Skip to main content

Home/ Dr. Goodyear/ Group items tagged data

Rss Feed Group items tagged

Nathan Goodyear

Toxicity of the spike protein of COVID-19 is a redox shift phenomenon: A novel therapeu... - 0 views

  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • ...88 more annotations...
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • most diseases display a form of anabolism due to mitochondrial impairment
  • most diseases display a form of anabolism due to mitochondrial impairment
  • most diseases display a form of anabolism due to mitochondrial impairment
  • infection by Covid-19 follows a similar pattern
  • chronic inflammation
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • infection by Covid-19 follows a similar pattern
  • unrelenting anabolism leads to the cytokine storm,
  • unrelenting anabolism leads to the cytokine storm,
  • unrelenting anabolism leads to the cytokine storm,
  • chronic inflammation
  • chronic inflammation
  • infection by Covid-19 follows a similar pattern
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • direct consequence of redox iMeBalance, itself a consequence of decreased energy yield by the mitochondria
  • direct consequence of redox iMeBalance, itself a consequence of decreased energy yield by the mitochondria
  • mitochondrial dysfunction and increased levels of lactate, which are important characteristics of metabolic shift and Warburg effect in many diseases
  • mitochondrial dysfunction and increased levels of lactate, which are important characteristics of metabolic shift and Warburg effect in many diseases
  • increased lactate dehydrogenase activity (LDH) was observed in COVID-19 patients
  • increased lactate dehydrogenase activity (LDH) was observed in COVID-19 patients
  • almost every disease presents an increased anabolism
  • almost every disease presents an increased anabolism
  • cell division is the most sophisticated way to release entropy
  • cell division is the most sophisticated way to release entropy
    • Nathan Goodyear
       
      Wow
    • Nathan Goodyear
       
      Wow
  • transition from catabolism to anabolism is driven by a redox shift
  • transition from catabolism to anabolism is driven by a redox shift
  • viral spike protein binds to ACE2 receptor of the host cell [22,23].
  • redox signaling plays an important role in regulating immune function and inflammation, and disruptions in this signaling can lead to excessive cytokine production and immune system activation
  • Aging is associated with a poor control of the redox balance
  • thiol/disulfide homeostasis
  • reduced extracellular environment in the elderly and the increased susceptibility to Covid-19 infection
  • reduced extracellular environment in the elderly and the increased susceptibility to Covid-19 infection
  • Redox signaling tightly modulates the inflammatory response and oxidative stress has been reported in acute Covid-19
  • People at high risk are the elderly, patients suffering from metabolic syndrome such as obesity, or those suffering from chronic diseases such as cancer or inflammation
  • COVID-19 patients with severe disease have higher levels of oxidative stress markers and lower antioxidant levels
  • oxidative stress can activate the NLRP3 inflammasome, which is a protein complex that plays a key role in the cytokine storm
  • inflammation leads to the formation of ROS and RNS, while redox iMeBalance results in cellular damage, which in turn triggers an inflammatory response
  • persistently elevated mtROS triggers endothelial dysfunction and inflammation, which results in a vicious loop involving ROS, inflammation, and mitochondrial dysfunction
  • Damaged mitochondria releasing ROS induce inflammation via the NLRP3 inflammasome
  • Damaged mitochondria releasing ROS induce inflammation via the NLRP3 inflammasome
  • reduced environment during the cytokine storm
  • IL-2 is highly up-regulated in Covid-19 patients [37], and IL-2 is known to significantly stimulate the generation of NO in patients
  • Nitric acid is also the key mediator of IL-2-induced hypotension and vascular leak syndrome
  • mitochondrial dysfunction has been linked to the pathogenesis of Covid-19
  • mitochondrial dysfunction triggered by SARS-CoV-2 leads to damage to the mitochondria
  • mitochondrial dysfunction triggered by SARS-CoV-2 leads to damage to the mitochondria
  • As catabolism is decreased, entropy is released through anabolism
  • Elevated levels of lactate, a characteristic of the Warburg effect, were also reported in the high-risk Covid-19
  • elevated levels of ventricular lactic acid consistent with oxidative stress
  • A decrease of ΔΨm is implicated in several inflammation-related diseases
  • decrease in ΔΨm in leucocytes from Covid-19 patients
  • vaccinated with RNA or DNA vaccines triggering the synthesis of the viral spike protein in human cells
  • viral reactivation in varicella-zoster virus [55] or hepatitis [56], coagulopathy and resulting stroke and myocarditis following both DNA-based vaccines [57] and RNA-based vaccines
  • Covid-19, mitochondrial impairment
  • characteristic of the Warburg effect is present in almost every disease and appears to be a central feature in most of the hallmarks of cancer
  • inflammation, mitochondrial dysfunction and increased lactate concentrations in the extracellular fluid
  • In Covid-19, like any inflammation, there is a metabolic rewiring where cells rely on glycolysis
  • As the mitochondria are impaired, the infected cell cannot catabolize efficiently. It will release lactic acid in the blood stream
    • Nathan Goodyear
       
      Mitochondrial impairment
  • Striking similarities are seen between cancer, Alzheimer's disease and Covid-19, all related to the Warburg effect
  • Cancer, inflammation, Alzheimer's, and Parkinson's diseases share a common peculiarity, the inability of the cell to export entropy outside the body in the harmless form of heat
    • Nathan Goodyear
       
      Entropy: lack of order or predictability; gradual decline into disorder.
  • MEB relieves the Warburg effect [87], improves memory [77], is active in the treatment of depressive episodes [79,80] and reduces the importance of ischemic strokes
  • MEB relieves the Warburg effect [87], improves memory [77], is active in the treatment of depressive episodes [79,80] and reduces the importance of ischemic strokes
  • MEB has been shown to inhibit SARS-Cov-2 replication in vitro
  • MEB has been shown to inhibit SARS-Cov-2 replication in vitro
  • It has been shown that Covid-19-patients treated with MEB, have a significant reduction in hospital stay duration and mortality
  • MeB is an acceptor-donor molecule
  • MeB + can take a pair of electrons (of H atoms) and MeBH can release this pair easily, so that MeB is partially recycled like a catalyst
  • MeB acts as an electron bridge between a donor (FADH2, FMNH, NADH) and an acceptor (complex IV of ETC or oxygen itself)
  • As a coenzyme of pyruvate dehydrogenase (PDH), alpha-lipoic acid (ALA) initiates the formation of acetyl-CoA to feed the TCA cycle
  • ALA enhances the catabolism of carbon. cycle and therefore may reduce the Warburg effect and consequently, lactate production
  • Methylene Blue plays a similar role after the TCA cycle, by carrying electrons to complex IV of the electron transport chain
  • Drugs such as lipoic acid and MeB, which target the metabolism, decrease the redox shift by increasing catabolism
Nathan Goodyear

Press-pulse: a novel therapeutic strategy for the metabolic management of cancer | Nutr... - 0 views

  • A “press” disturbance was considered a chronic environmental stress on all organisms in an ecological community
  • “pulse” disturbances were considered acute events that disrupted biological communities to produce high mortality
  • Neoplasia involving dysregulated cell growth is the biological endpoint of the disease
  • ...84 more annotations...
  • Data from the American Cancer Society show that the rate of increase in cancer deaths/year (3.4%) was two-fold greater than the rate of increase in new cases/year (1.7%) from 2013 to 2017
  • cancer is predicted to overtake heart disease as the leading cause of death in Western societies
  • cancer can also be recognized as a metabolic disease.
  • glucose is first split into two molecules of pyruvate through the Embden–Meyerhof–Parnas glycolytic pathway in the cytosol
  • Aerobic fermentation, on the other hand, involves the production of lactic acid under normoxic conditions
  • persistent lactic acid production in the presence of adequate oxygen is indicative of abnormal respiration
  • Otto Warburg first proposed that all cancers arise from damage to cellular respiration
  • The Crabtree effect is an artifact of the in vitro environment and involves the glucose-induced suppression of respiration with a corresponding elevation of lactic acid production even under hyperoxic (pO2 = 120–160 mmHg) conditions associated with cell culture
  • the Warburg theory of insufficient aerobic respiration remains as the most credible explanation for the origin of tumor cells [2, 37, 51, 52, 53, 54, 55, 56, 57].
  • The main points of Warburg’s theory are; 1) insufficient respiration is the predisposing initiator of tumorigenesis and ultimately cancer, 2) energy through glycolysis gradually compensates for insufficient energy through respiration, 3) cancer cells continue to produce lactic acid in the presence of oxygen, and 4) respiratory insufficiency eventually becomes irreversible
  • Efraim Racker coined the term “Warburg effect”, which refers to the aerobic glycolysis that occurs in cancer cells
  • Warburg clearly demonstrated that aerobic fermentation (aerobic glycolysis) is an effect, and not the cause, of insufficient respiration
  • all tumor cells that have been examined to date contain abnormalities in the content or composition of cardiolipin
  • The evidence supporting Warburg’s original theory comes from a broad range of cancers and is now overwhelming
  • respiratory insufficiency, arising from any number mitochondrial defects, can contribute to the fermentation metabolism seen in tumor cells.
  • data from the nuclear and mitochondrial transfer experiments suggest that oncogene changes are effects, rather than causes, of tumorigenesis
  • Normal mitochondria can suppress tumorigenesis, whereas abnormal mitochondria can enhance tumorigenesis
  • In addition to glucose, cancer cells also rely heavily on glutamine for growth and survival
  • Glutamine is anapleurotic and can be rapidly metabolized to glutamate and then to α-ketoglutarate for entry into the TCA cycle
  • Glucose and glutamine act synergistically for driving rapid tumor cell growth
  • Glutamine metabolism can produce ATP from the TCA cycle under aerobic conditions
  • Amino acid fermentation can generate energy through TCA cycle substrate level phosphorylation under hypoxic conditions
  • Hif-1α stabilization enhances aerobic fermentation
  • targeting glucose and glutamine will deprive the microenvironment of fermentable fuels
  • Although Warburg’s hypothesis on the origin of cancer has created confusion and controversy [37, 38, 39, 40], his hypothesis has never been disproved
  • Warburg referred to the phenomenon of enhanced glycolysis in cancer cells as “aerobic fermentation” to highlight the abnormal production of lactic acid in the presence of oxygen
  • Emerging evidence indicates that macrophages, or their fusion hybridization with neoplastic stem cells, are the origin of metastatic cancer cells
  • Radiation therapy can enhance fusion hybridization that could increase risk for invasive and metastatic tumor cells
  • Kamphorst et al. in showing that pancreatic ductal adenocarcinoma cells could obtain glutamine under nutrient poor conditions through lysosomal digestion of extracellular proteins
  • It will therefore become necessary to also target lysosomal digestion, under reduced glucose and glutamine conditions, to effectively manage those invasive and metastatic cancers that express cannibalism and phagocytosis.
  • Previous studies in yeast and mammalian cells show that disruption of aerobic respiration can cause mutations (loss of heterozygosity, chromosome instability, and epigenetic modifications etc.) in the nuclear genome
  • The somatic mutations and genomic instability seen in tumor cells thus arise from a protracted reliance on fermentation energy metabolism and a disruption of redox balance through excess oxidative stress.
  • According to the mitochondrial metabolic theory of cancer, the large genomic heterogeneity seen in tumor cells arises as a consequence, rather than as a cause, of mitochondrial dysfunction
  • A therapeutic strategy targeting the metabolic abnormality common to most tumor cells should therefore be more effective in managing cancer than would a strategy targeting genetic mutations that vary widely between tumors of the same histological grade and even within the same tumor
  • Tumor cells are more fit than normal cells to survive in the hypoxic niche of the tumor microenvironment
  • Hypoxic adaptation of tumor cells allows for them to avoid apoptosis due to their metabolic reprograming following a gradual loss of respiratory function
  • The high rates of tumor cell glycolysis and glutaminolysis will also make them resistant to apoptosis, ROS, and chemotherapy drugs
  • Despite having high levels of ROS, glutamate-derived from glutamine contributes to glutathione production that can protect tumor cells from ROS
    • Nathan Goodyear
       
      reason to eliminate glutamine in cancer patients and even GSH with cancer patients
  • It is clear that adaptability to environmental stress is greater in normal cells than in tumor cells, as normal cells can transition from the metabolism of glucose to the metabolism of ketone bodies when glucose becomes limiting
  • Mitochondrial respiratory chain defects will prevent tumor cells from using ketone bodies for energy
  • glycolysis-dependent tumor cells are less adaptable to metabolic stress than are the normal cells. This vulnerability can be exploited for targeting tumor cell energy metabolism
  • In contrast to dietary energy reduction, radiation and toxic drugs can damage the microenvironment and transform normal cells into tumor cells while also creating tumor cells that become highly resistant to drugs and radiation
  • Drug-resistant tumor cells arise in large part from the damage to respiration in bystander pre-cancerous cells
  • Because energy generated through substrate level phosphorylation is greater in tumor cells than in normal cells, tumor cells are more dependent than normal cells on the availability of fermentable fuels (glucose and glutamine)
  • Ketone bodies and fats are non-fermentable fuels
  • Although some tumor cells might appear to oxidize ketone bodies by the presence of ketolytic enzymes [181], it is not clear if ketone bodies and fats can provide sufficient energy for cell viability in the absence of glucose and glutamine
  • Apoptosis under energy stress is greater in tumor cells than in normal cells
  • A calorie restricted ketogenic diet or dietary energy reduction creates chronic metabolic stress in the body
  • . This energy stress acts as a press disturbance
  • Drugs that target availability of glucose and glutamine would act as pulse disturbances
  • Hyperbaric oxygen therapy can also be considered another pulse disturbance
  • The KD can more effectively reduce glucose and elevate blood ketone bodies than can CR alone making the KD potentially more therapeutic against tumors than CR
  • Campbell showed that tumor growth in rats is greater under high protein (>20%) than under low protein content (<10%) in the diet
  • Protein amino acids can be metabolized to glucose through the Cori cycle
  • The fats in KDs used clinically also contain more medium chain triglycerides
  • Calorie restriction, fasting, and restricted KDs are anti-angiogenic, anti-inflammatory, and pro-apoptotic and thus can target and eliminate tumor cells through multiple mechanisms
  • Ketogenic diets can also spare muscle protein, enhance immunity, and delay cancer cachexia, which is a major problem in managing metastatic cancer
  • GKI values of 1.0 or below are considered therapeutic
  • The GKI can therefore serve as a biomarker to assess the therapeutic efficacy of various diets in a broad range of cancers.
  • It is important to remember that insulin drives glycolysis through stimulation of the pyruvate dehydrogenase complex
  • The water-soluble ketone bodies (D-β-hydroxybutyrate and acetoacetate) are produced largely in the liver from adipocyte-derived fatty acids and ketogenic dietary fat. Ketone bodies bypass glycolysis and directly enter the mitochondria for metabolism to acetyl-CoA
  • Due to mitochondrial defects, tumor cells cannot exploit the therapeutic benefits of burning ketone bodies as normal cells would
  • Therapeutic ketosis with racemic ketone esters can also make it feasible to safely sustain hypoglycemia for inducing metabolic stress on cancer cells
    • Nathan Goodyear
       
      Ketones are much more than energy adaptabilit, but actually are therapeutic.
  • ketone bodies can inhibit histone deacetylases (HDAC) [229]. HDAC inhibitors play a role in targeting the cancer epigenome
  • Therapeutic ketosis reduces circulating inflammatory markers, and ketones directly inhibit the NLRP3 inflammasome, an important pro-inflammatory pathway linked to carcinogenesis and an important target for cancer treatment response
  • Chronic psychological stress is known to promote tumorigenesis through elevations of blood glucose, glucocorticoids, catecholamines, and insulin-like growth factor (IGF-1)
  • In addition to calorie-restricted ketogenic diets, psychological stress management involving exercise, yoga, music etc. also act as press disturbances that can help reduce fatigue, depression, and anxiety in cancer patients and in animal models
  • Ketone supplementation has also been shown to reduce anxiety behavior in animal models
  • This physiological state also enhances the efficacy of chemotherapy and radiation therapy, while reducing the side effects
  • lower dosages of chemotherapeutic drugs can be used when administered together with calorie restriction or restricted ketogenic diets (KD-R)
  • Besides 2-DG, a range of other glycolysis inhibitors might also produce similar therapeutic effects when combined with the KD-R including 3-bromopyruvate, oxaloacetate, and lonidamine
    • Nathan Goodyear
       
      oxaloacetate is a glycolytic inhibitor, as is doxycycline, and IVC.
  • A synergistic interaction of the KD diet plus radiation was seen
  • It is important to recognize, however, that the radiotherapy used in glioma patients can damage the respiration of normal cells and increase availability of glutamine in the microenvironment, which can increase risk of tumor recurrence especially when used together with the steroid drug dexamethasone
  • Poff and colleagues demonstrated that hyperbaric oxygen therapy (HBOT) enhanced the ability of the KD to reduce tumor growth and metastasis
  • HBOT also increases oxidative stress and membrane lipid peroxidation of GBM cells in vitro
  • The effects of the KD and HBOT can be enhanced with administration of exogenous ketones, which further suppressed tumor growth and metastasis
  • Besides HBOT, intravenous vitamin C and dichloroacetate (DCA) can also be used with the KD to selectively increase oxidative stress in tumor cells
  • Recent evidence also shows that ketone supplementation may enhance or preserve overall physical and mental health
  • Some tumors use glucose as a prime fuel for growth, whereas other tumors use glutamine as a prime fuel [102, 186, 262, 263, 264]. Glutamine-dependent tumors are generally less detectable than glucose-dependent under FDG-PET imaging, but could be detected under glutamine-based PET imaging
  • GBM and use glutamine as a major fuel
  • Many of the current treatments used for cancer management are based on the view that cancer is a genetic disease
  • Emerging evidence indicates that cancer is a mitochondrial metabolic disease that depends on availability of fermentable fuels for tumor cell growth and survival
  • Glucose and glutamine are the most abundant fermentable fuels present in the circulation and in the tumor microenvironment
  • Low-carbohydrate, high fat-ketogenic diets coupled with glycolysis inhibitors will reduce metabolic flux through the glycolytic and pentose phosphate pathways needed for synthesis of ATP, lipids, glutathione, and nucleotides
  •  
    Cancer is a mitochondrial disease? So says the well published Dr Seyfried. Glucose and glutamine drive cancer growth.
Nathan Goodyear

Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2... - 0 views

  • Chen et al. have revealed that ascorbate at pharmacologic concentrations (0.3–20 mM) achieved only by intravenously (i.v.) administration selectively kills a variety of cancer cell lines in vitro, but has little cytotoxic effect on normal cells.
  • Ascorbic acid (the reduced form of vitamin C) is specifically transported into cells by sodium-dependent vitamin C transporters (SVCTs)
  • SVCT-1 is predominantly expressed in epithelial tissues
  • ...41 more annotations...
  • whereas the expression of SVCT-2 is ubiquitous
  • differential sensitivity to VC may result from variations in VC flow into cells, which is dependent on SVCT-2 expression.
  • high-dose VC significantly impaired both the tumorspheres initiation (Fig. 4d, e) and the growth of established tumorspheres derived from HCC cells (Fig. 4f, g) in a time-dependent and dose-dependent manner.
  • Hepatocellular carcinoma (HCC)
  • The antioxidant, N-acetyl-L-cysteine (NAC), preventing VC-induced ROS production (a ROS scavenger), completely restored the viability and colony formation among VC-treated cells
  • DNA double-strand damage was found following VC treatment
  • DNA damage was prevented by NAC
  • Interestingly, the combination of VC and cisplatin was even more effective in reducing tumor growth and weight
  • Consistent with the in vitro results, stemness-related genes expressions in tumor xenograft were remarkably reduced after VC or VC+cisplatin treatment, whereas conventional cisplatin therapy alone led to the increase of CSCs
  • VC is one of the numerous common hepatoprotectants.
  • Interestingly, at extracellular concentrations greater than 1 mM, VC induces strong cytotoxicity to cancer cells including liver cancer cells
  • we hypothesized that intravenous VC might reduce the risk of recurrence in HCC patients after curative liver resection.
  • Intriguingly, the 5-year disease-free survival (DFS) for patients who received intravenous VC was 24%, as opposed to 15% for no intravenous VC-treated patients
  • Median DFS time for VC users was 25.2 vs. 18 months for VC non-users
  • intravenous VC use is linked to improved DFS in HCC patients.
  • In this study, based on the elevated expression of SVCT-2, which is responsible for VC uptake, in liver CSCs, we revealed that clinically achievable concentrations of VC preferentially eradicated liver CSCs in vitro and in vivo
    • Nathan Goodyear
       
      the authors here made similar mistakes to the Mayo authors i.e. under doses here in this study.  They dosed at only 2 grams IVC.  A woefully low dose of IVC.
  • Additionally, we found that intravenous VC reduced the risk of post-surgical HCC progression in a retrospective cohort study.
    • Nathan Goodyear
       
      positive results despite a low dose used.
    • Nathan Goodyear
       
      Their comfort zone was 1mM.  They should have targeted 20-40 mM.
  • Three hundred thirty-nine participants (55.3%) received 2 g intravenous VC for 4 or more days after initial hepatectomy
  • As the key protein responsible for VC uptake in the liver, SVCT-2 played crucial roles in regulating the sensitivity to ascorbate-induced cytotoxicity
  • we also observed that SVCT-2 was highly expressed in human HCC samples and preferentially elevated in liver CSCs
  • SVCT-2 might serve as a potential CSC marker and therapeutic target in HCC
  • CSCs play critical roles in regulating tumor initiation, relapse, and chemoresistance
  • we revealed that VC treatment dramatically reduced the self-renewal ability, expression levels of CSC-associated genes, and percentages of CSCs in HCC, indicating that CSCs were more susceptible to VC-induced cell death
  • as a drug for eradicating CSCs, VC may represent a promising strategy for treatment of HCC, alone or particularly in combination with chemotherapeutic drugs
  • In HCC, we found that VC-generated ROS caused genotoxic stress (DNA damage) and metabolic stress (ATP depletion), which further activated the cyclin-dependent kinase inhibitor p21, leading to G2/M phase cell cycle arrest and caspase-dependent apoptosis in HCC cells
  • we demonstrated a synergistic effect of VC and chemotherapeutic drug cisplatin on killing HCC both in vitro and in vivo
  • Intravenous VC has also been reported to reduce chemotherapy-associated toxicity of carboplatin and paclitaxel in patients,38 but the specific mechanism needs further investigation
    • Nathan Goodyear
       
      so, exclude the benefit to patients until the exact mechanism of action, which will never be fully elicited?!?!?
  • Our retrospective cohort study also showed that intravenous VC use (2 g) was related to the improved DFS in HCC patients after initial hepatectomy
    • Nathan Goodyear
       
      Terribly inadequate dose.  Target is 20-40 mM which other studies have found occur with 50-75 grams of IVC.
  • several clinical trials of high-dose intravenous VC have been conducted in patients with advanced cancer and have revealed improved quality of life and prolonged OS
  • high-dose VC was not toxic to immune cells and major immune cell subpopulations in vivo
  • high recurrence rate and heterogeneity
  • tumor progression, metastasis, and chemotherapy-resistance
  • SVCT-2 was highly expressed in HCC samples in comparison to peri-tumor tissues
  • high expression (grade 2+/3+) of SVCT-2 was in agreement with poorer overall survival (OS) of HCC patients (Fig. 1c) and more aggressive tumor behavior
  • SVCT-2 is enriched in liver CSCs
  • these data suggest that SVCT-2 is preferentially expressed in liver CSCs and is required for the maintenance of liver CSCs.
  • pharmacologic concentrations of plasma VC higher than 0.3 mM are achievable only from i.v. administration
  • The viabilities of HCC cells were dramatically decreased after exposure to VC in dose-dependent manner
  • VC and cisplatin combination further caused cell apoptosis in tumor xenograft
  • These results verify that VC inhibits tumor growth in HCC PDX models and SVCT-2 expression level is associated with VC response
  • qPCR and IHC analysis demonstrated that expression levels of CSC-associated genes and percentages of CSCs in PDXs dramatically declined after VC treatment, confirming the inhibitory role of VC in liver CSCs
  •  
    IV vitamin C in vitro and in vivo found to "preferentially" eradicate cancer stem cells.  In addition, IV vitamin C was found to be adjunctive to chemotherapy, found to be hepatoprotectant.  This study also looked at SVCT-2, which is the transport protein important in liver C uptake.
Nathan Goodyear

microRNA Expression in Ethnic Specific Early Stage Breast Cancer: an Integration and Co... - 0 views

  • dysregulated miRNA could be involved in tumor cell proliferation and growth as well as cell cycle progression
  • under-expression of miR-497, 376c and 1271 in Lebanese breast cancer tissues
  • The upregulated miR-183 in our samples was predicted to be responsible for the decrease in expression of the BTG1 mRNA whose protein is involved in cell cycle arrest and apoptosis in breast cancer cells18.
  • ...9 more annotations...
  • nother molecule related to cell proliferation that was over-expressed in our data and suggested as a target of downregulated miR-376c is AURKA
  • the over-expression of miR-183 and miR-21 in Lebanese breast cancer tissues is consistent with downregulation of two important tumor suppressor predicted targets: AKAP12 whose protein regulates cellular adhesion dynamics by controlling cytoskeletal architecture, cell migration, and mitogenic signaling20; and LATS2 whose protein causes cell cycle arrest
  • dysregulation in cancer particularly in breast cancer highlights their importance in tumor development
  • mRNA-miRNA integration analysis of early breast cancer revealed a potential role of miRNA in increasing cellular proliferation and progression, and decreasing invasion and migration
  • most of the miRNA dysregulated in Lebanese breast cancer patients are similar to those dysregulated in American patients, differences in miRNA expression exist and could be attributed either to the patients’ age at diagnosis or to ethnic variation in miRNA epigenetic regulation and sequence variation of pre-miRNA
  • the number one cancer killer of women worldwide
  • microRNA (miRNA) are small non-coding 18–25 nucleotide RNA molecules currently being studied as potential diagnostic, prognostic and therapeutic biomarkers for cancer and other diseases
  • Extensive research on these post-transcriptional modulators has proven that they are deregulated in breast cancerous tissues and even in biological fluids from breast cancer patients
  • five candidate miRNAs (miR-10b, miR-148b, miR-221, miR-21, and miR-155)
  •  
    Epigenetics plays a role, via disregulated miRNA, in increased cell growth, progression, and invasion in Lebanese women with breast cancer.  It is not just genetics that play a role, but epigenetics.
Nathan Goodyear

Late Disseminated Lyme Disease: Associated Pathology and Spirochete Persistence Post-Tr... - 0 views

  • In this study, we have demonstrated microscopic pathology ranging from minimal to moderate in multiple different tissues previously reported to be involved with LD, including the nervous system (central and peripheral), heart, skeletal muscle, joint-associated tissues, and urinary bladder 12 to 13 months following tick-inoculation of rhesus macaques by Bb strain B31
  • Based on histomorphology, inflammation consisted predominantly of lymphocytes and plasma cells, with rare scattered histiocytes
  • in rare instances, morphologically intact spirochetes were observed in inflamed brain and heart tissue sections from doxycycline-treated animals
  • ...41 more annotations...
  • colocalization of the Bb 23S rRNA probe was not observed in any of the sections of experimental inoculated animals shown to harbor rare persistent spirochetes (Supplemental Figure S1). Previous in vitro work has shown large decreases in Bb rRNA levels when in a stationary phase of growth despite the majority of spirochetes remaining viable
  • The possibility that the spirochetes were intact but dead also exists, though this may be unlikely given the precedence for viable but non-cultivable B. burgdorferi post-treatment
  • The doxycycline dose utilized in this study (5mg/kg) was based on a previous pharmacokinetic analysis of oral doxycycline in rhesus macaques proven to be comparable to levels achieved in humans and was meant to mimic treatment of disseminated LD
  • In addition to the brain of two treated animals, rare morphologically intact spirochetes immunoreactive to OspA were observed in the heart of one treated animal
  • Although we did not measure the doxycycline levels in the cerebrospinal fluid, they have been found to be 12% to 15% of the amount measured in serum
  • We and others have demonstrated the development of a drug-tolerant persister population when B. burgdorferi are treated with antibiotics in vitro
  • The adoption of a dormant or slow-growing phenotype likely allows the spirochetes to survive and re-grow following removal of antibiotic
  • The basic premise that antibiotic tolerance may be an adaptation of the sophisticated stringent response required for the enzootic cycle by the spirochetes is described in a recent review as well
  • Although current IDSA guidelines recommend intravenous ceftriaxone (2g daily for 30 days) over oral doxycycline for treatment of neuroborreliosis, a randomized clinical trial failed to show any enhanced efficacy of I.V. penicillin G to oral doxycycline for treatment of Lyme neuroborreliosis (no treatment failures were reported in this study of 54 patients).
  • we can speculate that the minimal to moderate inflammation that was observed, especially within the CNS and PNS can, in part, explain the breadth of symptoms experienced by late stage Lyme disease patients, such as cognitive impairment and neuralgia.
  • Erythema migrans, the clinical hallmark of early localized Lyme disease, was observed in one of the rhesus macaques from this study.
  • In 2014, a trailblazing study in mice demonstrated a dramatic decline in B. burgdorferi DNA in the tissues for up to eight months after antibiotic treatment followed by the resurgence of B. burgdorferi growth 12 months after treatment
  • This study provides evidence that the slow-growing spirochetes which persist after treatment, but are not cultivable in standard growth media may remain viable.
  • The first well-documented indication of Lyme disease (LD) in the United States occurred in the early 1970s
  • Lyme, Connecticut.
  • Lyme disease is now known to be caused by multiple closely related genospecies classified within the Bb sensu lato complex, representing the most common tick-borne human disease in the Northern Hemisphere
  • approximately 30,000 physician-reported cases occur annually in the United States, the annual incidence has been estimated to be 10-fold higher by the Centers for Disease Control and Prevention.6
  • Current antibiotic therapy guidelines outlined by the Infectious Disease Society of America (IDSA) are successful in the treatment of LD for the majority of LD patients, especially when administered early in disease immediately following identification of erythema migrans (EM)
  • ‘post-treatment Lyme disease syndrome’ (PTLDS)
  • host-adapted spirochetes that persist in the tissues, probably in small numbers, inaccessible or impervious to antibiotic
  • inflammatory responses to residual antigens from dead organisms
  • residual tissue damage following pathogen clearance;
  • autoimmune responses, possibly elicited by antigenic mimicry
  • Experimental studies on immunocompetent mice, dogs, and rhesus macaques have provided evidence for the persistence of Bb spirochetes subsequent to antibiotic treatment in the form of residual spirochetes detected within tissue by IFA and PCR, and recovered by xenodiagnoses
  • Ten male rhesus macaques
  • half (five) of the NHP received antibiotic treatment, consisting of 5 mg/kg oral doxycycline twice per day.
  • Minimal and focal lymphoplasmacytic inflammation
  • inflammation was observed in the leptomeninges overlying a section of temporal cerebral cortex
  • Minimal localized lymphoplasmacytic choroiditis
  • Peripheral nerves contained minimal to moderate lymphoplasmacytic inflammation with a predilection for collagen-rich epineurium and perivascular spaces
  • Inflammation was observed in 56% (5/9) of the NHPs irrespective of treatment group
  • For all animals, inflammation was reserved to perineural tissue
  • The treatment lasted 28 days
  • Minimal to mild lymphoplasmacytic inflammation of either the myocardial interstitium (Figure 2Figure 2A), pericardium (Figure 2Figure 2B), or combination therein was observed in 60% of NHPs
  • A single morphologically intact spirochete, as indicated by positive red immunofluorescence (Figure 2Figure 2C), was observed in the myocardium of one treated animal
  • mild, multifocal lymphoplasmacytic inflammation was observed in one doxycycline-treated animal
  • three animals exhibited minimal to mild lymphoplasmacytic inflammation affecting joint-associated structures
  • 10% to -20% of human patients treated
  • Multiple randomized placebo-controlled studies which evaluated sustained antimicrobial therapy concluded that there is no benefit in alleviating patients’ symptoms and indicated that long-term antibiotic therapy may even be detrimental to patients due to potential associated complications (ie, catheter infection and/or clostridial colitis)
  • and the rapid clearance of dead spirochetes in a murine model
  • higher doses may be needed to combat neuroborreliosis
  •  
    persistent borrelia burgdorferia were found in the brain (2) and the heart (1) up to 13 months post standard antibiotic treatment suggesting borrelia burdorferia, the cause of Lyme, can persist in a chronic, persistant state poste acute treatment.
Nathan Goodyear

European Journal of Clinical Nutrition - Effect of maternal n-3 long-chain polyunsatura... - 0 views

  • It is estimated that approximately 30% of children and adolescents in the United States and about 15–30% of those in Europe can be classified as overweight or obese
  • An increasing body of evidence now suggests that the nutritional environment encountered in utero and the early postnatal life may elicit permanent alterations in adipose tissue structure or function and, thereby, programme the individual’s propensity to later obesity
  • The composition of fatty acids in the Western diets has shifted toward an increasing dominance of n-6 relative to n-3 LCPUFAs over the past decades.9,10 This shift is also reflected in the fatty acid composition of breast milk
  • ...8 more annotations...
  • Evidence from animal studies suggests that the n-6 LCPUFA arachidonic acid promotes adipose tissue deposition, whereas the n-3 LCPUFAs eicosapentaenoic acid and docosahexaenoic acid seem to exert an opposite effect
  • Overall, no effect of supplementation was found on BMI in preschool (<5 years) and school-aged (6–12 years) children
  • increased adiposity, once established in childhood, tends to track into adulthood
  • Many studies have shown that even children <2 years with a high BMI are at increased risk of developing obesity later in life
  • The acquisition of fat cells early in life appears to be an irreversible process
  • Evidence from cell culture and animal studies suggests that early exposure to n-3 LCPUFAs has the potential to limit adipose tissue deposition mainly by attenuating the production of the arachidonic acid metabolite prostacyclin, which has been shown to enhance adipogenesis
  • In conclusion, there is currently no evidence to support that maternal n-3 LCPUFA supplementation during pregnancy and/or lactation exerts a favourable programming effect on adiposity status in childhood
  • our systematic review highlights that most of the trials reviewed were prone to methodological limitations
  •  
    Literature review finds limited data (9 studies, only 6 RCTs) of omega-3 during pregnancy.  No data was found that supported reduced obesity in children by mothers taking n-3 during pregnancy.  No harm was found either.  Data was sparse.   Take home: not enough data, no harm to pregnancy, children, thus if indications are present for mother, then recommend n-3.  At this point not studies have pointed to reduced obesity in children.
tom cruze

Clinical Trial Data Management Ensuring regulation and accuracy of clinical trial data | - 0 views

  •  
    The data management of a clinical trial is a crucial step for the firms that are undergoing research studies in the hospitals. Maintaining the quality and integrity of clinical data is yet another daring task to perform. Many of recent studies showed numerous troubles with data management system (DMS) in clinical trials performed at academic organizations.
Nathan Goodyear

The Benefits and Harms of Systemic T... [J Clin Endocrinol Metab. 2014] - PubMed - NCBI - 0 views

  •  
    Review of data of Testosterone in post-menopausal women is seriously lacking--especially long-term safety data and this is worrisome as other data points to increased CVD and cancer with increasing Testosterone levels in women.
Nathan Goodyear

Low serum albumin levels and liver metastasis are powerful prognostic markers for survi... - 0 views

  • poor PS,8-10 the presence of liver metastases,7, 9, 10 and elevated LDH levels10 were independent prognostic factors
  • lymphopenia (HR of, 1.89; P = .04) and hypoalbuminemia (HR of 2.7; P < .0001) were independent prognostic factors for overall survival
  • lymphopenia in cancer patients remain unclear and may reflect in part poor nutrition
  • ...2 more annotations...
  • may result in part from the destruction of lymphocytes by the tumor and/or an impaired differentiation of lymphocytes progenitors
  • presence of liver metastasis (HR of, 2.27; P = .0003) and hypoalbuminemia were the 2 most powerful adverse prognostic factors
  •  
    study finds that lympohopenia and low albumin was associated with the worse prognosis in 317 patients with liver mets with unknown primary cancer. 
Nathan Goodyear

Ibuprofen alters human testicular physiology to produce a state of compensated hypogona... - 0 views

  • The levels of LH in the ibuprofen group had increased by 23% after 14 d of administration
  • This increase was even more pronounced at 44 d, at 33%
  • We found an 18% decrease (P = 0.056) in the ibuprofen group compared with the placebo group after 14 d (Fig. 1A) and a 23% decrease (P = 0.02) after 44 d (Fig. 1C). Taken together, these in vivo data suggest that ibuprofen induced a state of compensated hypogonadism during the trial, which occurred as early as 14 d and was maintained until the end of the trial at 44 d
  • ...27 more annotations...
  • We first investigated testosterone production after 24 and 48 h of ibuprofen exposure to assess its effects on Leydig cell steroidogenesis. Inhibition of testosterone levels was significant and dose-dependent (β = −0.405, P = 0.01 at 24 h and β = −0.664, P < 0.0001 at 48 h) (Fig. 2A) and was augmented over time
  • The AMH data show that the hypogonadism affected not only Leydig cells but also Sertoli cells and also occurred as early as 14 d of administration
  • Sertoli cell activity showed that AMH levels decreased significantly with ibuprofen administration, by 9% (P = 0.02) after 14 d (Fig. 1B) and by 7% (P = 0.05) after 44 d compared with the placebo group
  • Examination of the effect of ibuprofen exposure on both the ∆4 and ∆5 steroid pathways (Fig. 2B) showed that it generally inhibited all steroids from pregnenolone down to testosterone and 17β-estradiol; the production of each steroid measured decreased at doses of 10−5–10−4 M. Under control conditions, production of androstenediol and dehydroepiandrosterone (DHEA) was below the limit of detection except in one experiment with DHEA
  • Measuring the mRNA expression of genes involved in steroidogenesis in vitro showed that ibuprofen had a profound inhibitory effect on the expression of these genes (Fig. 3 B–D), consistent with that seen above in our ex vivo organ model. Taken together, these data examining effects on the endocrine cells confirm that ibuprofen-induced changes in the transcriptional machinery were the likely reason for the inhibition of steroidogenesis.
  • Suppression of gene expression concerned the initial conversion of cholesterol to the final testosterone synthesis. Hence, expression of genes involved in cholesterol transport to the Leydig cell mitochondria was impaired
  • A previous study reported androsterone levels decreased by 63% among men receiving 400 mg of ibuprofen every 6 h for 4 wk
  • We next examined the gene expression involved in testicular steroidogenesis ex vivo and found that levels of expression of every gene that we studied except CYP19A1 decreased after exposure for 48 h compared with controls
  • the changes in gene expression indicate that the transcriptional machinery behind the endocrine action of Leydig cells was most likely impaired by ibuprofen exposure.
  • Together, these data show that ibuprofen also directly impairs Sertoli cell function ex vivo by inhibiting transcription
  • ibuprofen use in men led to (i) elevation of LH; (ii) a decreased testosterone/LH ratio and, to a lesser degree, a decreased inhibin B/FSH ratio; and (iii) a reduction in the levels of the Sertoli cell hormone AMH
  • The decrease in the free testosterone/LH ratio resulted primarily from the increased LH levels, revealing that testicular responsiveness to gonadotropins likely declined during the ibuprofen exposure. Our data from the ex vivo experiments support this notion, indicating that the observed elevation in LH resulted from ibuprofen’s direct antiandrogenic action
  • AMH levels were consistently suppressed by ibuprofen both in vivo and ex vivo, indicating that this hormone is uncoupled from gonadotropins in adult men. The ibuprofen suppression of AMH further demonstrated that the analgesic targeted not only the Leydig cells but also the Sertoli cells, a feature encountered not only in the human adult testis but also in the fetal testis
  • ibuprofen displayed broad transcription-repression abilities involving steroidogenesis, peptide hormones, and prostaglandin synthesis
  • a chemical compound, through its effects on the signaling compounds, can result in changes in the testis at gene level, resulting in perturbations at higher physiological levels in the adult human
  • The analgesics acetaminophen/paracetamol and ibuprofen have previously been shown to inhibit the postexercise response in muscles by repressing transcription
  • Previous ex vivo studies on adult testis have indeed pointed to an antiandrogenicity, only on Leydig cells, of phthalates (41), aspirin, indomethacin (42), and bisphenol A (BPA) and its analogs
  • ibuprofen’s effects were not restricted to Leydig and Sertoli cells, as data showed that the expression of genes in peritubular cells was also affected
  • short-term exposure
  • In the clinical setting, compromised Leydig cell function resulting in increased insensitivity to LH is defined as compensated hypogonadism (4), an entity associated with all-cause mortality
  • compensated hypogonadic men present with an increased likelihood of reproductive, cognitive, and physical symptoms
  • an inverse relationship was recently reported between endurance exercise training and male sexual libido
  • AMH concentrations are lower in seminal plasma from patients with azoospermia than from men with normal sperm levels
  • inhibin B is a key clinical marker of reproductive health (32). The function of AMH, also secreted by Sertoli cells, and its regulation through FSH remain unclear in men
  • the striking dual effect of ibuprofen observed here on both Leydig and Sertoli cells makes this NSAID the chemical compound, of all the chemical classes considered, with the broadest endocrine-disturbing properties identified so far in men.
  • after administration of 600 mg of ibuprofen to healthy volunteers
  • 14 d or at the last day of administration at 44 d
  •  
    ibuprofen alters genetic expression that results in decreased Testosterone production.
umar111

Computer Science: Computer hardware - 0 views

  •  
    Computer Science Tuesday, April 25, 2023 Computer hardware Computer hardware is the physical components that make up a computer system. It includes everything from the central processing unit (CPU) to the monitor, keyboard, and mouse. Understanding the different types of hardware and how they work together is essential for anyone who works with computers. In this article, we will explore the various components of computer hardware, including internal and external components, and the peripherals that connect to them. We will also discuss the importance of hardware maintenance, the latest advancements in computer technology, and factors to consider when choosing the right hardware for your needs. Whether you are a computer technician, a gamer, or simply someone who uses a computer for everyday tasks, this article will help you better understand the world of computer hardware. Introduction to Computer Hardware Computer hardware refers to the physical components that make up a computer system. It includes everything from the processor and memory to input/output devices such as the keyboard and monitor. In this article, we will explore the different types of computer hardware and their functions. What is Computer Hardware Computer hardware refers to the physical components of a computer system. It includes all the components that can be touched, seen, and used to interact with a computer, such as the monitor, keyboard, and mouse. Hardware is different from computer software, which refers to the programs and applications that run on a computer system. History of Computer Hardware The history of computer hardware dates back to the 1820s when Charles Babbage, an English mathematician, and inventor, designed the first analytical engine, which was considered to be the first mechanical computer. With time, more complex electronic computers were developed, including the first Intel microprocessor in 1971. Since then, computer hardware has continued to evolve, becoming
kyra smith

Clinical Data Management Services & System - WorkSure® - 0 views

  •  
    Clinical Data Management System (CDM) is leading clinical development industry into a new innings of transformation. It also now faces an elevating attention from the safety and regulatory sectors, which have never been seen earlier. For the biopharmaceutical and medical devices companies, ineffectual data management can make it impossible to market the products efficiently in the multifaceted business and regulatory milieu.
Nathan Goodyear

CDC - ADHD, Data and Statistics - NCBDDD - 0 views

  •  
    ADHD data and statistics
Nathan Goodyear

Thimerosal and the Occurrence of Autism: Negative Ecological Evidence From Danish Popul... - 0 views

  •  
    Danish study that had data altered prior to publication.  The original data showed decreasing Autism rate in Danish children after removal of thimerosal from their vaccines
Nathan Goodyear

Multiple Myeloma Tumor Cells are Selectively Killed by Pharmacologically-dosed Ascorbic... - 0 views

  • Recent reports indicate that a certain ROS concentration is required for high-dose vitamin C to induce cytotoxicity in cancer cells.
  • The generation of ascorbyl- and H2O2 radicals by PAA increases ROS stress in cancer cells
  • In this study, we report that PAA is efficacious in killing MM cells in vitro and in vivo models, which generated levels of 20–40 mM ascorbate and 500 nM ascorbyl radicals after intraperitoneal administration of 4 g ascorbate per kilogram of body weight (Chen et al., 2008Chen et al., 2008), in xenograft MM mice
  • ...33 more annotations...
  • These data suggest that PAA may show a therapeutic advantage to blood cancers vs solid tumors because of the communication between tumor cells and blood plasma
  • These results strongly suggest that the mechanism of PAA killing of MM cells is indeed iron-dependent
  • These results suggest that PAA administration in SMM may be able to prevent progression to symtomatic MM
  • A recent study by Yun and colleagues demonstrated that vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH, but spares normal cells
  • RAS family genes show the most frequent mutations in MM. KRAS, NRAS and BRAF are mutated in 22%, 20% and 7% of MM samples
  • the disease stage rather than the mutation of RAS and/or BRAF is the major predictive factor for PAA sensitivity in MM treatment
  • Other molecular mechanisms including ATP depletion and ATM-AMPK signaling have been reported to explain PAA-induced cell death
  • our pilot study also suggested that PAA could overcome drug resistance to bortezomib in MM cells
  • Our findings complement reported studies and further address the mechanism of action using clinical samples in which we observed that PAA killed tumor cells with high iron content, suggesting that iron might be the initiator of PAA cytotoxicity
  • combination of PAA with standard therapeutic drugs, such as melphalan, may significantly reduce the dose of melphalan needed
  • Combined treatment of reduced dose melphalan with PAA achieved a significantly longer progression-free survival than the same dose of melphalan alone.
  • These data also suggest that the bone marrow suppression induced by high-dose melphalan can be ameliorated by the combination of PAA with lower dose of melphalan because of the lack of toxicity of PAA on normal cells with low iron content.
  • if creatinine clearance is <30 mL/min, high dose ascorbic acid should be not administrated.
  • In MM preclinical and clinical studies, ascorbate was used as an adjunct drug and showed controversial results (Harvey et al., 2009, Perrone et al., 2009, Held et al., 2013, Sharma et al., 2012, Nakano et al., 2011, Takahashi, 2010, Sharma et al., 2009, Qazilbash et al., 2008). However, none of these tests used pharmacological doses of ascorbate and intravenous administration
  • Multiple myeloma (MM) is a plasma cell neoplasm.
  • Cameron and Pauling reported that high doses of vitamin C increased survival of patients with cancer
  • pharmacologically dosed ascorbic acid (PAA) 50–100 g (Chen et al., 2008, Padayatty et al., 2004, Hoffer et al., 2008, Padayatty et al., 2006, Welsh et al., 2013), administered intravenously, has potent anti-cancer activity and its role as anti-cancer therapy is being studied at the University of Iowa and in other centers
  • In the presence of catalytic metal ions like iron, PAA administered intravenously exerts pro-oxidant effects leading to the formation of highly reactive oxygen species (ROS), resulting in cell death
  • the labile iron pool (LIP) is significantly elevated in MM cells
  • The survival of CD138+ cells in vitro was significantly decreased following PAA treatment in all 9 MM
  • In contrast, no significant change of cell viability was observed in CD138− BM cells from the same patients
  • The same effect of PAA was also observed in the SMM patients
  • no response to PAA was detected in CD138+ cells from the 2 MGUS patients
  • the combination of melphalan plus PAA showed greater tumor burden reduction than each drug alone, suggesting a synergistic activity between these two drugs
  • Both catalase and NAC protect cells from oxidative damage
  • cells pretreated with NAC and catalase became resistant to PAA even at high doses
  • adding deferoxamine (DFO), an iron chelator, to OCI-MY5 cells before PAA treatment was also sufficient to prevent PAA-induced cellular death
  • iron is essential for PAA to achieve its anti-cancer activity
  • PAA induced early necrosis (Fig. 3Fig. 3A, 60 min) followed by late apoptosis
  • results further indicated that PAA induced mitochondria-mediated apoptosis
  • PAA by reacting with LIP and generating ROS induces mitochondria-mediated apoptosis in which AIF1 cleavage is important for cell death.
  • ROS and H2O2 are well known factors mediating PAA-induced cancer cell death
  • PAA was sensitive to all 9 MMs and 2 SMMs
  •  
    animal study finds high-dose, pharmacologic vitamin C found to kill multiple myeloma cells via pro-oxidant effect found in similar studies in dealing with different cancers.
Nathan Goodyear

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a p... - 0 views

  • Taken together, these data indicate that ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H2O2, and that blood can be a delivery system of the pro-drug to tissues.
  • These findings give plausibility to i.v. ascorbic acid in cancer treatment, and have unexpected implications for treatment of infections where H2O2 may be beneficial
  • pharmacologic concentrations of ascorbate killed cancer but not normal cells, that cell death was dependent only on extracellular but not intracellular ascorbate, and that killing was dependent on extracellular hydrogen peroxide (H2O2) formation with ascorbate radical as an intermediate
  • ...48 more annotations...
  • Our data show that ascorbic acid selectively killed cancer but not normal cells, using concentrations that could only be achieved by i.v. administration
  • Ascorbate-mediated cell death was due to protein-dependent extracellular H2O2 generation, via ascorbate radical formation from ascorbate as the electron donor. Like glucose, when ascorbate is infused i.v., the resulting pharmacologic concentrations should distribute rapidly in the extracellular water space (42). We showed that such pharmacologic ascorbate concentrations in media, as a surrogate for extracellular fluid, generated ascorbate radical and H2O2. In contrast, the same pharmacologic ascorbate concentrations in whole blood generated little detectable ascorbate radical and no detectable H2O2. These findings can be accounted for by efficient and redundant H2O2 catabolic pathways in whole blood (e.g., catalase and glutathione peroxidase) relative to those in media or extracellular fluid
  • ascorbic acid administered i.v. in pharmacologic concentrations may serve as a pro-drug for H2O2 delivery to the extracellular milieu
  • H2O2 generated in blood is normally removed by catalase and glutathione peroxidase within red blood cells, with internal glutathione providing reducing equivalents
  • The electron source for glutathione is NADPH from the pentose shunt, via glucose-6-phosphate dehydrogenase. If activity of this enzyme is diminished, the predicted outcome is impaired H2O2 removal causing intravascular hemolysis, the observed clinical finding.
    • Nathan Goodyear
       
      The mechansism here is inadequate recycling of GSH due to lack of G6PD, build up of intracellular H2O2 and RBC lysis--hemolysis.
  • Only recently has it been understood that the discordant clinical findings can be explained by previously unrecognized fundamental pharmacokinetics properties of ascorbate
  • Intracellular transport of ascorbate is tightly controlled in relation to extracellular concentration
  • Intravenous ascorbate infusion is expected to drastically change extracellular but not intracellular concentrations
  • For i.v. ascorbate to be clinically useful in killing cancer cells, pharmacologic but not physiologic extracellular concentrations should be effective, independent of intracellular ascorbate concentrations.
    • Nathan Goodyear
       
      accumulation of extracellular vitamin C is the effect.
  • It is unknown why ascorbate, via H2O2, killed some cancer cells but not normal cells.
  • There was no correlation with ascorbate-induced cell death and glutathione, catalase activity, or glutathione peroxidase activity.
  • H2O2, as the product of pharmacologic ascorbate concentrations, has potential therapeutic uses in addition to cancer treatment, especially in infections
  • Neutrophils generate H2O2 from superoxide,
  • i.v. ascorbate is effective in some viral infections
  • H2O2 is toxic to hepatitis C
  • Use of ascorbate as an H2O2-delivery system against sensitive pathogens, viral or bacterial, has substantial clinical implications that deserve rapid exploration.
  • Recent pharmacokinetics studies in men and women show that 10 g of ascorbate given i.v. is expected to produce plasma concentrations of nearly 6 mM, which are >25-fold higher than those concentrations from the same oral dose
  • As much as a 70-fold difference in plasma concentrations is expected between oral and i.v. administration,
  • Complementary and alternative medicine practitioners worldwide currently use ascorbate i.v. in some patients, in part because there is no apparent harm
  • Human Burkitt's lymphoma cells
  • We first investigated whether ascorbate in pharmacologic concentrations selectively affected the survival of cancer cells by studying nine cancer cell lines
  • Clinical pharmacokinetics analyses show that pharmacologic concentrations of plasma ascorbate, from 0.3 to 15 mM, are achievable only from i.v. administration
  • plasma ascorbate concentrations from maximum possible oral doses cannot exceed 0.22 mM because of limited intestinal absorption
  • For five of the nine cancer cell lines, ascorbate concentrations causing a 50% decrease in cell survival (EC50 values) were less than 5 mM, a concentration easily achievable from i.v. infusion
  • All tested normal cells were insensitive to 20 mM ascorbate.
    • Nathan Goodyear
       
      meaning safe.
  • Lymphoma cells were selected because of their sensitivity to ascorbate
  • As ascorbate concentration increased, the pattern of death changed from apoptosis to pyknosis/necrosis, a pattern suggestive of H2O2-mediated cell death
  • Apoptosis occurred by 6 h after exposure, and cell death by pyknosis was ≈90% at 14 h after exposure
    • Nathan Goodyear
       
      work continued beyond the IVC therapy itself
  • In contrast to lymphoma cells, there was little or no killing of normal lymphocytes and monocytes by ascorbate
  • Ascorbate is transported into cells as such by sodium-dependent transporters, whereas dehydroascorbic acid is transported into cells by glucose transporters and then immediately reduced internally to ascorbate
  • Whether or not intracellular ascorbate was preloaded, extracellular ascorbate induced the same amount and type of death.
  • extracellular ascorbate in pharmacologic concentrations mediates death of lymphoma cells by apoptosis and pyknosis/necrosis, independently of intracellular ascorbate.
  • H2O2 as the effector species mediating pharmacologic ascorbate-induced cell death
  • Superoxide dismutase was not protective
  • Because these data implicated H2O2 in cell killing, we added H2O2 to lymphoma cells and studied death patterns using nuclear staining (19, 28). The death patterns found with exogenous H2O2 exposure were similar to those found with ascorbate
  • For both ascorbate and H2O2, death changed from apoptosis to pyknosis/necrosis as concentrations increased
  • Sensitivity to direct exposure to H2O2 was greater in lymphoma cells compared with normal lymphocytes and normal monocytes
  • There was no association between the EC50 for ascorbate-mediated cell death and intracellular glutathione concentrations, catalase activity, or glutathione peroxidase activity
  • H2O2 generation was dependent on time, ascorbate concentration, and the presence of trace amounts of serum in media
  • ascorbate radical is a surrogate marker for H2O2 formation.
  • whatever H2O2 is generated should be removed by glutathione peroxidase and catalase within red blood cells, because H2O2 is membrane permeable
  • The data are consistent with the hypothesis that ascorbate in pharmacologic concentrations is a pro-drug for H2O2 generation in the extracellular milieu but not in blood.
  • The occurrence of one predicted complication, oxalate kidney stones, is controversial
  • In patients with glucose-6-phosphate dehydrogenase deficiency, i.v. ascorbate is contraindicated because it causes intravascular hemolysis
  • ascorbate at pharmacologic concentrations in blood is a pro-drug for H2O2 delivery to tissues.
  • ascorbate, an electron-donor in such reactions, ironically initiates pro-oxidant chemistry and H2O2 formation
  • data here showed that ascorbate initiated H2O2 formation extracellularly, but H2O2 targets could be either intracellular or extracellular, because H2O2 is membrane permeant
    • Nathan Goodyear
       
      the conversion of ascorbate to H2O2 occurs extracellular
  • More than 100 patients have been described, presumably without glucose-6-phosphate dehydrogenase deficiency, who received 10 g or more of i.v. ascorbate with no reported adverse effects other than tumor lysis
  •  
    IV vitamin C benefits cancer patients
Nathan Goodyear

HPV vaccines and cancer prevention, science versus activism - 0 views

  •  
    This letter to the editor points out how much of "reported science" today is merely propaganda to push $$. This letter points out, scientifically, many of the flawed assumptions and problems with the Gardisil vaccine. Science is about data and evidence. The data and evidence on Gardisil is suspect at best.
Nathan Goodyear

How a charity oversells mammography | BMJ - 1 views

  •  
    This article reveals how data is massaged to promote a viewpoint. In this case mammograms.  Don't let your passions get the best of you, objectively review the data.  Scientists are not doing that these days. Mammograms do help and are needed in the screening, however, mammograms do cause harm and help to promote the same disease it seeks to detect early.  This is in some cases. Also, remember, mammograms are early detection, not prevention.
Nathan Goodyear

Androgens and prostate disease Cooper LA, Page ST - Asian J Androl - 0 views

  • intraprostatic androgens are not concomitantly increased when serum androgen levels are raised.
  • The "saturation model" proposes that the prostate is sensitive to very low concentrations of circulating androgens, but that once maximal AR binding is achieved, which occurs at relatively low concentrations of circulating T, further increases in serum T have little impact
  • men with metastatic prostate cancer given T who had been previously treated with castration had worsening of disease, whereas those without prior castration did not
  • ...3 more annotations...
  • There is little data to support the withholding of T therapy on the basis of concern for precipitating prostate cancer.
  • Both intervention data and physiology studies point to minimal effects on the prostate gland when serum T levels are increased to the mid-normal range with T therapy
  • an individualized care plan to assess the possible risks and benefits of T therapy for each patient is critical to optimizing the use of androgens in male health.
  •  
    Nice review of the mixed data on Testosterone and Prostate disease. It is clear that Testosterone does not precipitate prostate cancer.  The intraprostatic hormone milieu likely is different than that present in the serum.  No surprise there.  5alpha reductase decreases prostate volume, PSA, and low-grade prostate cancer, but actually increases aggressive prostate cancer. Supraphysiologic doping in young men associated with no increase in prostate disease. PSA no longer to be followed in men < 55.  Mortality rate not changed.  PSA change of 1.4 ng/ml is appropriate for additional prostate evaluation.  Testosterone therapy on average increased 0.5 ng/ml. Still, no mention of aromatase activity in this article.  Why is it that hormone sensitive disease in men is only with regards to androgens and women estrogen.
Nathan Goodyear

JAMA Network | JAMA | Conjugated Equine Estrogens and Incidence of Probable D... - 0 views

  •  
    This was the WHI review of data as it pertains to dementia and cognitive decline in women.  The take home here is that the data provides little evidence for premarin with or without medroxyprogesterone acetate in > 65 for prevention of dementia.  However, this is in women > 65 and studies show that younger women do indeed receive benefit, especially in those with early ovary removal.  Another point here, MPA (medroxyprogesterone acetate) increases cognitive decline.  Just don't take MPA, it is a bad drug all the way around!
1 - 20 of 218 Next › Last »
Showing 20 items per page