Skip to main content

Home/ Dr. Goodyear/ Group items tagged detection

Rss Feed Group items tagged

Nathan Goodyear

Incidence of Candida in psoriasis--a study on the fungal flora of psoriatic patients. -... - 0 views

  •  
    statistically higher candida detected in those with psoriasis vs controls.
Nathan Goodyear

http://ascopubs.org/doi/full/10.1200/JCO.2010.34.0026?url_ver=Z39.88-2003&rfr_id=ori%3A... - 0 views

  •  
    CTC via cell search does not detect all CTCs; Not all people with cancer have CTCs; and not all CTCs lead to metastatic disease.
Nathan Goodyear

The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pa... - 0 views

  • WNT signaling
  • early colon cancers commonly display loss of function of the tumor suppressor Adenomatous polyposis coli (APC), a key component of the β-CATENIN destruction complex
  • Other cancers also show an active canonical WNT pathway; these include carcinomas of the lung, stomach, cervix, endometrium, and lung as well as melanomas and gliomas
  • ...31 more annotations...
  • In normal embryogenesis and homeostasis, the canonical WNT pathway is activated by secreted WNT ligands produced in highly controlled context-dependent manners and in precise amounts. WNT activity is transduced in the cytoplasm, inactivates the APC destruction complex, and results in the translocation of activate β-CATENIN to the nucleus, where it cooperates with DNA-binding TCF/LEF factors to regulate WNT-TCF targets and the ensuing genomic response
  • beyond the loss of activity of the APC destruction complex, for instance throughAPC mutation, phosphorylation of β-CATENIN at C-terminal sites is required for the full activation of WNT-TCF signaling and the ensuing WNT-TCF responses in cancer.
  • The WNT-TCF response blockade that we describe for low doses of Ivermectin suggests an action independent to the deregulation of chloride channels
  • involve the repression of the levels of C-terminally phosphorylated β-CATENIN forms and of CYCLIN D1, a critical target that is an oncogene and positive cell cycle regulator.
  • the Avermectin single-molecule derivative Selamectin, a drug widely used in veterinarian medicine (Nolan & Lok, 2012), is ten times more potent acting in the nanomolar range
  • Ivermectin also diminished the protein levels of CYCLIN D1, a direct TCF target and oncogene, in both HT29 and H358 tumor cells
  • Activated Caspase3 was used as a marker of apoptosis by immunohistochemistry 48 h after drug treatment. Selamectin and Ivermectin induced up to a sevenfold increase in the number of activated Caspase3+ cells in two primary (CC14 and CC36) and two cell line (DLD1 and Ls174T) colon cancer cell types (Fig​(Fig2C).2C). All changes were significative
  • The strong downregulation of the expression of the intestinal stem cell genesASCL2 andLGR5 (van der Flieret al, 2009; Scheperset al, 2012; Zhuet al, 2012b) by Ivermectin and Selamectin (Fig​(Fig2D)2D) raised the possibility that these drugs could affect WNT-TCF-dependent colon cancer stem cell behavior
  • Pre-established H358 tumors responded to Ivermectin showing a ˜ 50% repression of growth
  • Ivermectin hasin vivo efficacy against human colon cancer xenografts sensitive to TCF inhibition with no discernable side effects
  • Ivermectin (Campbellet al, 1983), an off-patent drug approved for human use, and related macrocyclic lactones, have WNT-TCF pathway response blocking and anti-cancer activities
  • these drugs block WNT-TCF pathway responses, likely acting at the level of β-CATENIN/TCF function, affecting β-CATENIN phosphorylation status.
  • anti-WNT-TCF activities of Ivermectin and Selamectin
  • Ivermectin has a well-known anti-parasitic activity mediated via the deregulation of chloride channels, leading to paralysis and death (Hibbs & Gouaux, 2011; Lynagh & Lynch, 2012). The same mode of action has been suggested to underlie the toxicity of Ivermectin for liquid tumor cells and the potentiation or sensitization effect of Avermectin B1 on classical chemotherapeutics
  • the specificity of the blockade of WNT-TCF responses we document, at low micromolar doses for Ivermectin and low nanomolar doses for Selamectin, indicate that the blockade of WNT-TCF responses and chloride channel deregulation are distinct modes of action
  • What is key then is to find a dose and a context where the use of Ivermectin has beneficial effects in patients, paralleling our results with xenografts in mice.
  • Cell toxicity appears at doses greater (> 10 μM for 12 h or longer or > 5 μM for 48 h or longer for Ivermectin) than those required to block TCF responses and induce apoptosis.
  • Our data point to a repression of WNT-β-CATENIN/TCF transcriptional responses by Ivermectin, Selamectin and related macrocylic lactones.
  • (i) The ability of Avermectin B1 to inhibit the activation of WNT-TCF reporter activity by N-terminal mutant (APC-insensitive) β-CATENIN as detected in our screen
  • (ii) The ability of Avermectin B1, Ivermectin, Doramectin, Moxidectin and Selamectin to parallel the modulation of WNT-TCF targets by dnTCF
  • (iii) The finding that the specific WNT-TCF response blockade by low doses of Ivermectin and Selamectin is reversed by constitutively active TCF
  • (iv) The repression of key C-terminal phospho-isoforms of β-CATENIN resulting in the repression of the TCF target and positive cell cycle regulator CYCLIN D1 by Ivermectin and Selamectin
  • (v) The specific inhibition ofin-vivo-TCF-dependent, but notin-vivo-TCF-independent cancer cells by Ivermectin in xenografts.
  • These results together with the reduction of the expression of the colon cancer stem cell markersASCL2 andLGR5 (e.g., Hirschet al, 2013; Ziskinet al, 2013) raise the possibility of an inhibitory effect of Ivermectin, Selamectin and related macrocyclic lactones on TCF-dependent cancer stem cells.
  • the capacity of cancer cells to form 3D spheroids in culture, as well as the growth of these, is also WNT-TCF-dependent (Kanwaret al, 2010) and they were also affected by Ivermectin treatment
  • If Ivermectin is specific, it should only block TCF-dependent tumor growth. Indeed, the sensitivity and insensitivity of DLD1 and CC14 xenografts to Ivermectin treatment, respectively, together with the desensitization to Ivermectin actionin vivo by constitutively active TCF provide evidence of the specificity of this drug to block an activated WNT-TCF pathway in human cancer.
  • Ivermectin has a good safety profile since onlyin-vivo-dnTCF-sensitive cancer xenografts are responsive to Ivermectin treatment, and we have not detected side effects in Ivermectin-treated mice at the doses used
  • previous work has shown that side effects from systemic treatments with clinically relevant doses in humans are rare (Yang, 2012), that birth defects were not observed after exposure of pregnant mothers (Pacquéet al, 1990) and that this drug does not cross the blood–brain barrier (Kokozet al, 1999). Similarly, only dogs with mutantABCB1 (MDR1) alleles leading to a broken blood–brain barrier show Ivermectin neurotoxicity (Mealeyet al, 2001; Orzechowskiet al, 2012)
  • Indications may include treatment for incurable β-CATENIN/TCF-dependent advanced and metastatic human tumors of the lung, colon, endometrium, and other organs.
  • Ivermectin, Selamectin, or related macrocyclic lactones could also serve as topical agents for WNT-TCF-dependent skin lesions and tumors such as basal cell carcinomas
  • they might also be useful as routine prophylactic agents, for instance against nascent TCF-dependent intestinal tumors in patients with familial polyposis and against nascent sporadic colon tumors in the general aging population
  •  
    Ivermectin, a common anti-parasitic, found to inhibit WTF-TCF pathway and decrease c-terminal phosophorylaiton of Beta-CATENIN all resulting in increased aptosis and inhibition of cancer growth in colon cancer cell lines and lung cancer cell lines.
Nathan Goodyear

Testosterone Replacement Therapy Following Radical Prostatectomy - The Journal of Sexua... - 0 views

  •  
    larger study post radical prostatectomy for prostate cancer finds that no increase in PSA with Testosterone therapy in men with non-detectable PSA levels.  F/u was 13 months.
Nathan Goodyear

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a p... - 0 views

  • Taken together, these data indicate that ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H2O2, and that blood can be a delivery system of the pro-drug to tissues.
  • These findings give plausibility to i.v. ascorbic acid in cancer treatment, and have unexpected implications for treatment of infections where H2O2 may be beneficial
  • pharmacologic concentrations of ascorbate killed cancer but not normal cells, that cell death was dependent only on extracellular but not intracellular ascorbate, and that killing was dependent on extracellular hydrogen peroxide (H2O2) formation with ascorbate radical as an intermediate
  • ...48 more annotations...
  • Our data show that ascorbic acid selectively killed cancer but not normal cells, using concentrations that could only be achieved by i.v. administration
  • Ascorbate-mediated cell death was due to protein-dependent extracellular H2O2 generation, via ascorbate radical formation from ascorbate as the electron donor. Like glucose, when ascorbate is infused i.v., the resulting pharmacologic concentrations should distribute rapidly in the extracellular water space (42). We showed that such pharmacologic ascorbate concentrations in media, as a surrogate for extracellular fluid, generated ascorbate radical and H2O2. In contrast, the same pharmacologic ascorbate concentrations in whole blood generated little detectable ascorbate radical and no detectable H2O2. These findings can be accounted for by efficient and redundant H2O2 catabolic pathways in whole blood (e.g., catalase and glutathione peroxidase) relative to those in media or extracellular fluid
  • ascorbic acid administered i.v. in pharmacologic concentrations may serve as a pro-drug for H2O2 delivery to the extracellular milieu
  • H2O2 generated in blood is normally removed by catalase and glutathione peroxidase within red blood cells, with internal glutathione providing reducing equivalents
  • The electron source for glutathione is NADPH from the pentose shunt, via glucose-6-phosphate dehydrogenase. If activity of this enzyme is diminished, the predicted outcome is impaired H2O2 removal causing intravascular hemolysis, the observed clinical finding.
    • Nathan Goodyear
       
      The mechansism here is inadequate recycling of GSH due to lack of G6PD, build up of intracellular H2O2 and RBC lysis--hemolysis.
  • Only recently has it been understood that the discordant clinical findings can be explained by previously unrecognized fundamental pharmacokinetics properties of ascorbate
  • Intracellular transport of ascorbate is tightly controlled in relation to extracellular concentration
  • Intravenous ascorbate infusion is expected to drastically change extracellular but not intracellular concentrations
  • For i.v. ascorbate to be clinically useful in killing cancer cells, pharmacologic but not physiologic extracellular concentrations should be effective, independent of intracellular ascorbate concentrations.
    • Nathan Goodyear
       
      accumulation of extracellular vitamin C is the effect.
  • It is unknown why ascorbate, via H2O2, killed some cancer cells but not normal cells.
  • There was no correlation with ascorbate-induced cell death and glutathione, catalase activity, or glutathione peroxidase activity.
  • H2O2, as the product of pharmacologic ascorbate concentrations, has potential therapeutic uses in addition to cancer treatment, especially in infections
  • Neutrophils generate H2O2 from superoxide,
  • i.v. ascorbate is effective in some viral infections
  • H2O2 is toxic to hepatitis C
  • Use of ascorbate as an H2O2-delivery system against sensitive pathogens, viral or bacterial, has substantial clinical implications that deserve rapid exploration.
  • Recent pharmacokinetics studies in men and women show that 10 g of ascorbate given i.v. is expected to produce plasma concentrations of nearly 6 mM, which are >25-fold higher than those concentrations from the same oral dose
  • As much as a 70-fold difference in plasma concentrations is expected between oral and i.v. administration,
  • Complementary and alternative medicine practitioners worldwide currently use ascorbate i.v. in some patients, in part because there is no apparent harm
  • Human Burkitt's lymphoma cells
  • We first investigated whether ascorbate in pharmacologic concentrations selectively affected the survival of cancer cells by studying nine cancer cell lines
  • Clinical pharmacokinetics analyses show that pharmacologic concentrations of plasma ascorbate, from 0.3 to 15 mM, are achievable only from i.v. administration
  • plasma ascorbate concentrations from maximum possible oral doses cannot exceed 0.22 mM because of limited intestinal absorption
  • For five of the nine cancer cell lines, ascorbate concentrations causing a 50% decrease in cell survival (EC50 values) were less than 5 mM, a concentration easily achievable from i.v. infusion
  • All tested normal cells were insensitive to 20 mM ascorbate.
    • Nathan Goodyear
       
      meaning safe.
  • Lymphoma cells were selected because of their sensitivity to ascorbate
  • As ascorbate concentration increased, the pattern of death changed from apoptosis to pyknosis/necrosis, a pattern suggestive of H2O2-mediated cell death
  • Apoptosis occurred by 6 h after exposure, and cell death by pyknosis was ≈90% at 14 h after exposure
    • Nathan Goodyear
       
      work continued beyond the IVC therapy itself
  • In contrast to lymphoma cells, there was little or no killing of normal lymphocytes and monocytes by ascorbate
  • Ascorbate is transported into cells as such by sodium-dependent transporters, whereas dehydroascorbic acid is transported into cells by glucose transporters and then immediately reduced internally to ascorbate
  • Whether or not intracellular ascorbate was preloaded, extracellular ascorbate induced the same amount and type of death.
  • extracellular ascorbate in pharmacologic concentrations mediates death of lymphoma cells by apoptosis and pyknosis/necrosis, independently of intracellular ascorbate.
  • H2O2 as the effector species mediating pharmacologic ascorbate-induced cell death
  • Superoxide dismutase was not protective
  • Because these data implicated H2O2 in cell killing, we added H2O2 to lymphoma cells and studied death patterns using nuclear staining (19, 28). The death patterns found with exogenous H2O2 exposure were similar to those found with ascorbate
  • For both ascorbate and H2O2, death changed from apoptosis to pyknosis/necrosis as concentrations increased
  • Sensitivity to direct exposure to H2O2 was greater in lymphoma cells compared with normal lymphocytes and normal monocytes
  • There was no association between the EC50 for ascorbate-mediated cell death and intracellular glutathione concentrations, catalase activity, or glutathione peroxidase activity
  • H2O2 generation was dependent on time, ascorbate concentration, and the presence of trace amounts of serum in media
  • ascorbate radical is a surrogate marker for H2O2 formation.
  • whatever H2O2 is generated should be removed by glutathione peroxidase and catalase within red blood cells, because H2O2 is membrane permeable
  • The data are consistent with the hypothesis that ascorbate in pharmacologic concentrations is a pro-drug for H2O2 generation in the extracellular milieu but not in blood.
  • The occurrence of one predicted complication, oxalate kidney stones, is controversial
  • In patients with glucose-6-phosphate dehydrogenase deficiency, i.v. ascorbate is contraindicated because it causes intravascular hemolysis
  • ascorbate at pharmacologic concentrations in blood is a pro-drug for H2O2 delivery to tissues.
  • ascorbate, an electron-donor in such reactions, ironically initiates pro-oxidant chemistry and H2O2 formation
  • data here showed that ascorbate initiated H2O2 formation extracellularly, but H2O2 targets could be either intracellular or extracellular, because H2O2 is membrane permeant
    • Nathan Goodyear
       
      the conversion of ascorbate to H2O2 occurs extracellular
  • More than 100 patients have been described, presumably without glucose-6-phosphate dehydrogenase deficiency, who received 10 g or more of i.v. ascorbate with no reported adverse effects other than tumor lysis
  •  
    IV vitamin C benefits cancer patients
Nathan Goodyear

Press-pulse: a novel therapeutic strategy for the metabolic management of cancer | Nutr... - 0 views

  • A “press” disturbance was considered a chronic environmental stress on all organisms in an ecological community
  • “pulse” disturbances were considered acute events that disrupted biological communities to produce high mortality
  • Neoplasia involving dysregulated cell growth is the biological endpoint of the disease
  • ...84 more annotations...
  • Data from the American Cancer Society show that the rate of increase in cancer deaths/year (3.4%) was two-fold greater than the rate of increase in new cases/year (1.7%) from 2013 to 2017
  • cancer is predicted to overtake heart disease as the leading cause of death in Western societies
  • cancer can also be recognized as a metabolic disease.
  • glucose is first split into two molecules of pyruvate through the Embden–Meyerhof–Parnas glycolytic pathway in the cytosol
  • Aerobic fermentation, on the other hand, involves the production of lactic acid under normoxic conditions
  • persistent lactic acid production in the presence of adequate oxygen is indicative of abnormal respiration
  • Otto Warburg first proposed that all cancers arise from damage to cellular respiration
  • The Crabtree effect is an artifact of the in vitro environment and involves the glucose-induced suppression of respiration with a corresponding elevation of lactic acid production even under hyperoxic (pO2 = 120–160 mmHg) conditions associated with cell culture
  • the Warburg theory of insufficient aerobic respiration remains as the most credible explanation for the origin of tumor cells [2, 37, 51, 52, 53, 54, 55, 56, 57].
  • The main points of Warburg’s theory are; 1) insufficient respiration is the predisposing initiator of tumorigenesis and ultimately cancer, 2) energy through glycolysis gradually compensates for insufficient energy through respiration, 3) cancer cells continue to produce lactic acid in the presence of oxygen, and 4) respiratory insufficiency eventually becomes irreversible
  • Efraim Racker coined the term “Warburg effect”, which refers to the aerobic glycolysis that occurs in cancer cells
  • Warburg clearly demonstrated that aerobic fermentation (aerobic glycolysis) is an effect, and not the cause, of insufficient respiration
  • all tumor cells that have been examined to date contain abnormalities in the content or composition of cardiolipin
  • The evidence supporting Warburg’s original theory comes from a broad range of cancers and is now overwhelming
  • respiratory insufficiency, arising from any number mitochondrial defects, can contribute to the fermentation metabolism seen in tumor cells.
  • data from the nuclear and mitochondrial transfer experiments suggest that oncogene changes are effects, rather than causes, of tumorigenesis
  • Normal mitochondria can suppress tumorigenesis, whereas abnormal mitochondria can enhance tumorigenesis
  • In addition to glucose, cancer cells also rely heavily on glutamine for growth and survival
  • Glutamine is anapleurotic and can be rapidly metabolized to glutamate and then to α-ketoglutarate for entry into the TCA cycle
  • Glucose and glutamine act synergistically for driving rapid tumor cell growth
  • Glutamine metabolism can produce ATP from the TCA cycle under aerobic conditions
  • Amino acid fermentation can generate energy through TCA cycle substrate level phosphorylation under hypoxic conditions
  • Hif-1α stabilization enhances aerobic fermentation
  • targeting glucose and glutamine will deprive the microenvironment of fermentable fuels
  • Although Warburg’s hypothesis on the origin of cancer has created confusion and controversy [37, 38, 39, 40], his hypothesis has never been disproved
  • Warburg referred to the phenomenon of enhanced glycolysis in cancer cells as “aerobic fermentation” to highlight the abnormal production of lactic acid in the presence of oxygen
  • Emerging evidence indicates that macrophages, or their fusion hybridization with neoplastic stem cells, are the origin of metastatic cancer cells
  • Radiation therapy can enhance fusion hybridization that could increase risk for invasive and metastatic tumor cells
  • Kamphorst et al. in showing that pancreatic ductal adenocarcinoma cells could obtain glutamine under nutrient poor conditions through lysosomal digestion of extracellular proteins
  • It will therefore become necessary to also target lysosomal digestion, under reduced glucose and glutamine conditions, to effectively manage those invasive and metastatic cancers that express cannibalism and phagocytosis.
  • Previous studies in yeast and mammalian cells show that disruption of aerobic respiration can cause mutations (loss of heterozygosity, chromosome instability, and epigenetic modifications etc.) in the nuclear genome
  • The somatic mutations and genomic instability seen in tumor cells thus arise from a protracted reliance on fermentation energy metabolism and a disruption of redox balance through excess oxidative stress.
  • According to the mitochondrial metabolic theory of cancer, the large genomic heterogeneity seen in tumor cells arises as a consequence, rather than as a cause, of mitochondrial dysfunction
  • A therapeutic strategy targeting the metabolic abnormality common to most tumor cells should therefore be more effective in managing cancer than would a strategy targeting genetic mutations that vary widely between tumors of the same histological grade and even within the same tumor
  • Tumor cells are more fit than normal cells to survive in the hypoxic niche of the tumor microenvironment
  • Hypoxic adaptation of tumor cells allows for them to avoid apoptosis due to their metabolic reprograming following a gradual loss of respiratory function
  • The high rates of tumor cell glycolysis and glutaminolysis will also make them resistant to apoptosis, ROS, and chemotherapy drugs
  • Despite having high levels of ROS, glutamate-derived from glutamine contributes to glutathione production that can protect tumor cells from ROS
    • Nathan Goodyear
       
      reason to eliminate glutamine in cancer patients and even GSH with cancer patients
  • It is clear that adaptability to environmental stress is greater in normal cells than in tumor cells, as normal cells can transition from the metabolism of glucose to the metabolism of ketone bodies when glucose becomes limiting
  • Mitochondrial respiratory chain defects will prevent tumor cells from using ketone bodies for energy
  • glycolysis-dependent tumor cells are less adaptable to metabolic stress than are the normal cells. This vulnerability can be exploited for targeting tumor cell energy metabolism
  • In contrast to dietary energy reduction, radiation and toxic drugs can damage the microenvironment and transform normal cells into tumor cells while also creating tumor cells that become highly resistant to drugs and radiation
  • Drug-resistant tumor cells arise in large part from the damage to respiration in bystander pre-cancerous cells
  • Because energy generated through substrate level phosphorylation is greater in tumor cells than in normal cells, tumor cells are more dependent than normal cells on the availability of fermentable fuels (glucose and glutamine)
  • Ketone bodies and fats are non-fermentable fuels
  • Although some tumor cells might appear to oxidize ketone bodies by the presence of ketolytic enzymes [181], it is not clear if ketone bodies and fats can provide sufficient energy for cell viability in the absence of glucose and glutamine
  • Apoptosis under energy stress is greater in tumor cells than in normal cells
  • A calorie restricted ketogenic diet or dietary energy reduction creates chronic metabolic stress in the body
  • . This energy stress acts as a press disturbance
  • Drugs that target availability of glucose and glutamine would act as pulse disturbances
  • Hyperbaric oxygen therapy can also be considered another pulse disturbance
  • The KD can more effectively reduce glucose and elevate blood ketone bodies than can CR alone making the KD potentially more therapeutic against tumors than CR
  • Campbell showed that tumor growth in rats is greater under high protein (>20%) than under low protein content (<10%) in the diet
  • Protein amino acids can be metabolized to glucose through the Cori cycle
  • The fats in KDs used clinically also contain more medium chain triglycerides
  • Calorie restriction, fasting, and restricted KDs are anti-angiogenic, anti-inflammatory, and pro-apoptotic and thus can target and eliminate tumor cells through multiple mechanisms
  • Ketogenic diets can also spare muscle protein, enhance immunity, and delay cancer cachexia, which is a major problem in managing metastatic cancer
  • GKI values of 1.0 or below are considered therapeutic
  • The GKI can therefore serve as a biomarker to assess the therapeutic efficacy of various diets in a broad range of cancers.
  • It is important to remember that insulin drives glycolysis through stimulation of the pyruvate dehydrogenase complex
  • The water-soluble ketone bodies (D-β-hydroxybutyrate and acetoacetate) are produced largely in the liver from adipocyte-derived fatty acids and ketogenic dietary fat. Ketone bodies bypass glycolysis and directly enter the mitochondria for metabolism to acetyl-CoA
  • Due to mitochondrial defects, tumor cells cannot exploit the therapeutic benefits of burning ketone bodies as normal cells would
  • Therapeutic ketosis with racemic ketone esters can also make it feasible to safely sustain hypoglycemia for inducing metabolic stress on cancer cells
    • Nathan Goodyear
       
      Ketones are much more than energy adaptabilit, but actually are therapeutic.
  • ketone bodies can inhibit histone deacetylases (HDAC) [229]. HDAC inhibitors play a role in targeting the cancer epigenome
  • Therapeutic ketosis reduces circulating inflammatory markers, and ketones directly inhibit the NLRP3 inflammasome, an important pro-inflammatory pathway linked to carcinogenesis and an important target for cancer treatment response
  • Chronic psychological stress is known to promote tumorigenesis through elevations of blood glucose, glucocorticoids, catecholamines, and insulin-like growth factor (IGF-1)
  • In addition to calorie-restricted ketogenic diets, psychological stress management involving exercise, yoga, music etc. also act as press disturbances that can help reduce fatigue, depression, and anxiety in cancer patients and in animal models
  • Ketone supplementation has also been shown to reduce anxiety behavior in animal models
  • This physiological state also enhances the efficacy of chemotherapy and radiation therapy, while reducing the side effects
  • lower dosages of chemotherapeutic drugs can be used when administered together with calorie restriction or restricted ketogenic diets (KD-R)
  • Besides 2-DG, a range of other glycolysis inhibitors might also produce similar therapeutic effects when combined with the KD-R including 3-bromopyruvate, oxaloacetate, and lonidamine
    • Nathan Goodyear
       
      oxaloacetate is a glycolytic inhibitor, as is doxycycline, and IVC.
  • A synergistic interaction of the KD diet plus radiation was seen
  • It is important to recognize, however, that the radiotherapy used in glioma patients can damage the respiration of normal cells and increase availability of glutamine in the microenvironment, which can increase risk of tumor recurrence especially when used together with the steroid drug dexamethasone
  • Poff and colleagues demonstrated that hyperbaric oxygen therapy (HBOT) enhanced the ability of the KD to reduce tumor growth and metastasis
  • HBOT also increases oxidative stress and membrane lipid peroxidation of GBM cells in vitro
  • The effects of the KD and HBOT can be enhanced with administration of exogenous ketones, which further suppressed tumor growth and metastasis
  • Besides HBOT, intravenous vitamin C and dichloroacetate (DCA) can also be used with the KD to selectively increase oxidative stress in tumor cells
  • Recent evidence also shows that ketone supplementation may enhance or preserve overall physical and mental health
  • Some tumors use glucose as a prime fuel for growth, whereas other tumors use glutamine as a prime fuel [102, 186, 262, 263, 264]. Glutamine-dependent tumors are generally less detectable than glucose-dependent under FDG-PET imaging, but could be detected under glutamine-based PET imaging
  • GBM and use glutamine as a major fuel
  • Many of the current treatments used for cancer management are based on the view that cancer is a genetic disease
  • Emerging evidence indicates that cancer is a mitochondrial metabolic disease that depends on availability of fermentable fuels for tumor cell growth and survival
  • Glucose and glutamine are the most abundant fermentable fuels present in the circulation and in the tumor microenvironment
  • Low-carbohydrate, high fat-ketogenic diets coupled with glycolysis inhibitors will reduce metabolic flux through the glycolytic and pentose phosphate pathways needed for synthesis of ATP, lipids, glutathione, and nucleotides
  •  
    Cancer is a mitochondrial disease? So says the well published Dr Seyfried. Glucose and glutamine drive cancer growth.
Nathan Goodyear

Frontiers | Microbiome-Derived Lipopolysaccharide Enriched in the Perinuclear Region of... - 0 views

  • lipopolysaccharides (LPS), either alone or in combination, have indicated that when compared, bacterial LPSs exhibit the strongest induction of pro-inflammatory signaling in human neuronal–glial cells in primary coculture of any single inducer, and different LPS extracts from different gastrointestinal (GI)-tract resident Gram-negative bacteria appeared to have different pro-inflammatory potential
  • powerful inducer of the NF-κB
  • In both neocortex and hippocampus, LPS has been detected to range from a ~7- to ~21-fold increase abundance in AD brain
  • ...15 more annotations...
  • Major Gram-negative bacilli of the human GI-tract, such as the abundant B. fragilis and Escherichia coli (E. coli), are capable of discharging a remarkably complex assortment of pro-inflammatory neurotoxins
  • (i) bacterial amyloids (10, 21); (ii) endotoxins and exotoxins (5, 12); (iii) LPS (12, 18); and (iv) small non-coding RNAs (sncRNAs)
  • integral components of the outer leaflet of the outer membrane of Gram-negative bacteria, LPS
  • LPS, the major molecular component of the outer membrane of Gram-negative bacteria normally serves as a physical barrier providing the bacteria protection from its surroundings
  • LPS is also recognized by the immune system as a marker for the detection of bacterial pathogen invasion and responsible for the development of inflammatory response is perhaps the most potent stimulator and trigger of inflammation known
  • AD-affected brains have remarkably large loads of bacterial-derived toxins compared to controls. The transfer of noxious, pro-inflammatory molecules from the GI-tract microbiome to the CNS may be increasingly important during the course of aging when both the GI-tract and blood–brain barriers become significantly more permeable
  • first evidence of a perinuclear association of LPS with AD brain cell nuclei
  • LPS-mediated stimulation of chronic inflammation, beta-amyloid accumulation, and episodic memory decline in murine models of AD (39, 40) and a biophysical association of LPS with amyloid deposits and blood vessels in human AD patients
  • Strong adherence of LPS to the nuclear periphery has recently been shown to inhibit nuclear maturation and function that may impair or block export of mRNA signals from brain cell nuclei, a highly active organelle with extremely high rates of transcription, mRNA processing, and export into the cytoplasm
  • LPS may be further injurious to the nuclear membrane just as LPS contributes to cerebrovascular endothelial cell membrane injury
  • high intake of dietary fiber is a strong inhibitor of B. fragilis abundance and proliferation in the intact human GI-tract and as such is a potent inhibitor of the neurotoxic B. fragilis-derived amyloids, LPS, enterotoxins, and sncRNAs.
  • GI-tract microbiome-derived LPS may be an important initiator and/or significant contributor to inflammatory degeneration in the AD CNS
  • LPS has been recently localized to the same anatomical regions involved in AD-type neuropathology
  • a known pro-inflammatory transcription factor complex that triggers the expression of pathogenic pathways involved in neurodegenerative inflammation
  • pro-inflammatory amyloids, endo- and exotoxins, LPSs, and sncRNAs but also serve as potent sources of membrane-disrupting agents
  •  
    LPS links gut to inflammation in Alzheimer's disease
Rahul Sharma

Cellulose Nitrate - CN Gridded Membrane Filters - 0 views

  •  
    Buy best quality CN Gridded Membrane Filters at Axiva. This membrane filters are ideal for analytical method requiring qualitative, enrichment method microorganism counts for the detection of microbial contamination in food beverages, pharmaceuticals and cosmetics.
fitspresso

https://www.sightcare-co.com/ - 0 views

  •  
    Sight Care | Official Site sightcare-co.com · by Sight Care Sight Care Only $49/Bottle Limited Time Offer! Sight Care Special Deal + Special 67% Discount Save $600 + 180 Days Money Back Guarantee #1.The Sight Care vision supplement is a dietary supplement for helping you improve your vision and brain health. Sight Care eye supplements are formulated to provide a synergistic blend of vitamins, minerals, antioxidants, and other bioactive compounds that are essential for maintaining healthy vision Regular Price: 147/per bottle Only for: $49/per bottle What Is Sight Care? This powerful vision support supplement is made with a unique blend of natural ingredients and plant extracts that work together synergistically to deliver numerous benefits for your brain and eye health. With Sight Care, you can expect to experience increased energy levels, improved eyesight, and an overall revitalized sense of well-being. Taking care of your vision health is not just about seeing clearly; it's also about maintaining your overall brain health. As we age, our vision deteriorates, and our eyes and brain can experience a decline in function, but there are steps you can take to support your visual and cognitive health. Regular eye exams are crucial for detecting and treating vision problems early on, and making healthy choices such as eating a nutritious diet and exercising regularly can also help. However, with busy schedules, it can be difficult to find the time to devote to a healthy lifestyle. This is where the Sight Care supplement comes in. It's designed to support both vision and brain health with its blend of natural ingredients that have been shown to promote healthy vision and cognitive function You must not compromise your eye health for momentary exhilaration. If you are glued to digital screens day and night, you must take measures to prevent eye diseases like age-related macular degeneration. The SightCare vision supplement has been made using 100% natura
harshitatyagi

How common is male infertility, and what tests can detect male infertility? - 0 views

  •  
    Nowadays, infertility is a common hindrance among couples, which is making most couples deprived of the prominent and beloved happiness of their lives while distressing their lifestyle upside down. Though conceiving can be a complicated process, it doesn't mean you cannot improve the level of infertility in your life.
indiacardiacsurg

Increased Physical Activity after Low Implantable Cardioverter-Defibrillator Price in I... - 0 views

  •  
    Implantable cardioverter-defibrillators, additionally known as ICDs, are battery-powered gadgets positioned under the skin which could detect peculiar heart rhythms and supply an electric shock to restore a regular heartbeat. ICD procedure cost helps reduce the risk of sudden cardiac death and can be recommended for life-threatening rhythm irregularities due to myocardial infarction, cardiac arrest, or congenital heart disease. India Cardiac Surgery Hospital Helpline Number: +91-9370586696
Nathan Goodyear

Secular Decline in Male Testosterone and Sex Hormone Binding Globulin Serum Levels in D... - 0 views

  • Serum SHBG levels are negatively associated with obesity and various measures of insulin resistance
  • SHBG levels increase during pharmacological oral estrogen treatment
  • insulin decreases SHBG productio
  • ...5 more annotations...
  • The secular decline in SHBG and testosterone serum levels did not lead to a change in the level of free testosterone
  • existence of specific binding sites for SHBG at the cell membrane of steroid-responsive tissues has been shown
  • it is alarming that changes of this magnitude can be detected over such a relatively short time
  • Sex steroids stimulate SHBG production and secretion in vitro
  • Serum testosterone levels decreased and SHBG levels increased with increasing age
  •  
    lower levels of SHBG and serum testosterone were found in more recently born men.  Preceding generations of men produced higher testosterone levels than men born in more recent generations.
Nathan Goodyear

Toll-like Receptors, Infection | Learn Science at Scitable - 0 views

  •  
    basic summary of TLRs
Nathan Goodyear

Effect of Finasteride on the Sensitivity of PSA for Detecting Prostate Cancer - 0 views

  •  
    Finasteride more likely to lower PSA associated with benign prostate conditions compared to cancer of prostate.
Nathan Goodyear

Minireview: Inflammation and Obesity Pathogenesis: The Hypothalamus Heats Up - 0 views

  • Leptin, secreted by adipocytes in proportion to body fat mass
  • The saturated fatty acid palmitate (16:0) induces NF-κB signaling through a TLR4-dependent mechanism
  • 18:0 (stearic) and longer saturated fatty acids as well as linolenic acid (18:3) increased proinflammatory cytokines, ER stress markers, and TLR4 activation
  • ...6 more annotations...
  • (SOCS)-3. A member of a protein family originally characterized as negative feedback regulators of inflammation (13, 37), SOCS3 inhibits insulin and leptin signaling
  • IKKβ signaling in discrete neuronal subsets appears to be required for both hypothalamic inflammation and excess weight gain to occur during HF feeding
  • the paradoxical observation that hyperphagia and weight gain occur when hypothalamic inflammation is induced by HF feeding, yet when it occurs in response to systemic or local inflammatory processes (e.g. administration of endotoxin), anorexia and weight loss are the rule
  • , serves as a circulating signal of energy stores in part by providing feedback inhibition of hypothalamic orexigenic pathways [e.g. neurons that express neuropeptide Y and agouti-related peptide (AgRP)]
  • and stimulating anorexigenic neurons
  • signals from Toll-like receptors (TLRs), evolutionarily conserved pattern recognition molecules critical for detecting pathogens, amplified through signaling intermediates such as MyD88 activate the inhibitor of κB-kinase-β (IKKβ)/nuclear factor-κB (NF-κB), c-Jun N-terminal kinase (Jnk) and other intracellular inflammatory signals in response to stimulation by circulating saturated fatty acids
  •  
    great read on the current understanding of how obesity and resultant inflammation disrupts hypothalamic function.
Nathan Goodyear

Testosterone replacement therapy after primary treatm... [J Urol. 2005] - PubMed - NCBI - 0 views

  •  
    Testosterone therapy in men with history of prostate cancer not found to increase risk of recurrence.
Nathan Goodyear

Gender and sex hormones in multiple sclerosis pathology and therapy - 0 views

  • It is now well recognized that the disease manifestation is reduced in pregnant women with relapsing-remitting MS
  • This occurs particularly during the third trimester when levels of estrogens (estradiol and estriol) and progesterone (see Table 2) are elevated up to about 20 times
  • This seems well correlated with a decrease in active white matter lesions detected by MRI
  • ...12 more annotations...
  • This clinical improvement is however followed by temporary rebound exacerbations at post-partum, when the hormone levels decline
  • a shift from Th1 to Th2 immune response, expansion of suppressive regulatory T lymphocytes and decrease in the number of circulating CD16+ natural killer (NK)-cells
  • Th1 lymphocytes secrete proinflammatory cytokines (e.g. IL-2, IFNgamma, lymphotoxin) while Th2 cells secrete anti-inflammatory cytokines (e.g. IL-4, IL-5, IL-10), which favor humoral-mediated responses
  • Th2 cytokines are associated with down-regulation of Th1 cytokines and this Th2 shift is believed to provide protection from allograft rejection during pregnancy as well as from Th1-mediated autoimmune disease
  • it is worth noting that the levels of other hormones with anti-inflammatory activity (1,25-dihydroxy-vitamin D3, norepinephrine, cortisol) also increase by 2 to 4 times during late pregnancy
  • 1,25-dihydroxy vitamin D3 induces regulatory T-cell function important for development of self-tolerance
  • breast-feeding does not alter the relapse rate in women with MS
  • Leptin is a pleiotropic hormone produced primarily by adipocytes but also by T lymphocytes and neurons
  • Several lines of evidence indicate that leptin contributes to EAE/MS pathogenesis, influencing its onset and clinical severity, by acting as a proinflammatory cytokine which promotes regulatory T cell (Treg) anergy and hyporesponsiveness, resulting in increased Th1 (TNFalpha, INFgamma) and reduced Th2 (IL-4) cytokine production
  • circulating leptin levels are increased in relapsing-remitting MS patients (men and women analyzed together) while the CD4+CD25+Treg population decreases
  • As the leptin plasma concentrations are proportional to the amount of fat tissue, obese/overweight individuals produce higher levels of leptin
  • Nielsen et al found that estradiol and progesterone exert neuroprotection against glutamate neurotoxicity, while MPA antagonizes the neuroprotective effect of estradiol and exacerbated neuron death induced by glutamate excitotoxicity
  •  
    very good review of the differences in MS and hormones between the sexes.
Nathan Goodyear

The Complex Role of Estrogens in Inflammation - 0 views

  • These studies suggest inflammation-dependent up-regulation of ERβ relative to ERα.
  • up-regulation of ERβ relative to ERα under hypoxic conditions, which might lead to a preponderance of signaling through ERβ pathways
  • it seems that E2 at periovulatory to pregnancy levels inhibited proinflammatory cytokines from PBMCs
  • ...26 more annotations...
  • it is clear that E2 can stimulate antibody production by B cells, probably by inhibiting T cell suppression of B cells
  • In cycling women, the largest quantities of Ig were detected before ovulation
  • In contrast, E2 at high concentrations leads to a suppression of B-lymphocyte lineage precursors
  • E2 at periovulatory to pregnancy serum levels is able to stimulate antibody secretion under healthy conditions but also in autoimmune diseases, whereas similar serum levels of E2 lead to a suppression of bone marrow B cell lineage precursors
  • In chronic inflammatory disorders, where B cells play a decisive role, E2 would promote the disease when autoaggressive B cells are already present, whereas chronically elevated E2 would inhibit initiation of an autoimmune disease when no such B cells are available. This might be a good reason why particularly B cell-dependent diseases such as SLE, mixed connective tissue disease (Sharp syndrome), IgA nephropathy, dermatitis herpetiformis, gluten sensitive enteropathy, myasthenia gravis, and thyroiditis appear in women in the reproductive years, predominantly, in the third or fourth decades of life
  • Th17 cells are thought to be the main responsible cells for chronic inflammatory tissue destruction in autoimmune diseases
  • IFN-γ, IL-12, and TNF were allocated to Th1 reactions
  • IL-4, IL-5, and IL-10 to Th2 responses
  • antiinflammatory T regulatory cells producing TGF-β and proinflammatory T helper type 17 cells (Th17) producing IL-17
  • no direct effects of estrogens on Th17 cells or IL-17 secretion have been described until now.
  • So-called Th17 cells producing IL-17 are the main T cells responsible for chronic inflammation.
  • Because IFN-γ has been allocated a Th17-inhibiting role (Fig. 1⇑), its increase by E2 at pregnancy doses and the E2-mediated inhibition of TNF must be viewed as a favorable effect in chronic inflammation
  • in humans and mice, E2 at periovulatory to pregnancy levels stimulates IL-4, IL-10, and IFN-γ but inhibits TNF from CD4+ T cells
  • In humans and mice, E3 and E2, respectively, at pregnancy levels inhibit T cell-dependent delayed type hypersensitivity
  • increased IL-4, IL-10, and IFN-γ in the presence of low TNF support an antiaggressive immune response
  • secretion of IL-1β is increased at periovulatory/proestrus to early pregnancy levels, whereas IL-1 secretion is inhibited at high pregnancy levels
  • The dichotomous effect of E2 on IL-1β and TNF at high and low concentrations is most probably due to inhibition of NF-κB at high concentrations
  • experiments with mouse and rat macroglial and microglial cells demonstrate that E2 at proestrus to pregnancy levels exerts neuroprotective effects by increasing TGF-β and by inhibiting iNOS and NO release, and reducing expression of proinflammatory cytokines and prostaglandin E2 production.
  • E2 at periovulatory to pregnancy levels inhibits NF-κB activation, which must be viewed as an antiinflammatory signal
  • It was shown that E2 concentrations equal to or above 10−10 m are necessary to inhibit NF-κB activation
  • important proinflammatory cytokines are typically inhibited at periovulatory (proestrus) to pregnancy levels of E2, which is evident for IL-6, IL-8, and TNF
  • low E2 concentrations were demonstrated to have no or even stimulatory effects
  • This renders a woman in the postmenopausal phase to a more proinflammatory situation
  • most in vitro studies demonstrated a stimulatory effect of E2 on secretion of IL-4, IL-10, and TGF-β typically at periovulatory to pregnancy levels
  • E2 at periovulatory to pregnancy levels has an ameliorating effect on chronic inflammatory diseases as long as B cell-dependent immunity or an overshooting fibrotic tissue repair process do not play a crucial pathogenic role. However, when the B cell plays an important role, E2 might even stimulate the disease process as substantiated by flare-ups in SLE during pregnancy
    • Nathan Goodyear
       
      SLE, mixed connective tissue disease (Sharp syndrome), IgA nephropathy, dermatitis herpetiformis, gluten sensitive enteropathy, myasthenia gravis, and thyroiditis
  • Short-term administration of E2 at pregnancy levels was shown to induce an inflammatory response specific to the lateral prostate of the castrated male rat
  •  
    great review of the complex interaction between Estrogens and inflammation.  Reference here is in females.
Nathan Goodyear

Comparative Studies of the Estrogen Receptors β and α and the Androgen Recept... - 0 views

  • ER-β is predominately immunolocalized in basal cells and to a lesser extent in stromal cells of the morphologically normal human prostate
  • ER-α is detected in stromal cells and rarely in basal cells of the normal gland
  • AR was predominately localized in the nuclei of differentiated secretory cells and variably in basal cells of the normal acinar/duct unit as well as in stromal cells
  • ...9 more annotations...
  • Hall and colleagues44 have reported that ER-β functions as a transdominant inhibitor of ER-α transcription and that it acts to decrease overall cellular sensitivity to estradiol
  • The expression of ER-β was diminished in high-grade dysplasias when compared to normal glands and lower grade lesions.
  • The transition from normal to low/moderate dysplastic glands in the peripheral zone was marked by the appearance of ER-β homogeneously immunostained nuclei in secretory as well as basal cells with no changes in the localization of the other receptors.
  • proliferative signals mediated by AR in basal cells or by ER-α and AR in stromal cells may be opposed by the purported growth-inhibitory action of ER-β25, 26, 27, 28 localized in basal cells.
  • The diminution of ER-β expression in high-grade dysplasias and grade 4/5 cancers may be therefore related to the alteration of DNA methylation pattern in CpG islands of the promoter, resulting in down-regulation of the receptor at the transcriptional level
  • based on the proposed anti-proliferative function of the receptor,25, 26, 27, 28 the presence of ER-β in secretory cells of low/moderate-grade lesions may represent a transient abortive attempt to counter growth of these cells
  • the attrition of receptor-positive basal cells in the high-grade dysplasias may signify a continuing loss of growth inhibitory function mediated by ER-β in these precursor lesions
  • Our findings in prostate therefore differ from those reported for human colon cancer in which Folley and colleagues48 demonstrated that a selective loss of ER-β protein but not receptor message expression occurs in these neoplasms
  • Our findings therefore differed from those of Bonkhoff and colleagues33 who found immunostaining for the receptor in high-grade dysplasias and grade 4/5 carcinomas. Using in situ hybridization these authors also reported that a high percentage of dysplasias and carcinomas in their study contained cells that expressed ER-α message
  •  
    Very nice study.  The authors looked at normal prostate, early disease and late stage prostate cancer.  The authors found that ER beta expression, as a general rule, was lost as progression occurred to the high-grade dysplasias and grad 4/5 carcinomas of the prostate.  Early low/moderate dysplasia was associated with an increase in ER beta--the authors propose that this was due to an attempt of the basal epithelium to counter the paracrine effect of ER alpha.   In contrast, androgen receptors appeared to be equally expressed across all.
Nathan Goodyear

Sex steroids and cardiovascular disease Yeap BB - Asian J Androl - 0 views

  • Levels of SHBG are higher in older men, therefore levels of free T decline more steeply than total T as men's age increases.
  • calculations based on mass action equations may not reflect precisely free T measured using a reference method
  • free T declines more steeply with age than total T in both cross-sectional [35] and longitudinal studies, [36] as does free E2 in comparison to total E2
  • ...22 more annotations...
  • T may slow development of or progression of atherosclerosis by modulating effects on insulin resistance, inflammation, endothelial function, preclinical atherosclerosis or the vasculature.
  • these cross-sectional and longitudinal studies support a relationship between low circulating T with CIMT and higher E2 with its progression
  • lower levels of T are biomarkers for aortic vascular disease
  • circulating free T was negatively associated with the presence of AAA
  • luteinizing hormone (LH) was positively associated.
  • low levels of total or bioavailable T were associated with aortic atherosclerosis manifested as calcified deposits detected by radiography
  • Men with total or free T in the lowest quartile had increased adjusted ORs for PAD defined as ABI <0.90, as did men with free E2 in the highest quartile of values
  • The apparent association of SHBG with intermittent claudication reflects the correlation of total T with SHBG, while the contribution of E2 to risk of PAD remains unclear
  • men with total T in the lowest quartile of values (<11.7 nmol l−1 ) experienced an increased incidence of stroke or transient ischemic attack
  • lower total T with increased incidence of CVD events
  • cohort studies in mostly older men have supported the association of lower androgen levels with higher mortality
  • lower total or free T levels were associated with mortality in older men, but with discordant results for cause-specific mortality and for associations of E2
  • several large studies identifying lower endogenous levels of total or free T as independent predictors of all-cause or CVD-related deaths in middle-aged and older men
  • T exhibits anti-inflammatory effects, enhances flow-mediated brachial artery reactivity, and reduces arterial stiffness
  • Short-term T therapy had a beneficial effect on exercise-induced myocardial ischemia in middle-aged men with coronary artery disease or chronic stable angina, [95],[96],[97] and reduced angina frequency in older men with diabetes and coronary artery disease
  • T therapy resulted in an increase in treadmill test duration and time to ST segment depression
  • there are interventional studies supporting a protective effect of exogenous T against myocardial ischemia in men with coronary artery disease
  • employ conservative doses
    • Nathan Goodyear
       
      This dosing is 100 fold higher then peak production of a  young man at 20-22.
  • Observational studies indicate that lower levels of endogenous T in older men are associated with the presence of carotid atherosclerosis, aortic and peripheral vascular disease, and incidence of CVD events and mortality
  • Interventional studies have shown beneficial effects of exogenous T on vascular function and on exercise-induced myocardial ischemia in men with coronary artery disease
    • Nathan Goodyear
       
      the therapies employed in these studies were massively overdosed.
  •  
    Nice review of all the sex hormones and their relationship to CVD in men.  
‹ Previous 21 - 40 of 90 Next › Last »
Showing 20 items per page