Skip to main content

Home/ Dr. Goodyear/ Group items tagged immunology

Rss Feed Group items tagged

Nathan Goodyear

Exposure to Bisphenol A Prenatally or in Adulthood Promotes TH2 Cytokine Production Ass... - 0 views

  • BPA promotes the development of TH2 cells in adulthood and both TH1 and TH2 cells in prenatal stages by reducing the number of regulatory T cells.
  • Bisphenol A (BPA), an estrogenic endocrine-disrupting chemical (EDC
  • BPA is one of the most widespread EDCs.
  • ...12 more annotations...
  • BPA antagonizes the actions of thyroid hormone
  • Prenatal exposure to BPA has been shown to alter a variety of reproductive endocrine parameters, such as testosterone and luteinizing hormone levels
  • arly onset of sexual maturation of female mice
  • imbalanced T-helper (TH)1/TH2 immune responses have been demonstrated on exposure to BPA
  • indicating that BPA exerted its effects by reducing the number of Treg cells.
  • Exposure to BPA by subcutaneous injection in adulthood significantly promoted antigen-stimulated production of IL-4, IL-10, and IL-13 in TH2-skewed
  • BPA can leak from the placenta and accumulate in the fetus
  • We showed that prenatal exposure to BPA increased the production of a TH1 cytokine, IFN-γ, and a TH2 cytokine, IL-4, after the offspring developed, suggesting that prenatal exposure to BPA can induce persistent immunologic effects lasting into adulthood.
  • These results are consistent with a previous report that fetal exposure to BPA augmented TH1 and TH2 immune responses
  • our results clearly demonstrate that the production of TH2 cytokines is promoted by BPA in adult mice and in offspring during developmental exposure.
  • The decrease of Treg cells would predispose to immune dysfunction in aged individuals, explaining their higher risk of immune-mediated diseases, cancer, and infections.
  • BPA might cause these diseases. Thus, avoiding exposure to or promoting the excretion of BPA and other EDCs would help in preventing diseases and adverse health effects.
  •  
    BPA as endocrine disruptor and as immune disruptor
Nathan Goodyear

Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis - 0 views

  •  
    High dose vitamin D (10,400 IU) found to reduce IL-17, CD161 and effector memory cells; in contrast low dose vitamin D (800 IU)  did not.  The study also called into question the traditional target range of vitamin D.  The authors here proposed 40-60
Nathan Goodyear

Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis - 0 views

  •  
    Not only is high dose vitamin D3 therapy more effective in reducing IL-17 compared to low dose, but it is safe to in individuals with MS.  The hot topic these days is immunotherapy: that is exactly what vitamin D therapy is.
Nathan Goodyear

Mucosal Immunology - Commensal Gram-positive bacteria initiates colitis by inducing mon... - 0 views

  •  
    good discussion of commensal bacteria interaction with immune system.
Nathan Goodyear

Cutting Edge: IL-12 Induces CD4+CD25− T Cell Activation in the Presence of T ... - 0 views

  • Whereas IL-12 instigates Th1 immune responses, CD4+CD25+ regulatory T cells (Treg)3 actively restrain them
  • Following engagement of their TCR, Treg suppress the proliferation of conventional CD4+CD25− T responder cells in vitro
  • Furthermore, they inhibit the development of CD4+ T cell responses against alloantigens, tumor, microbial, and self-Ags in vivo.
  • ...1 more annotation...
  • Treg act to prevent spontaneous autoimmunity and to limit collateral damage to healthy tissues during adaptive immunity. However, these cells also have the potential to sabotage protective antimicrobial responses
  •  
    Great T cell activiation review: Il-2 stimulates NK cells primarily release from TH1 cells and T cytotoxic lymphocytes are under the control of IL-12 released primarily from dendritic cells.  Inflammatory cytokines in the presence of Treg to stimulate CD4+CD25- T cell activation.
Nathan Goodyear

Development of PD-1/PD-L1 Pathway in Tumor Immune Microenvironment and Treatment for No... - 0 views

  • the lack of immunologic control is recognized as a hallmark of cancer currently
  • Programmed death-1 (PD-1) and its ligand PD-L1 play a key role in tumor immune escape and the formation of tumor microenvironment, closely related with tumor generation and development
  • Blockading the PD-1/PD-L1 pathway could reverse the tumor microenvironment and enhance the endogenous antitumor immune responses.
  • ...4 more annotations...
  • environmental factors, living habits, genetic mutations, dysfunction of the immune system and so on
  • special tumor immune microenvironment
  • cytotoxic T lymphocyte-associated antigen 4 (CLTA-4), Programmed death-1 (PD-1) and its ligands PD-L1 (B7H1) and PD-L2 (B7-DC)
  • CTLA-4 regulates T cell activity in the early stage predominantly, and PD-1 mainly limits the activity of T-cell in the tumor microenvironment at later stage of tumor growth
  •  
    PD-1 to read.
Nathan Goodyear

Clinical use of dendritic cells for cancer therapy - The Lancet Oncology - 0 views

  •  
    To be read
Nathan Goodyear

Re-emergence of Dendritic Cell Vaccines for Cancer Treatment - 0 views

  •  
    To be read
Nathan Goodyear

Towards superior dendritic-cell vaccines for cancer therapy - 0 views

  •  
    To be read
Nathan Goodyear

Dendritic Cell-Based Cancer Vaccines - 0 views

  •  
    To be read
Nathan Goodyear

Interleukin‐2 enhances the natural killer cell response to Herceptin‐coated H... - 1 views

  • administration of low‐dose IL‐2 results in expansion of a CD3– / CD56+ NK cell population in patients with advanced cancer
  • approximately 20 % will overexpress theHer2 / neu proto‐oncogene
  • In breast cancer, Her2 / neu overexpression is associated with a worse histologicalgrade, decreased relapse‐free and overall survival periods, and altered sensitivity to chemotherapeutic regimens
  • ...17 more annotations...
  • NK cells are large granular lymphocytes that comprise approximately 10 % of circulating lymphocytes
  • all human NK cells express the CD56 antigen
  • treatment with various concentrations of IL‐2 in vivo may induce distinct functions within the NK cell compartment and, therefore, may have profound effects on NK cell‐mediated cytotoxicity
  • CD56bright
  • CD56dim
  • We show here that ADCC conducted by NK cells in vitro is enhanced by IL‐2 activation and is critically dependent on interactions between FcγRIII on NK cells and Herceptin‐coated tumor targets
  • administration of low‐dose IL‐2 to patients results in the marked expansion of a CD56+ population of immune effectors with the ability to lyse antibody‐coated cancer targets
  • NK cells represented only 7 % of lymphocytes prior to therapy but comprised over 50 % of the population after 10 weeks of low‐dose IL‐2
  • These data suggest that the enhanced ADCC seen following the expansion of NK cells with low‐dose IL‐2 is likely due to an increase in the overall number of NK cells
  • co‐administration of IL‐2 with rhu4D5 mAb will enhance activation of NK cell effector functions
  • Stimulation of NK cells with IL‐2 resulted in a significant increase in the lysis of rhu4D5‐coated targets
  • We have shown that costimulation with IL‐2 plus rhu4D5 results in significant production of IFN‐γ by NK cells with concomitant up‐regulation of cell‐surface activation and adhesion molecules
  • It has been previously demonstrated that continuous low‐dose IL‐2 can expand a CD56+ lymphocyte population, and we have now shown that this cell population is a potent mediator of ADCC against rhu4D5 mAb‐coated Her2 / neu+ targets
  • These results suggest that administration of low‐dose IL‐2 can be used to expand NK cell numbers, while higher doses may be used to enhance their cytolytic capacity in the setting of mAb therapy
  • we have demonstrated that NK cell lysis of Her2 / neu+ breast cancer cell lines in the presence of rhu4D5 mAb is markedly enhanced following stimulation with IL‐2
  • we have presented evidence that administration of low‐dose IL‐2 in vivo results in the expansion of a potent NK cell effector population
  • Our experiments suggest that NK cells costimulated with IL‐2 and immobilized IgG can secrete potent immunomodulatory cytokines which may serve to potentiate the anti‐tumor immune response.
  •  
    low dose IL-2 found to expand NK levels in conjuction in with herceptin in HER-2 positive breast cancer cell lines.
Nathan Goodyear

Temperature Matters! And Why It Should Matter to Tumor Immunologists | Cancer Immunolog... - 1 views

  •  
    Hyperthermia and the immune system
Nathan Goodyear

Therapeutic hyperthermia: The old, the new, and the upcoming - Critical Reviews in Onco... - 1 views

  • not well understood, but it is felt to be a combination of both heat-induced necrosis and of protein inactivation (e.g., repair enzymes) as opposed to DNA damage
  • alterations in tumor cytoskeletal and membrane structures, which disrupt cell motility and intracellular signal transduction
  • A common explanation for HT-enhancement of RT and CT involves inhibition of homologous recombination repair of double-strand DNA breaks, preventing cells from repairing sub-lethal damage
  • ...15 more annotations...
  • it does appear to inhibit rejoining of RT-induced DNA breaks more than is commonly observed after RT alone
  • HT damages cells and enhances RT and CT sensitivity as a function of both temperature and duration of treatment
  • as temperature or duration increase, the rate of cell killing also increases
  • At temperatures above 42 °C, tumor vasculature is damaged, resulting in decreased blood flow
  • Cancer cells are particularly vulnerable to heating; in vivo studies have shown that temperatures in the range of 40–44 °C cause more selective damage to tumor cells
  • cancerous blood vessels are chaotic, leaky, and inefficient
  • selective cytotoxic effect on tumor cells include inhibition of key cancer cell-signaling pathways such as AKT, inducing apoptosis, suppression of cancer stem cell proliferation, and others
  • increase in immunological attacks against tumors after HT, which were believed to be achieved through activation of HSPs and subsequent modulation of the innate and adaptive immune responses against tumor cells
  • HT does lead to activation of the immune system and HSP-induced cell death through modification of the tumor cell surface
  • These HSPs and tumor antigens are taken up by dendritic cells and macrophages and go on to induce specific anti-tumor immunity
  • In vivo studies demonstrate HT-enhancement of NK cell activity, and HT has been shown to increase neutrophilic granulocytes with anti-tumor activity
  • it has become increasingly clear that HT results in immune stimulation, through both direct heat-mediated cell killing as well as innate and adaptive immune system modulation
  • The term hyperthermia is used in this review to refer to heating within the clinically accepted range of 40–45 °C
  • temperatures above 42.5–43 °C the exposure time can be halved with each 1 °C increase while maintaining equivalent cell killing
  • gradual heating at 43 °C for 1 h worked through an apoptotic pathway
  •  
    Comprehensive review of hyperthemic therapy.
Nathan Goodyear

Frontiers | Microbiome-Derived Lipopolysaccharide Enriched in the Perinuclear Region of... - 0 views

  • lipopolysaccharides (LPS), either alone or in combination, have indicated that when compared, bacterial LPSs exhibit the strongest induction of pro-inflammatory signaling in human neuronal–glial cells in primary coculture of any single inducer, and different LPS extracts from different gastrointestinal (GI)-tract resident Gram-negative bacteria appeared to have different pro-inflammatory potential
  • powerful inducer of the NF-κB
  • In both neocortex and hippocampus, LPS has been detected to range from a ~7- to ~21-fold increase abundance in AD brain
  • ...15 more annotations...
  • Major Gram-negative bacilli of the human GI-tract, such as the abundant B. fragilis and Escherichia coli (E. coli), are capable of discharging a remarkably complex assortment of pro-inflammatory neurotoxins
  • (i) bacterial amyloids (10, 21); (ii) endotoxins and exotoxins (5, 12); (iii) LPS (12, 18); and (iv) small non-coding RNAs (sncRNAs)
  • integral components of the outer leaflet of the outer membrane of Gram-negative bacteria, LPS
  • LPS, the major molecular component of the outer membrane of Gram-negative bacteria normally serves as a physical barrier providing the bacteria protection from its surroundings
  • LPS is also recognized by the immune system as a marker for the detection of bacterial pathogen invasion and responsible for the development of inflammatory response is perhaps the most potent stimulator and trigger of inflammation known
  • AD-affected brains have remarkably large loads of bacterial-derived toxins compared to controls. The transfer of noxious, pro-inflammatory molecules from the GI-tract microbiome to the CNS may be increasingly important during the course of aging when both the GI-tract and blood–brain barriers become significantly more permeable
  • first evidence of a perinuclear association of LPS with AD brain cell nuclei
  • LPS-mediated stimulation of chronic inflammation, beta-amyloid accumulation, and episodic memory decline in murine models of AD (39, 40) and a biophysical association of LPS with amyloid deposits and blood vessels in human AD patients
  • Strong adherence of LPS to the nuclear periphery has recently been shown to inhibit nuclear maturation and function that may impair or block export of mRNA signals from brain cell nuclei, a highly active organelle with extremely high rates of transcription, mRNA processing, and export into the cytoplasm
  • LPS may be further injurious to the nuclear membrane just as LPS contributes to cerebrovascular endothelial cell membrane injury
  • high intake of dietary fiber is a strong inhibitor of B. fragilis abundance and proliferation in the intact human GI-tract and as such is a potent inhibitor of the neurotoxic B. fragilis-derived amyloids, LPS, enterotoxins, and sncRNAs.
  • GI-tract microbiome-derived LPS may be an important initiator and/or significant contributor to inflammatory degeneration in the AD CNS
  • LPS has been recently localized to the same anatomical regions involved in AD-type neuropathology
  • a known pro-inflammatory transcription factor complex that triggers the expression of pathogenic pathways involved in neurodegenerative inflammation
  • pro-inflammatory amyloids, endo- and exotoxins, LPSs, and sncRNAs but also serve as potent sources of membrane-disrupting agents
  •  
    LPS links gut to inflammation in Alzheimer's disease
Nathan Goodyear

An integrative analysis reveals coordinated reprogramming of the epigenome and the tran... - 0 views

  • contribution to the training response of the epigenome as a mediator between genes and environment
  • Differential DNA methylation was predominantly observed in enhancers, gene bodies and intergenic regions and less in CpG islands or promoters
  • highly consistent and associated modifications in methylation and expression, concordant with observed health-enhancing phenotypic adaptations, are induced by a physiological stimulus
  • ...34 more annotations...
  • The health benefits following exercise training are elicited by gene expression changes in skeletal muscle, which are fundamental to the remodeling process
  • there is increasing evidence that more short-term environmental factors can influence DNA methylation
  • dietary factors have the potency to alter the degree of DNA methylation in different tissues, 9,10 including skeletal muscle
  • In one study, a single bout of endurance-type exercise was shown to affect methylation at a few promoter CpG sites
  • In the context of diabetes, exercise training has been shown to affect genome-wide methylation pattern in skeletal muscle,13 as well as in adipose tissue.
  • physiological stressors can indeed affect DNA methylation
  • training intervention reshapes the epigenome and induces significant changes in DNA methylation
  • the findings from this tightly controlled human study strongly suggest that the regulation and maintenance of exercise training adaptation is to a large degree associated to epigenetic changes, especially in regulatory enhancer regions
  • Endurance training [after training (T2) vs. before training (T1)] induced significant (false discovery rate, FDR< 0.05) methylation changes at 4919 sites across the genome in the trained leg
  • identified 4076 differentially expressed genes
  • a complementary approach revealed that over 600 CpG sites correlated to the increase in citrate synthase activity, an objective measure of training response (Figure S4 and Dataset S14). This might imply that some of these sites could influence the degree of training response.
  • As expected by a physiological environmental trigger on adult tissue, the observed effect size on DNA methylation was small in comparison to disease states such as cancer
  • a preferential localization outside of CpG Islands/Shelves/Shores
  • endurance training especially influences enhancers
  • negative correlation was more prominent for probes in promoter/5′UTR/1st exon regions, while gene bodies had a stronger peak of positive correlation
  • The significant changes in DNA methylation, that primarily occurred in enhancer regions, were to a large extent associated with relevant changes in gene expression
  • The main findings of this study were that 3 months of endurance training in healthy human volunteers induced significant methylation changes at almost 5000 sites across the genome and significant differential expression of approximately 4000 genes
  • DMPs that increased in methylation were mainly associated to structural remodeling of the muscle and glucose metabolism, while the DMPs with decreased methylation were associated to inflammatory/immunological processes and transcriptional regulation
  • This suggests that the changes in methylation seen with training were not a random effect across the genome but rather a controlled process that likely contributes to skeletal muscle adaptation to endurance training
  • Correlation of the changes in DNA methylation to the changes in gene expression showed that the majority of significant methylation/expression pairs were found in the groups representing either increases in expression with a concomitant decrease in methylation or vice versa
  • The fraction of genes showing both significant decrease in methylation and upregulation was 7.5% of the DEGs or 2.3% of all genes detected in muscle tissue with at least one measured DNA methylation position. Correspondingly, 7.0% of the DEGs or 2.1% of all genes showed both significant increase in methylation and downregulation
  • we show that DNA methylation changes are associated to gene expression changes in roughly 20% of unique genes that significantly changed with training
  • Examples of structural genes include COL4A1, COL4A2 and LAMA4. These genes have also been identified as important for differences in responsiveness to endurance training
  • methylation status could be part of the mechanism behind variable training response
  • Among the metabolic genes, MDH1 catalyzes the reversible oxidation of malate to oxaloacetate, utilizing the NAD/NADH cofactor system in the citric acid cycle and NDUFA8 plays an important role in transferring electrons from NADH to the respiratory chain
  • PPP1R12A,
  • In the present study, methylation predominantly changed in enhancer regions with enrichment for binding motifs for different transcription factors suggesting that enhancer methylation may be highly relevant also in exercise biology
  • Of special interest in the biology of endurance training may be that MRFs, through binding to the PGC-1α core promoter, can regulate this well-studied co-factor for mitochondrial biogenesis
  • That endurance training led to an increased methylation in enhancer regions containing motifs for the MRFs and MEFs is somewhat counterintuitive since it should lead to the repression of the action of the above discussed transcription factors
  • decrease with training in this study, including CDCH15, MYH3, TNNT2, RYR1 and SH3GLB1
  • expression of MEF2A itself decreased with training
  • this study demonstrates that the transcriptional alterations in skeletal muscle in response to a long-term endurance exercise intervention are coupled to DNA methylation changes
  • We suggest that the training-induced coordinated epigenetic reprogramming mainly targets enhancer regions, thus contributing to differences in individual response to lifestyle interventions
  • a physiological health-enhancing stimulus can induce highly consistent modifications in DNA methylation that are associated to gene expression changes concordant with observed phenotypic adaptations
  •  
    Exercise alters gene expression via methylation--the power of epigenetics.  Interestingly, the majority of the methylation was outside the CPG island regions.  This 3 month study found methylation of 5,000 sites across the genome resulting in altered expression of apps 4,000 genes.  The altered muscle changes of the endurance training was linked to DNA methylation changes.
Nathan Goodyear

Cancers | Free Full-Text | Mechanisms of Immunosuppression in Colorectal Cancer | HTML - 0 views

  •  
    To be read
« First ‹ Previous 41 - 60 of 119 Next › Last »
Showing 20 items per page