin inhibits proliferation of human colon cancer and lung cancer cells both in vitro and in vivo
  • The anti-proliferative action, affecting both the bulk tumor cells and CSCs, was linked in this study to inhibition of WNT signaling
  • the anti-WNT IC50 of ivermectin is 5–10 times (~1–2 µM vs. 10 µM) lower than that of its toxic effect against chloride channels
  • oral bioavailability of the drug, as for other antiparasitic drugs discussed in this section, is very low
  • Toxicity studies in vivo have also demonstrated a wide therapeutic index for ivermectin
  • Its anti-proliferative activity has been demonstrated in a wide array of cancer cell lines representative of WNT-dependent cancers: non-small lung carcinoma [96], multiple myeloma [97], hepatoma [98], adrenocortical carcinoma [99], ovarian cancer [100] and glioblastoma
  • Niclosamide inhibits the canonical WNT pathway
  • In addition to inhibiting the canonical WNT pathway, niclosamide may mediate its anticancer activities through several other signaling pathways such as NOTCH [107], MTOR [108], NF-κB [97] and STAT3 [96]
  •  
    review article highlights older medications that have anti-Wnt pathway effects in cancer.  Roughly, 50% of cancer involve upregulated Wnt pathway activity. Other drugs of note: metformin
Nathan Goodyear

The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pa... - 0 views

  • WNT signaling
  • early colon cancers commonly display loss of function of the tumor suppressor Adenomatous polyposis coli (APC), a key component of the β-CATENIN destruction complex
  • Other cancers also show an active canonical WNT pathway; these include carcinomas of the lung, stomach, cervix, endometrium, and lung as well as melanomas and gliomas
  • ...31 more annotations...
  • In normal embryogenesis and homeostasis, the canonical WNT pathway is activated by secreted WNT ligands produced in highly controlled context-dependent manners and in precise amounts. WNT activity is transduced in the cytoplasm, inactivates the APC destruction complex, and results in the translocation of activate β-CATENIN to the nucleus, where it cooperates with DNA-binding TCF/LEF factors to regulate WNT-TCF targets and the ensuing genomic response
  • beyond the loss of activity of the APC destruction complex, for instance throughAPC mutation, phosphorylation of β-CATENIN at C-terminal sites is required for the full activation of WNT-TCF signaling and the ensuing WNT-TCF responses in cancer.
  • The WNT-TCF response blockade that we describe for low doses of Ivermectin suggests an action independent to the deregulation of chloride channels
  • involve the repression of the levels of C-terminally phosphorylated β-CATENIN forms and of CYCLIN D1, a critical target that is an oncogene and positive cell cycle regulator.
  • the Avermectin single-molecule derivative Selamectin, a drug widely used in veterinarian medicine (Nolan & Lok, 2012), is ten times more potent acting in the nanomolar range
  • Ivermectin also diminished the protein levels of CYCLIN D1, a direct TCF target and oncogene, in both HT29 and H358 tumor cells
  • Activated Caspase3 was used as a marker of apoptosis by immunohistochemistry 48 h after drug treatment. Selamectin and Ivermectin induced up to a sevenfold increase in the number of activated Caspase3+ cells in two primary (CC14 and CC36) and two cell line (DLD1 and Ls174T) colon cancer cell types (Fig​(Fig2C).2C). All changes were significative
  • The strong downregulation of the expression of the intestinal stem cell genesASCL2 andLGR5 (van der Flieret al, 2009; Scheperset al, 2012; Zhuet al, 2012b) by Ivermectin and Selamectin (Fig​(Fig2D)2D) raised the possibility that these drugs could affect WNT-TCF-dependent colon cancer stem cell behavior
  • Pre-established H358 tumors responded to Ivermectin showing a ˜ 50% repression of growth
  • Ivermectin hasin vivo efficacy against human colon cancer xenografts sensitive to TCF inhibition with no discernable side effects
  • Ivermectin (Campbellet al, 1983), an off-patent drug approved for human use, and related macrocyclic lactones, have WNT-TCF pathway response blocking and anti-cancer activities
  • these drugs block WNT-TCF pathway responses, likely acting at the level of β-CATENIN/TCF function, affecting β-CATENIN phosphorylation status.
  • anti-WNT-TCF activities of Ivermectin and Selamectin
  • Ivermectin has a well-known anti-parasitic activity mediated via the deregulation of chloride channels, leading to paralysis and death (Hibbs & Gouaux, 2011; Lynagh & Lynch, 2012). The same mode of action has been suggested to underlie the toxicity of Ivermectin for liquid tumor cells and the potentiation or sensitization effect of Avermectin B1 on classical chemotherapeutics
  • the specificity of the blockade of WNT-TCF responses we document, at low micromolar doses for Ivermectin and low nanomolar doses for Selamectin, indicate that the blockade of WNT-TCF responses and chloride channel deregulation are distinct modes of action
  • What is key then is to find a dose and a context where the use of Ivermectin has beneficial effects in patients, paralleling our results with xenografts in mice.
  • Cell toxicity appears at doses greater (> 10 μM for 12 h or longer or > 5 μM for 48 h or longer for Ivermectin) than those required to block TCF responses and induce apoptosis.
  • Our data point to a repression of WNT-β-CATENIN/TCF transcriptional responses by Ivermectin, Selamectin and related macrocylic lactones.
  • (i) The ability of Avermectin B1 to inhibit the activation of WNT-TCF reporter activity by N-terminal mutant (APC-insensitive) β-CATENIN as detected in our screen
  • (ii) The ability of Avermectin B1, Ivermectin, Doramectin, Moxidectin and Selamectin to parallel the modulation of WNT-TCF targets by dnTCF
  • (iii) The finding that the specific WNT-TCF response blockade by low doses of Ivermectin and Selamectin is reversed by constitutively active TCF
  • (iv) The repression of key C-terminal phospho-isoforms of β-CATENIN resulting in the repression of the TCF target and positive cell cycle regulator CYCLIN D1 by Ivermectin and Selamectin
  • (v) The specific inhibition ofin-vivo-TCF-dependent, but notin-vivo-TCF-independent cancer cells by Ivermectin in xenografts.
  • These results together with the reduction of the expression of the colon cancer stem cell markersASCL2 andLGR5 (e.g., Hirschet al, 2013; Ziskinet al, 2013) raise the possibility of an inhibitory effect of Ivermectin, Selamectin and related macrocyclic lactones on TCF-dependent cancer stem cells.
  • the capacity of cancer cells to form 3D spheroids in culture, as well as the growth of these, is also WNT-TCF-dependent (Kanwaret al, 2010) and they were also affected by Ivermectin treatment
  • If Ivermectin is specific, it should only block TCF-dependent tumor growth. Indeed, the sensitivity and insensitivity of DLD1 and CC14 xenografts to Ivermectin treatment, respectively, together with the desensitization to Ivermectin actionin vivo by constitutively active TCF provide evidence of the specificity of this drug to block an activated WNT-TCF pathway in human cancer.
  • Ivermectin has a good safety profile since onlyin-vivo-dnTCF-sensitive cancer xenografts are responsive to Ivermectin treatment, and we have not detected side effects in Ivermectin-treated mice at the doses used
  • previous work has shown that side effects from systemic treatments with clinically relevant doses in humans are rare (Yang, 2012), that birth defects were not observed after exposure of pregnant mothers (Pacquéet al, 1990) and that this drug does not cross the blood–brain barrier (Kokozet al, 1999). Similarly, only dogs with mutantABCB1 (MDR1) alleles leading to a broken blood–brain barrier show Ivermectin neurotoxicity (Mealeyet al, 2001; Orzechowskiet al, 2012)
  • Indications may include treatment for incurable β-CATENIN/TCF-dependent advanced and metastatic human tumors of the lung, colon, endometrium, and other organs.
  • Ivermectin, Selamectin, or related macrocyclic lactones could also serve as topical agents for WNT-TCF-dependent skin lesions and tumors such as basal cell carcinomas
  • they might also be useful as routine prophylactic agents, for instance against nascent TCF-dependent intestinal tumors in patients with familial polyposis and against nascent sporadic colon tumors in the general aging population
  •  
    Ivermectin, a common anti-parasitic, found to inhibit WTF-TCF pathway and decrease c-terminal phosophorylaiton of Beta-CATENIN all resulting in increased aptosis and inhibition of cancer growth in colon cancer cell lines and lung cancer cell lines.
Nathan Goodyear

Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking m... - 0 views

  • Accumulating evidence suggests that niclosamide targets multiple signaling pathways such as nuclear factor-kappaB (NF-kB), Wnt/β-catenin, and Notch, most of which are closely involved with cancer stem cell proliferation
  • The transcription factor NF-κB has been demonstrated to promote cancer growth, angiogenesis, escape from apoptosis, and tumorigenesis
  • NF-κB is sequestered in the cytosol of resting cells through binding the inhibitory subunit IκBα
  • ...13 more annotations...
  • Niclosamide blocked TNFα-induced IκBα phosphorylation, translocation of p65, and the expression of NF-κB-regulated genes
  • Niclosamide also inhibited the DNA binding of NF-κB to the promoter of its target genes
  • niclosamide has two independent effects: NF-kB activation and ROS elevation
  • The Wnt signaling pathway plays fundamental roles in directing tissue patterning in embryonic development, in maintaining tissue homeostasis in differentiated tissue, and in tumorigenesis
  • niclosamide is a potent inhibitor of the Wnt/β-catenin pathway
  • The Notch signaling pathway plays important roles in a variety of cellular processes such as proliferation, differentiation, apoptosis, cell fate decisions, and maintenance of stem cells
  • niclosamide potently suppresses the luciferase activity of a CBF-1-dependent reporter gene in both a dose-dependent and a time-dependent manners in K562 leukemia cells
  • niclosamide treatment abrogated the epidermal growth factor (EGF)-stimulated dimerization and nuclear translocation and transcriptional activity of Stat3, and induced cell growth inhibition and apoptosis in several types of cancer cells (e.g. Du145, Hela, A549) that exhibit relatively higher levels of Stat3 constitutive activation
  • niclosamide can rapidly increase autophagosome formation
  • niclosamide induced autophagy and inhibited mammalian target of rapamycin complex 1 (mTORC1)
  • Niclosamide has low toxicity in mammals (oral median lethal dose in rats >5000 mg/kg
  • Niclosamide is active against cancer cells such as AML and colorectal cancer cells, not only as a monotherapy but also as part of combination therapy, in which it has been found to be synergistic with frontline chemotherapeutic agents (e.g., oxaliplatin, cytarabine, etoposide, and daunorubicin)
  • Because niclosamide targets multiple signaling pathways (e.g., NF-κB, Wnt/β-catenin, and Notch), most of which are closely involved with cancer stem cells, it holds promise in eradicating cancer stem cells
  •  
    Review article: common anti-parasitic medication, niclosamide, provides anti-proliferative effect in cancer stem cells (CSC), via inhibition of NF-kappaBeta, Wnt/B-catenin, Notch, ROS, mTORC1, and STAT2 pathways.
Nathan Goodyear

Anti-helminth compound niclosamide downregulates Wnt Signaling and elicits antitumor re... - 0 views

  • Others have reported that niclosamide inhibits the NF-κB pathway in leukemia cell lines (26) or mTOR signaling in MCF-7 breast cancer cells
  • niclosamide enhances the anti-tumor effect of oxaliplatin
  • In the more rapidly growing tumor (HCT116), a dose of 200 mg/kg of body weight was needed to suppress the tumor growth
  • ...13 more annotations...
  • however, 100 mg/kg of niclosamide could suppress the growth of the relatively slow-growing tumor (CRC039) to the same level
  • niclosamide was confirmed to inhibit the growth of human CRCs in NOD/SCID mice
  • niclosamide can inhibit Wnt pathway activation in CRC
  • The mechanism of action of the niclosamide in our studies is thought to be through internalization of Fzd1 and downregulation of Wnt pathway intermediaries
  • Recently, Jin et al. (26) reported that niclosamide inhibited the NF-κB pathway and increased reactive oxygen species levels to induce apoptosis in AML cells. In contrast, we did not observe any inhibitory effect of niclosamide on NF-κB signaling in our CRC model
  • One potential concern for the use of niclosamide as an anticancer therapy is the poor absorption of this drug
  • we required higher doses (100 ~ 200 mg/kg body weight) of niclosamide in order to demonstrate significant inhibition of tumor growth in NOD/SCID mice
  • niclosamide concentrations in tumor tissue showed good correlation with those in plasma, suggesting the efficient distribution of niclosamide from blood to tumor tissue
  • we observed downregulation of Dvl2 and ß-catenin cytosolic expression in niclosamide-treated tumor cells in vivo
  • oral administration of niclosamide does result in sufficient distribution of the drug into tumor tissue, to prove a prolonged inhibitory effect on Wnt/ß-catenin signaling, resulting in tumor growth inhibition
  • The Wnt signaling pathway, fundamental to embryonic tissue patterning, is also activated in stem-like cells
  • The canonical Wnt pathway is activated in approximately 80% of sporadic CRC primarily due to mutations in the APC gene
  • recent observations reveal that Wnt ligands or inhibitors may affect the growth and survival of colon cancer cells in spite of the presence of APC or CTNNB1 mutations
  •  
    Niclosamide found to inhibit Wnt/B-catenin signaling pathway, and thus promotion of apoptosis, in colorectal cancer cells in Vivo study.  It was also found to augment chemotherapeutic.
Nathan Goodyear

Pathway Central: ERK Signaling - 0 views

  •  
    I really love biochemistry.  This is a pathway diagram of ERK signaling.  ERK is a subdivision of MAPK, which plays a very important role in regulating cell growth.  Dysfunction in the ERK pathway as well as in JNK and others are implicated in malignant transformation.
Nathan Goodyear

Adenoid cystic carcinoma: current therapy and potential therapeutic advances based on g... - 0 views

  • Cisplatin and 5-FU or CAP (cisplatin, doxorubicin, and cyclophosphamide) regimens can be used for combination chemotherapy
  • patients with advanced salivary gland malignancy treated with the CAP regimen achieved partial response (PR) or stable disease (SD) rates of 67% (8 out of 12 patients)
  • Agents commonly given as monotherapy for treating ACC are cisplatin, mitoxantrone, epirubicin, vinorelbine, paclitaxel, and gemcitabine. However, few of these agents have shown efficacy
  • ...23 more annotations...
  • single agent mitoxantrone or vinorelbine were recommended as reasonable choices
  • ACC is subdivided into 3 histological groups based on solid components of the tumor including cribriform, tubular, and solid
  • Cribriform and tubular ACCs usually exhibit a more indolent course, whereas the solid subtype is associated with worse prognosis
  • ACC consists of two different cell types: inner luminal epithelial cells and outer myoepithelial cells
  • epithelial cells express c-kit, cox-2 and Bcl-2
  • myoepithelial cells express EGFR and MYB
  • a balanced translocation of the v-myb avian myeloblastosis viral oncogene homolog-nuclear factor I/B (MYB-NFIB) is considered to be a signature molecular event of ACC oncogenesis
  • As a transcription factor, MYB is known to modulate multiple genetic downstream targets involved in oncogenesis, such as cox-2, c-kit, Bcl-2 and BclX
  • Various signaling cascades are essential for cancer cells to survive and grow. The PI3K/Akt/mTOR pathway is one of them
  • This pathway regulates cell survival and growth and is upregulated in many cancers
  • Mutations in genes associated with DNA repair are frequently found in familial cancer syndromes, such as hereditary breast-ovarian cancer syndrome (HBOC), hereditary non-polyposis colorectal cancer (HNPCC, also called Lynch syndrome) and Li-Fraumeni syndrome [30, 31]. These mutations were also reported in non-hereditary cancers
  • 70% of ACC samples (58 of 84) were found to have genetic alterations in the MYB/MYC pathway, indicating that changes in this pathway are crucial in ACC pathogenesis
  • The second most frequently mutated pathway was involved in chromatin remodeling (epigenetic modification), a pathway that includes multiple histone related proteins, and was altered in 44% of samples
  • C-kit
  • VEGF, iNOS and NF-κB were noted to be highly expressed in ACC cells as compared to normal salivary gland cells
  • members of the SOX family, such as SOX 4 and SOX10, are overexpressed in ACC
  • FABP7 (Fatty acid binding protein 7) and AQP1 (Aquaporin 1) tend to be overexpressed in ACC cell lines
  • considerable variability in HER2 overexpression ranging from 0–58% in patients with ACC
  • the study with cetuximab and concurrent chemoradiation or chemotherapy showed the highest ORR (total 43%, 9.5% CR and 33% PR), but this regimen was only given to the EGFR positive patients
  • Cancer immunotherapy can be classified into 3 major groups. Active immunization using anti-tumor vaccines to induce and recruit T cells, passive immunization based on monoclonal antibodies, and adoptive cell transfer to expand tumor-reactive autologous T cells ex vivo and then reintroduce these cells into the same individual
  • LAK cells showed cytotoxicity against ACC cells
  • cytokine-induced cell apoptosis and the cytotoxic effect of the LAK cells contributed to tumor regression
  • molecular finding of the MYB-NFIB fusion gene has the greatest potential to target what appears to be a fundamental event in disease pathogenesis
  •  
    good review of adenoid cystic carcinoma
Nathan Goodyear

Modulation of Wnt/β-catenin signaling pathway by bioactive food components | ... - 0 views

  • Mutations that result in Wnt/β-catenin signaling pathway being constitutively active lead to cancer
  •  
    Great review of the Wnt/Beta-catenin pathway in initiation and progress of cancer.  The paper also highlights the common naturally occuring therapies to block this pathway: Flavonoids, curcumin, EGCG, green tea polyphenols, resveratrol, retinoids, lycopenes, lupeol, isothiocyanates.
Nathan Goodyear

Oncotarget | NADH autofluorescence, a new metabolic biomarker for cancer stem cells: Id... - 0 views

  • Vitamin C was ~10 times more potent than 2-DG for the targeting of CSCs
  • Cancer stem-like cells (CSCs) are thought to be the root cause of chemotherapy-resistance and radio-resistance
  • ultimately leading to treatment failure in patients with advanced disease [1-3]. They have been directly implicated mechanistically in tumor recurrence and metastasis, resulting in poor patient survival
  • ...26 more annotations...
  • mitochondrial biogenesis may be a key driver of the CSC phenotype
  • Our results indicate that increased mitochondrial oxidative stress and high NADH levels are both key characteristics of the CSC metabolic phenotype
  • high levels of NAD(P)H auto-fluorescence are known to be a surrogate marker for mitochondrial “power”, high OXPHOS capacity and increased ATP production
  • CSCs may be strictly dependent on NAD(P)H to maintain their enhanced mitochondrial function
  • an intact NAD+ salvage pathway is strictly required for mammosphere formation, supporting our results using NAD(P)H auto-fluorescence, which enriched CSC activity by more than 5-fold.
  • Since glycolysis is especially critical for maintaining the TCA cycle, OXPHOS and overall mitochondrial function, we next assessed the effects of known glycolytic inhibitors
  • we show that two other natural products that function as effective glycolysis inhibitors, also inhibited mammosphere formation. More specifically, vitamin C (ascorbic acid), which induces oxidative stress and inhibits the activity of GAPDH (a key glycolytic enzyme) [17], also inhibited mammosphere formation, with an IC-50 of 1 mM (Figure 7B). Therefore, vitamin C was ~10 times more potent than 2-DG at targeting CSC propagation
  • silibinin (the major active constituent of silymarin, an extract of milk thistle seeds) [18], which specifically functions as an inhibitor of glucose uptake, blocked mammosphere formation, with an IC-50 between 200 and 400 µM
  • caffeic acid phenyl ester (CAPE), a key component of honey-bee propolis, has potent anti-cancer properties
  • Propolis has a strong history of medicinal use, dating back more than 2,000 years
  • Because of it aromatic ring structure (Figure 8), we speculated that CAPE might function as a potent inhibitor of oxidative mitochondrial metabolism
  • CAPE quantitatively inhibits the mitochondrial oxygen consumption rate (OCR) and, in turn, induces the onset of aerobic glycolysis (ECAR)
  • CAPE shows a clear selectivity for targeting CSCs and adherent cancer cells, relative to normal fibroblasts.
  • CAPE functions as a “natural” mitochondrial OXPHOS inhibitor, that preferentially targets the CSC sub-population. This could explain CAPE’s known anti-cancer properties
  • Our data directly shows that a small fraction of the total cell population, characterized by increased PGC1α activity, high mitochondrial ROS/H2O2 and high NADH levels, has the ability to survive and grow under anchorage-independent conditions, driving mammosphere formation
  • We highlight the utility of certain natural products, such as Silibinin, Vitamin C and CAPE, that could be used to therapeutically target CSCs. Silibinin is the major active component of silymarin, which is an extract prepared from milk thistle seeds.
  • high NADH is a property that is conserved between normal and cancerous stem cells
  • Previous studies have also shown that when non-CSCs and CSCs are both fed mitochondrial fuels (such as L-lactate or ketone bodies), that CSCs quantitatively produce more NADH in response to this stimulus
  • CSCs may be strictly dependent on NADH to maintain their enhanced mitochondrial function
  • The Noble Prize winner, Linus Pauling, was among the first to describe and clinically test the efficacy of Vitamin C, as a relatively non-toxic anti-cancer agent
  • Vitamin C has two mechanisms of action. First, it is a potent pro-oxidant, that actively depletes the reduced glutathione pool, leading to cellular oxidative stress and apoptosis in cancer cells. Moreover, it also behaves as an inhibitor of glycolysis, by targeting the activity of GAPDH, a key glycolytic enzyme.
  • Here, we show that Vitamin C can also be used to target the CSC population, as it is an inhibitor of energy metabolism that feeds into the mitochondrial TCA cycle and OXPHOS
  • Vitamin C may prove to be promising agent for new clinical trials, aimed at testing its ability to reduce CSC activity in cancer patients, as an add-on to more conventional therapies, to prevent tumor recurrence, further disease progression and metastasis
  • Interestingly, a breast cancer based clinical study has already shown that the use of Vitamin C, concurrent with or within 6 months of chemotherapy, significantly reduces both tumor recurrence and patient mortality
  • CAPE quantitatively reduces mitochondrial oxygen consumption (OCR), while inducing a reactive increase in glycolysis (ECAR). As such, it potently inhibits mammosphere formation with an IC-50 of ~2.5 µM. Similarly, it also significantly inhibits cell migration
  • we also demonstrate that 7 different inhibitors of key energetic pathways can be used to effectively block CSC propagation, including three natural products (silibinin, ascorbic acid and CAPE). Future studies will be necessary to test their potential for clinical benefit in cancer patients.
  •  
    The future of cancer therapy is cancer stem cells.  Study finds that Vitamin C, silymarin, and bee propolis blocks mitochondrial energy pathways in cancer stem cells.  Vitamin C is a known glycolytic inhbitor. Vitamin C was found to inhibit glycolysis via GAPDH targeting to inhibit the energy pathways of the mitochondria in CSCs.  The authors propse that Vitamin C can be used as add on therapies for conventional therapies to specifically attack the CSCs and their contribution to recrurence, treatment resistance, and metastasis potential all in addition to the ability of vitamin C to reduce the side effects of chemotherapy.
Nathan Goodyear

Communication between genomic and non-genomic signaling events coordinate steroid hormo... - 0 views

  • steroid hormones typically interact with their cognate receptor in the cytoplasm for AR, glucocorticoid receptor (GR) and PR, but may also bind receptor in the nucleus as appears to often be the case for ERα and ERβ
  • This ligand binding results in a conformational change in the cytoplasmic NRs that leads to the dissociation of HSPs, translocation of the ligand-bound receptor to the nucleus
  • In the nucleus, the ligand-bound receptor dimerizes and then binds to DNA at specific HREs to regulate gene transcription
  • ...25 more annotations...
  • some steroid hormone-induced nuclear events can occur in minutes
  • the genomic effects of steroid hormones take longer, with changes in gene expression occurring on the timescale of hours
  • Classical steroid hormone signaling occurs when hormone binds nuclear receptors (NR) in the cytoplasm, setting off a chain of genomic events that results in, among other changes, dimerization and translocation to the nucleus where the ligand-bound receptor forms a complex with coregulators to modulate gene transcription through direct interactions with a hormone response element (HRE)
  • NRs have been found at the plasma membrane of cells, where they can propagate signal transduction often through kinase pathways
  • Membrane-localized ER, PR and AR have been reported to modulate the activity of MAPK/ERK, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), nitric oxide (NO), PKC, calcium flux and increase inositol triphosphate (IP3) levels to promote cell processes including autophagy, proliferation, apoptosis, survival, differentiation, and vasodilation
  • ERα36, a 36kDa truncated form of ERα that lacks the transcriptional activation domains of the full-length protein. Membrane-localized ERα36 can activate pathways including protein kinase C (PKC) and/or mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) to promote the progression of various cancers
  • G protein-coupled receptor 30 (GPR30), also referred to as G protein-coupled estrogen receptor (GPER), is a membrane-localized receptor that has been observed to respond to estrogen to activate rapid signaling
  • hormone-responsive G protein coupled receptor is Zip9, which androgens can activate
  • GPRC6A is another G protein-coupled membrane receptor that is responsive to androgen
  • androgen-mediated non-genomic signaling through this GPCR can modulate male fertility, hormone secretion and prostate cancer progression
  • non-NR proteins located at the cell surface can bind to steroid hormones and respond by eliciting rapid signaling events
  • Estrogens have been shown to induce rapid (i.e. seconds) calcium flux via membrane-localized ER (mER)
  • ER-calcium dynamics lead to activation of kinase pathways such as MAPK/ERK which can result in cellular effects like migration and proliferation
  • 17β-estradiol (E2) has been reported to promote angiogenesis through the activation of GPER
  • Membrane NRs may also mediate rapid signaling through crosstalk with growth factor receptors (GFR)
  • A similar crosstalk occurs between the receptor tyrosine kinase insulin-related growth factor-1 receptor (IGF-IR) and ERα. Not only does IGF-IR activate ERα, but inhibition of IGF-IR downregulates estrogen-mediated ERα activity, suggesting that IGF-IR is essential for maximal ERα signaling
    • Nathan Goodyear
       
      This is a bombshell that shatters the current right brain approach to ER. It completely shatters the concept of eat sugar, whatever you want, with cancer treatment in ER+ or hormonally responsive cancer!
  • Further, ER activates IGF-IR pathways including MAPK
  • GPER is involved in the transactivation of the EGFR independent of classical ER
  • tight interconnection between genomic and non-genomic effects of NRs.
  • non-genomic pathways can also lead to genomic effects
  • androgen-bound AR associates with the kinase Src at the plasma membrane, activating Src which then leads to a signaling cascade through MAPK/ERK
  • However, Src can also increase the expression of AR target genes by the ligand-independent transactivation of AR
  • extranuclear steroid hormone actions can potentially reprogram nuclear NR events
  • estrogen modulated the expression of several genes including endothelial nitric oxide synthase (eNOS) via rapid signaling pathways
  • epigenetic changes can then mediate genomic events in uterine tissue and breast cancer cells
Nathan Goodyear

Kynurenine Pathway Metabolites in Humans: Disease and Healthy States - 0 views

  •  
    review of studies looking at kyneurenine pathway and it's contribution to neurodegenerative disorders and mood disorders
Nathan Goodyear

Geraniin inhibits migration and invasion of human osteosarcoma cancer cells through reg... - 0 views

  •  
    Germanium inhibits proliferation, induces apoptosis, and inhibits metastatic potential via inhibition of MMP-9 expression and through suppressed extracellular pathway signaling of the PI3K/Akt and ERK 1/2 pathways.
Nathan Goodyear

The Anti-malarial Drug Artesunate Blocks Wnt/β-catenin Pathway and Inhibits G... - 0 views

  •  
    In vitro study finds that artesunate blocks Wnt pathway a very important signaling pathway for cancer cell proliferation and TME immunosuppression.
Nathan Goodyear

T3 increases mitochondrial ATP production in oxidative muscle despite increased express... - 0 views

  •  
    This study finds that T3 increases enzymes in the oxidative phosphorylation pathways and not in the glycolytic pathways in mitochondria.  This has enormous health implications, especially in cancer.  This also casts doubt on the current traditional medical dogma of hypothyroid evaluation and management which gives no regard to T3 in testing or therapy.
Nathan Goodyear

Modulation of autoimmune rheumatic diseases by oestrogen and progesterone : Nature Revi... - 0 views

  •  
    only abstract available here, but estradiol increases inflammatory pathways in SLE; in contrast, progesterone decreases these pathways.
Nathan Goodyear

Bisphenol A Promotes Human Prostate Stem-Progenitor Cell Self-Renewal and Increases In ... - 0 views

  • these findings show that estrogen stimulates human prostate epithelial stem cell self-renewal and progenitor cell amplification (prostasphere size), with the greatest effects observed at lower E2 doses.
  • Similar to E2, BPA increased prostasphere number and size with significant and maximal effects observed at 10 nM BPA
  • Taken together, these results provide strong evidence that, similar to E2, BPA increases stem cell self-renewal and progenitor amplification in normal human prostate epithelial cells
  • ...13 more annotations...
  • these findings provide further support that E2 and BPA maintain the stem-like state within the normal prostate epithelial cell population
  • Our previous findings demonstrated that normal prostate stem-progenitor cells within the prostaspheres expressed ERα and ERβ, implicating them as direct targets for E2 and BPA action
  • p-Akt and p-Erk, well established downstream targets of membrane-associated ERs
  • BPA and E2 had equimolar capacity for activation of these rapid signaling pathways in human prostaspheres, thus identifying a dynamic and robust signaling pathway initiated by low-dose BPA exposure in prostate stem-progenitor cells.
  • these findings indicate that both rapid membrane-initiated estrogen action and genomic ER signaling pathways are operative in human prostate progenitor cells.
  • these results document the fact that levels of bioactive BPA in the present study are similar to levels found in human umbilical cord blood and newborns in the general population
  • the present findings identify for the first time that in vivo exposure of the human prostate epithelium to low doses of BPA significantly increases the susceptibility of the human prostate epithelium to hormonal carcinogenesis.
  • The current study provides clear evidence that, similar to E2, normal human prostate stem and progenitor cells are direct targets for BPA action
  • Both hormones increased stem-like cell numbers in primary prostate epithelial cultures in a dose-dependent manner and augmented the number and size of 3-D cultured prostaspheres, markers of stem cell self-renewal and progenitor cell proliferation, respectively
  • signaling pathways engaged by estrogens through these separate receptors are multiple and complex, including both membrane-initiated signaling and genomic activation via ER transcriptional activity
  • Estrogen action is mediated by ERα and ERβ
  • the current results indicate that developmental exposure to BPA, at doses routinely found in humans, significantly increases the cancer risk in human prostate epithelium in response to elevated estrogen levels in an androgen-supported milieu. Because relative estrogen levels rise in aging men, we suggest that humans may be susceptible to BPA-driven prostate disease in a manner similar to that in the rodent models.
  • We propose that early-life perturbations in estrogen signaling including inappropriate exposure to BPA have the potential to amplify and modify the stem-progenitor cell populations within the human prostate gland and, in so doing, alter the normal homeostatic mechanisms that maintain a growth neutral state throughout life
  •  
    Bisphenol A exposure in utero found to increase prostate cancer risk later in life.  This exposure occurred at typical life exposure levels as found in umbilical cord blood sampling,  This occurred through stem cell self-renewal and progenitor amplification
Nathan Goodyear

Progesterone metabolites in breast cancer - 1 views

  • P metabolites produced within breast tissues might be independently active hormones functioning as cancer-promoting or -inhibiting regulatory agents
  • these P metabolites function as independent pro-or anti-cancer autocrine/paracrine hormones that regulate cell proliferation, adhesion, apoptosis and cytoskeletal, and other cell status molecules via novel receptors located in the cell membrane and intrinsically linked to cell signaling pathways
  • only a fraction of all breast cancer patients respond to this estrogen-based therapy and the response is only temporary
  • ...30 more annotations...
  • P serves as the precursor for the major steroid hormones (androgens, estrogens, corticosteroids) produced by the gonadal and adrenal cortical tissues.
  • 5α-pregnane, 5β-pregnane, and 4-pregnene metabolites of P
  • These P-metabolizing enzymes included 5α-reductase, 5β-reductase, 3α-hydroxysteroid oxido-reductase (3α-HSO), 3β-HSO, 20α-HSO, 20β-HSO, 6α(β)-, 11β-, 17-, and 21-hydroxylase, and C17–20-lyase
  • Reduction of P to 5α-pregnanes is catalyzed by 5α-reductase and the direct 5α-reduced metabolite of P is 5α-pregnane-3,20-dione (5αP). The 5α-reductase reaction is irreversible
  • The two 4-pregnenes resulting from direct P conversion are 4-pregnen-3α-ol-20-one (3αHP) and 4-pregnen-20α-ol-3-one (20αHP), catalyzed by the actions of 3α-HSO and 20α-HSO respectively
  • the P-metabolizing enzyme activities identified in human breast tissues and cell lines were: 5α-reductase, 3α-HSO, 3β-HSO, 20α-HSO, and 6α-hydroxylase
  • In normal breast tissue, conversion to 4-pregnenes greatly exceeded the conversion to 5α-pregnanes, whereas in tumorous tissue, conversion to 5α-pregnanes greatly exceeded that to 4-pregnenes
  • The results indicated that P 5α-reductase activity is significantly higher, whereas P 3α-HSO and 20α-HSO activities are significantly lower in tumor than in normal tissues
  • he results showed that production of 5α-pregnanes was higher and that of 4-pregnenes was lower in tumorigenic (e.g. MCF-7) than in nontumorigenic (e.g. MCF-10A) cells (Fig. 3c⇑), while differences in ER/P status did not appear to play a role
  • The 5α-pregnane-to-4-pregnene ratios were 7- to 20-fold higher in the tumorigenic than in the nontumorigenic cell lines
  • altered direction in P metabolism, and hence in metabolite ratios, was due to significantly elevated 5α-reductase and depressed 3α- and 20α-HSO activities in breast tumor tissues and tumorigenic cells. It appeared, therefore, that changes in P-metabolizing enzyme activities might be related to the shift toward mammary cell tumorigenicity and neoplasia
  • In vivo, changes in enzyme activity can result from changes in levels of the enzyme due to changes in expression of the mRNA coding for the enzyme, or from changes in the milieu in which the enzyme operates (such as temperature and pH, and concentrations of cofactors, substrates, products, competitors, ions, phospholipids, and other molecules)
  • Overall, the enzyme activity and expression studies strongly suggest that 5α-reductase stimulation and 3α- and 20α-HSO suppression are associated with the transition from normalcy to cancer of the breast
  • The level of expression of 5α-reductase is up-regulated by estradiol and P in the uterus (Minjarez et al. 2001) and by 5α-dihydrotestosterone (DHT) in the prostate
  • 3αHP inhibited whereas 5αP-stimulated proliferation
  • Stimulation in cell numbers was also observed when cells were treated with other 5α-pregnanes, such as 5α-pregnan-3α-ol-20-one, 5α-pregnan-20α-ol-3-one, and 5α-pregnane-3α,20α-diol, whereas other 4-pregnenes such as 20α-HP and 4-pregnene-3α,20α-diol resulted in suppression of cell proliferation
  • Stimulation of cell proliferation with 5αP and inhibition with 3αHP were also observed in all other breast cell lines examined, whether ER/P-negative (MCF-10A, MDA-MB-231) or ER/P-positive (T47D, ZR-75-1) and whether requiring estrogen for tumorigenicity (MCF-7, T47D) or not (MDA-MB-231), or whether they are nontumorigenic (
  • αHP resulted in significant increases in apoptosis and decreases in mitosis, leading to significant decreases in total cell numbers. In contrast, treatment with 5αP resulted in decreases in apoptosis and increases in mitosis.
  • The opposing actions of 5αP and 3αHP on both cell anchorage and proliferation strengthen the hypothesis that the direction of P metabolism in vivo toward higher 5α-pregnane and lower 4-pregnene concentrations could promote breast neoplasia and lead to malignancy.
  • he effects on proliferation and adhesion were not due to P, but due to the 5α-reduced metabolites
  • The studies showed that binding of 5αP or 3αHP occurs in the plasma membrane fractions, but not in the nuclear or cytosolic compartments
  • separate high-specificity, high-affinity, low- capacity receptors for 5αP and 3αHP that are distinct from each other and from the well-studied nuclear/cytosolic P, estrogen, and androgen and corticosteroid receptors
  • The studies thus provided the first demonstration of the existence of specific P metabolite receptors
  • the receptor results suggest that the putative tumorigenic actions of 5αP may be significantly augmented by the estradiol-induced increases in 5αP binding and decreases in 3αHP binding.
  • Estradiol and 5αP resulted in significant dose-dependent increases, whereas 3αHP and 20αHP each resulted in dose-dependent decreases in total ER
  • In combination, estradiol + 5αP or 3αHP + 20αHP resulted in additive increases or decreases respectively in ER numbers.
  • The data suggest that the action of 5αP on breast cancer cells involves modulation of the MAPK signaling pathway
  • current evidence does not appear to support the notion that increased 5α-reductase activity/ expression might significantly alter androgen influences on breast tumor growth.
  • both testosterone and DHT inhibit cell growth more or less to the same extent
  • Note that 5α-reductase reaction is not reversible
  •  
    Fantastic read on the effects of progesterone metabolism on tumor and cancer growth.  Tumorigenesis is not just about the hormone, hormone balance, but about the metabolism of hormones.  This is why premarin is so carcinogenic: it is primarily metabolized by the 4-OH estrone pathway.
Nathan Goodyear

JCI - Inflammatory links between obesity and metabolic disease - 0 views

  • metainflammation
  • The chronic nature of obesity produces a tonic low-grade activation of the innate immune system that affects steady-state measures of metabolic homeostasis over time
  • It is clear that inflammation participates in the link between obesity and disease
  • ...25 more annotations...
  • Multiple inflammatory inputs contribute to metabolic dysfunction, including increases in circulating cytokines (10), decreases in protective factors (e.g., adiponectin; ref. 11), and communication between inflammatory and metabolic cells
  • adipose tissue macrophage (ATM)
  • well-known regulators of lipid metabolism and mitochondrial activity
  • increasing adiposity results in a shift in the inflammatory profile of ATMs as a whole from an M2 state to one in which classical M1 proinflammatory signals predominate (21–23).
  • The M2 activation state is intrinsically linked to the activity of PPARδ and PPARγ
  • Physiologic enhancement of the M2 pathways (e.g., eosinophil recruitment in parasitic infection) also appears to be capable of reducing metainflammation and improving insulin sensitivity (27).
  • Independent of obesity, hypothalamic inflammation can impair insulin release from β cells, impair peripheral insulin action, and potentiate hypertension (63–65).
  • inflammation in pancreatic islets can reduce insulin secretion and trigger β cell apoptosis leading to decreased islet mass, critical events in the progression to diabetes (33, 34)
  • Since an estimated excess of 20–30 million macrophages accumulate with each kilogram of excess fat in humans, one could argue that increased adipose tissue mass is de facto a state of increased inflammatory mass
  • JNK, TLR4, ER stress)
  • NAFLD is associated with an increase in M1/Th1 cytokines and quantitative increases in immune cells
  • Lipid infusion and a high-fat diet (HFD) activate hypothalamic inflammatory signaling pathways, resulting in increased food intake and nutrient storage (57)
  • DIO, metabolites such as diacylglycerols and ceramides accumulate in the hypothalamus and induce leptin and insulin resistance in the CNS (58, 59)
  • saturated FAs, which activate neuronal JNK and NF-κB signaling pathways with direct effects on leptin and insulin signaling (60)
  • Upon stimulation by LPS and IFN-γ, macrophages assume a classical proinflammatory activation state (M1) that generates bactericidal or Th1 responses typically associated with obesity
  • Maternal obesity is associated with endotoxemia and ATM accumulation that may affect the developing fetus (73)
  • Placental inflammation is a characteristic of maternal obesity
  • a risk factor for obesity in offspring, and involves inflammatory macrophage infiltration that can alter the maternal-fetal circulation (74
  • Of these PRRs, TLR4 has received the most attention, as this receptor can be activated by free FAs to generate proinflammatory signals and activate NF-κB
  • Nod-like receptor (NLR) family of PRRs
  • ceramides and sphingolipids
  • The adipokine adiponectin has long been recognized to have positive benefits on multiple cell types to promote insulin sensitivity and deactivate proinflammatory pathways.
  • adiponectin stimulates ceramidase activity and modulates the balance between ceramides and sphingosine-1-phosphate
  • Inhibition of ceramide production blocks the ability of saturated FAs to induce insulin resistance (101)
  • NF-κB, obesity also activates JNK in insulin-responsive tissues
  •  
    must read to see our current knowledge on the link between inflammation and obesity.
1 - 20 of 363 Next › Last »
Showing 20 items per page