Skip to main content

Home/ Dr. Goodyear/ Group items tagged classes

Rss Feed Group items tagged

Nathan Goodyear

Hormonal Modulation in Aging Patients with Erectile Dysfunction and Metabolic Syndrome - 0 views

  • Hypogonadism and MetS are strongly associated [12, 13, 16], having even been demonstrated that with the increasing number of MetS parameters there is a proportional raise in the incidence of hypogonadism
  • increasing number of MetS components is inversely associated with T levels
  • the presence of MetS did not prove to be a significant determinant of hypogonadism, as it did not lead to a decline in T levels, in MetS patients with already established hypogonadism, the increasing number of MetS features was associated with further decline in T
  • ...15 more annotations...
  • In the setting of MetS, hypertriglyceridemia and increased WC have been reported as the most important determinants of hypogonadism
  • recent literature consistently associates obesity not only with higher risk of hypogonadism [4, 6, 27] but also with lower T levels
  • Visceral adiposity has been particularly related with reduction of T and SHBG levels (independent of other metabolic disorders)
  • WC was one of the MetS parameters with the greatest influence in T levels decrease, presenting itself as a strong risk factor for hypogonadism development
  • MetS-related T decline was not accompanied by an increase in pituitary LH levels, suggesting impairment in gonadotropin secretion
  • The molecules behind this smoothing compensatory effect of GnRH/LH are still unknown, but estrogens and insulin, as well as leptin, TNF-α, and other adipokines, were proposed candidates
  • fat stores undertake an increase aromatization of androgens, therefore raising estrogen levels [9, 15], which in turn decrease LH secretion
  • our data contradicts the concept that estradiol exerts a negative feedback on hypothalamic GnRH secretion
  • taking into account that high estradiol levels have already been described as the only abnormality in a subset of patients with ED, the hypothesis that the later might not only be caused by androgen deficiency is becoming increasingly evident
  • it has been reported that the chronic exposure to phosphodiesterase type 5 inhibitors (PDE5i), widely used for the treatment of ED, may influence serum estradiol levels
  • thyroid disorders (specially hyperthyroidism) have been related to ED and hypogonadism, and so must be considered in a sexual-dysfunction setting
  • It is clear from the current literature that collecting a more thorough hormonal panel might be a wise approach to further uncover hormonal relations
    • Nathan Goodyear
       
      outstanding point.  This hits to the point that Low T is the effect not the cause.
  • We concluded that in ED patients with hypogonadism and MetS, the attenuated response of HPG axis (normal or low LH levels) might not always be due to an underlying adiposity-dependent estrogen-raising effect.
  • our findings indicate that ED, aging, and estradiol might have a stronger connection than what is currently described in the literature.
  • this study underlines the importance of the collection of a full hormonal panel in ED men
  •  
    low T strongly associated with metabolic syndrome in men.
Nathan Goodyear

High-Dose Vitamin C for Cancer Therapy - PMC - 0 views

  • diabetes [8], atherosclerosis [9], the common cold [10], cataracts [11], glaucoma [12], macular degeneration [13], stroke [14], heart disease [15], COVID-19 [16], and cancer.
  • 1–5% of the Vit-C inside the human cells
  • interaction between Fe(II) and H2O2 produces OH− through the Fenton reaction
  • ...35 more annotations...
  • metabolic activity, oxygen transport, and DNA synthesis
  • Iron is found in the human body in the form of haemoglobin in red blood cells and growing erythroid cells.
  • macrophages contain considerable quantities of iron
  • iron is taken up by the majority of cells in the form of a transferrin (Tf)-Fe(III) complex that binds to the cell surface receptor transferrin receptor 1 (TfR1)
  • excess iron is retained in the liver cells
  • the endosomal six transmembrane epithelial antigen of the prostate 3 (STEAP3) reduces Fe(III) (ferric ion) to Fe(II) (ferrous ion), which is subsequently transferred across the endosomal membrane by divalent metal transporter 1 (DMT1)
  • labile iron pool (LIP)
  • LIP is toxic to the cells owing to the production of massive amounts of ROS.
  • DHA is quickly converted to Vit-C within the cell, by interacting with reduced glutathione (GSH) [45,46,47]. NADPH then recycles the oxidized glutathione (glutathione disulfide (GSSG)) and converts it back into GSH
  • Fe(II) catalyzes the formation of OH• and OH− during the interaction between H2O2 and O2•− (Haber–Weiss reaction)
  • Ascorbate can efficiently reduce free iron, thus recycling the cellular Fe(II)/Fe(III) to produce more OH• from H2O2 than can be generated during the Fenton reaction, which ultimately leads to lipid, protein, and DNA oxidation
  • Vit-C-stimulated iron absorption
  • reduce cellular iron efflux
  • high-dose Vit-C may elevate cellular LIP concentrations
  • ascorbate enhanced cancer cell LIP specifically by generating H2O2
  • Vit-C produces H2O2 extracellularly, which in turn inhibits tumor cells immediately
  • tumor cells have a need for readily available Fe(II) to survive and proliferate.
  • Tf has been recognized to sequester most labile Fe(II) in vivo
  • Asc•− and H2O2 were generated in vivo upon i.v Vit-C administration of around 0.5 g/kg of body weight and that the generation was Vit-C-dose reliant
  • free irons, especially Fe(II), increase Vit-C autoxidation, leading to H2O2 production
  • iron metabolism is altered in malignancies
  • increase in the expression of various iron-intake pathways or the downregulation of iron exporter proteins and storage pathways
  • Fe(II) ion in breast cancer cells is almost double that in normal breast tissues
  • macrophages in the cancer microenvironment have been revealed to increase iron shedding
  • Advanced breast tumor patients had substantially greater Fe(II) levels in their blood than the control groups without the disease
  • increased the amount of LIP inside the cells through transferrin receptor (TfR)
  • Warburg effect, or metabolic reprogramming,
  • Warburg effect is aided by KRAS or BRAF mutations
  • Vit-C is supplied, it oxidizes to DHA, and then is readily transported by GLUT-1 in mutant cells of KRAS or BRAF competing with glucose [46]. DHA is quickly converted into ascorbate inside the cell by NADPH and GSH [46,107]. This decrease reduces the concentration of cytosolic antioxidants and raises the intracellular ROS amounts
  • increased ROS inactivates glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
  • ROS activates poly (ADP-ribose) polymerase (PARP), which depletes NAD+ (a critical co-factor of GAPDH); thus, further reducing the GAPDH associated with a multifaceted metabolic rewiring
  • Hindering GAPDH can result in an “energy crisis”, due to the decrease in ATP production
  • high-dose Vit-C recruited metabolites and increased the enzymatic activity in the pentose phosphate pathway (PPP), blocked the tri-carboxylic acid (TCA) cycle, and increased oxygen uptake, disrupting the intracellular metabolic balance and resulting in irreversible cell death, due to an energy crisis
  • mega-dose Vit-C influences energy metabolism by producing tremendous amounts of H2O2
  • Due to its great volatility at neutral pH [76], bolus therapy with mega-dose DHA has only transitory effects on tumor cells, both in vitro and in vivo.
Nathan Goodyear

Natural Killer Cells in Pregnancy and Recurrent Pregnancy Loss: Endocrine and Immunolog... - 0 views

  • NK cells have been the cells most extensively studied, primarily because they constitute the predominant leukocyte population present in the endometrium at the time of implantation and in early pregnancy
  • parental chromosomal abnormalities, uterine anatomic anomalies, endometrial infections, endocrine etiologies (luteal phase defect, thyroid dysfunction, uncontrolled diabetes mellitus), antiphospholipid syndrome, inherited thrombophilias, and alloimmune causes
  • estrogen
  • ...28 more annotations...
  • progesterone
  • prolactin
  • In summary, in vivo animal experiments have shown an inhibitory role of estrogen on peripheral NK cell lytic activity, which is partly due to suppression of NK cell output by the bone marrow and partly due to suppression of individual NK cell cytotoxicity. However, in vitro studies so far have failed to show conclusively a direct effect of estrogen on NK cells.
  • At the progesterone concentrations believed to be present in the uterus [up to 10−5 m at the maternal-fetal interface (35)], studies consistently show inhibition of lymphocyte proliferation (33) and inhibition of NK cytolytic activity in vitro
  • The exact role of prolactin in NK cell regulation is unknown.
  • The overall effects of estrogen on NK cells are likely multifactorial, therefore, and depend on the type of cell affected as well as the kind of ER expressed by that cell.
  • It is known that progesterone can directly affect T cell differentiation in vitro, suppressing development of the Th1 pathway and enhancing differentiation along the Th2 pathway (44)
  • Th1 cells predominantly produce interferon-γ (IFN-γ), IL-2, and TNF-β and are involved in cell-mediated immunity. Th2 cells produce IL-4, IL-5, IL-6, IL-10, and IL-13 and stimulate humoral immunity
  • Furthermore, in response to progesterone, γδ T cells produce progesterone-induced blocking factor (PIBF) (54
  • A defining characteristic of NK cells is their ability to lyse target cells without prior sensitization and without restriction by HLA antigens.
  • NK cell function is mainly regulated by IL-2 and IFN-γ
  • IL-2 causes both NK cell proliferation and enhanced cytotoxicity. IFN-γ augments NK cytolytic activity, but does not cause NK proliferation. The two cytokines act synergistically to augment NK cytotoxicity (6).
  • The largest leukocyte population in the endometrium consists of NK cells named large granulated lymphocytes
  • there is a significant increase in the number of uNK cells throughout the secretory phase, which peaks in early pregnancy when uNK cells comprise about 75% of uterine leukocytes (62)
  • Second, uNK cell phenotype changes during the normal menstrual cycle and early pregnancy (68)
  • general proinflammatory effect of estrogen, causing an influx of macrophages and neutrophils, which is antagonized by progesterone through its receptor (70, 71).
  • The mechanism of such a progesterone-induced local immunosuppression is unclear.
  • progesterone plays an important role in proliferation and differentiation of uNK cells (32).
  • Through promotion of a uterine Th2 environment, progesterone could indirectly affect uNK cell function
  • The mechanism of this increase in uNK cell numbers has been addressed in both human and mouse models, and is likely the result of: 1) recruitment of peripheral NK cells to the uterus, and 2) proliferation of existing uNK cells
  • prolactin system plays an important role in implantation and the maintenance of pregnancy
  • the exact pathways of hormonal regulation of NK cells remain to be delineated.
  • The exact function of uNK cells has not yet been unequivocally determined
  • uNK cells express a different cytokine profile, compared with resting peripheral NK cells. mRNAs for granulocyte CSF, M-CSF, GM-CSF, TNF-α, IFN-γ, TGF-β, and leukemia inhibitory factor (LIF) have been found in decidual CD56+ cells
  • Their increased numbers in early pregnancy, their hormonal dependence, and their close proximity to the infiltrating trophoblast all suggest that they play an important role in the regulation of the maternal immune response to the fetal allograft and the control of trophoblast growth and invasion during human pregnancy
  • role of uNK cell-derived cytokines on trophoblast growth and differentiation (114, 115, 116, 117).
  • Th1 immunity to trophoblast is associated with RPL, whereas Th2 immunity is associated with a successful pregnancy
  • RPL is associated with Th1 immunity, for which NK cells are partly responsible.
  •  
    dysregulated immune system plays role in recurrent miscarriage.  Specifically, this article discusses natural killer cells (NK).
Nathan Goodyear

Oxidative Stress and Stress-Activated Signaling Pathways: A Unifying Hypothesis of Type... - 0 views

  • In patients with diabetes, LA levels are reduced (48, 74, 103). LA has long been used for the treatment of diabetic neuropathy in Germany
  • evidence indicates that it increases insulin sensitivity in patients with type 2 diabetes
  • LA has been shown to 1) quench free radicals, 2) prevent singlet oxygen-induced DNA damage, 3) exhibit chelating activity, 4) reduce lipid peroxidation, 5) increase intracellular glutathione levels, and 6) prevent glycation of serum albumin (73, 74). LA is able to reduce oxidative stress-mediated NF-κB activation in vitro (74, 108, 109) and in patients with type 2 diabetes
  • ...2 more annotations...
  • Activation of NF-κB can also be blocked by several other thiol-containing antioxidants including N-acetyl-l-cysteine (NAC)
  • Other clinically available antioxidants reported to have antiinflammatory, antioncogenic, and/or antiatherogenic properties that have been shown to block the activation of NF-κB include resveratrol (115, 116), (-)-epicatechin-3-gallate (117), pycnogenol (118), silymarin (119), and curcumin (120)
  •  
    Great read!  If you want to see how free radicals and oxidative stress contribute to inflammation and disease (DM in this case), read this article.
Nathan Goodyear

ω-3 Fatty Acid Supplementation as a Potential Therapeutic Aid for the Recover... - 0 views

  • There is a growing body of preclinical literature suggesting that ω-3 FAs, and DHA in particular, may play a therapeutic role in mTBI
  • the potential for ameliorating or possibly even preventing the complications associated with concussions
  • DHA is the predominant ω-3 FA present in the brain, and, consistent with this finding, DHA, and not EPA, has been demonstrated to be critical for brain development and cognitive function throughout life
  • ...7 more annotations...
  • the concentration of EPA in the brain is negligible (77–80), suggesting that EPA plays a limited role in mediating the beneficial effects of LCPUFA supplementation on mTBI pathology
  • the current state of the science regarding LCPUFA supplementation for the treatment of concussion is based primarily on animal models
  • there is evidence that the amount of DHA in brain tissue is decreased after mTBI (65, 66), suggesting an elevated need for DHA in mTBI recovery.
  • the well-established role of DHA in supporting the structure and function of the brain throughout the lifespan (26, 27, 46, 47, 53) provides encouragement that LCPUFAs may also prove beneficial in the context of concussion recovery.
  • no therapies are currently available to aid the recovery from this injury
  • Previously discussed reports outlining the use of ω-3 FAs in the recovery from severe TBIs (reviewed in Ref. 92) described the use of very-high doses of LCPUFAs (16.2 g/d EPA plus DHA) in the recovery of these patients
  • Within the context of mTBIs/concussions, translating a DHA intake used in several rat studies of mTBI recovery (40 mg ⋅ kg−1 ⋅ d−1 DHA) (57, 63, 64) using body surface area conversion methods (93) amounts to an estimated human intake of 387 mg/d DHA
  •  
    nice review of the evidence of n-3, particularily DHA, in concussions and concussion recovery.
Nathan Goodyear

Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside - 0 views

  • MAF precursor activity has also been lost or reduced after Gc-globulin treatment in some cancer cell lines
  • This appears to result from the deglycosylated ɑ-N-acetylgalactosaminidase (nagalase) secreted from cancerous cells
  • Nagalase has been detected in many cancer patients, but not in healthy individuals
  • ...31 more annotations...
  • Studies have shown that the production of nagalase has a mutual relationship with Gc-MAF level and immunosuppression
  • It has been demonstrated that serum levels of nagalase are good prognosticators of some types of cancer
  • The nagalase level in serum correlates with tumor burden and it has been shown that Gc-MAF therapy progresses, nagalase activity decreases
  • It has been shown that Gc-MAF can inhibit the angiogenesis induced by pro-inflammatory prostaglandin E1
  • The effect of Gc-MAF on chemotaxis or activation of tumoricidal macrophages is likely the main mechanism against angiogenesis.
  • Administration of Gc-MAF stimulates immune-cell progenitors for extensive mitogenesis, activates macrophages and produces antibodies. “This indicates that Gc-MAF is a powerful adjuvant for immunization.”
  • Cancer cell lines do not develop into tumor genes in mouse models after Gc-MAF-primed immunization (29-31) and the effect of Gc-MAF has been approved for macrophage stimulation for angiogenesis, proliferation, migration and metastatic inhibition on tumors induced by MCF-7 human breast cancer cell line
  • The protocol included: "a high dose of second-generation Gc-MAF (0.5 ml) administered twice a week intramuscularly for a total of 21 injections.”
  • Yamamoto et al. showed that the administration of Gc-MAF to 16 patients with prostate cancer led to improvements in all patients without recurrence
  • Inui et al. reported that a 74-year-old man diagnosed with prostate cancer with multiple bone metastases was in complete remission nine months after initiation of GcMAF therapy simultaneously with hyper T/NK cell, high-dose vitamin C and alpha lipoic acid therapy
  • It has also been approved for non-neoplastic diseases such as autism (41), multiple sclerosis (42, 43), chronic fatigue syndrome (CFS) (40), juvenile osteoporosis (44) and systemic lupus erythematous (45).
  • Gc-MAF has been verified for use in colon, thyroid (38), lung (39), liver, thymus (36), pancreatic (40), bladder and ovarian cancer and tongue squamous carcinoma
  • Prostate, breast, colon, liver, stomach, lung (including mesothelioma), kidney, bladder, uterus, ovarian, head/neck and brain cancers, fibrosarcomas and melanomas are the types of cancer tested thus far
  • weekly administration of 100 ng Gc-MAF to cancer at different stages and types showed curative effects at different follow-up times
  • this treatment has been suggested for non-anemic patients
  • Studies have shown that weekly administration of 100 ng Gc-MAF to cancer patients had curative effects on a variety of cancers
  • Because the half-life of the activated macrophages is approximately one week, it must be administered weekly
  • In vivo weekly intramuscular administration of Gc-MAF (100 ng) for 16-22 weeks was used to treat patients with breast cancer
  • individuals harboring different VDR genotypes had different responses to Gc-MAF and that some genotypes were more responsive than others
  • Administration of Gc-MAF for cancer patients exclusively activates macrophages as an important cell in adaptive immunity
  • Gc-MAF supports humoral immunity by producing, developing and releasing large quantities of antibodies against cancer. Clinical evidence from a human model of breast cancer patients supports this hypothesis
  • There is also evidence that confirms the tumoricidal role of Gc-MAF via Fc-receptor mediation
  • It is likely that the best therapeutic responses will be observed when the nutritional and inflammatory aspects are taken together with stimulation of the immune system
  • it should be noted that no harmful side effects of Gc-MAF treatment have been reported, even when it was successfully administered to autistic children
  • The natural activation mechanism of macrophages by Gc-MAF is so natural and it should not have any side effects on humans or animal models even in cell culture
  • Besides the Gc-MAF efficacy on macrophage activity, it can be a potential anti-angiogenic agent (28) and an inhibitor of the migration of cancerous cells in the absence of macrophages (47).
  • Activating or modifying natural killer cells, dendritic cells, DC, CTL, INF and IL-2 have all been recommended for cancer immunotherapy
  • It has been reported that nagalase cannot deglycosylate Gc-MAF as it has specificity for Gc globulin alone
  • inflammation-derived macrophage activation with the participation of B and T lymphocytes is the main mechanism
  • macrophages highly-activated by the addition of Gc-MAF can show tumoricidal activity
  • Previous clinical investigations have confirmed the efficacy of Gc-MAF. In addition to activating existing macrophages, Gc-MAF is a potent mitogenic factor that can stimulate the myeloid progenitor cells to increase systemic macrophage cell counts by 40-fold in four days
  •  
    great review on Gc-MAF in cancer.  An increase in nagalase blocks Gc-protein to Gc-MAF activity leaving the host immune system compromised.
Nathan Goodyear

Late Disseminated Lyme Disease: Associated Pathology and Spirochete Persistence Post-Tr... - 0 views

  • In this study, we have demonstrated microscopic pathology ranging from minimal to moderate in multiple different tissues previously reported to be involved with LD, including the nervous system (central and peripheral), heart, skeletal muscle, joint-associated tissues, and urinary bladder 12 to 13 months following tick-inoculation of rhesus macaques by Bb strain B31
  • Based on histomorphology, inflammation consisted predominantly of lymphocytes and plasma cells, with rare scattered histiocytes
  • in rare instances, morphologically intact spirochetes were observed in inflamed brain and heart tissue sections from doxycycline-treated animals
  • ...41 more annotations...
  • colocalization of the Bb 23S rRNA probe was not observed in any of the sections of experimental inoculated animals shown to harbor rare persistent spirochetes (Supplemental Figure S1). Previous in vitro work has shown large decreases in Bb rRNA levels when in a stationary phase of growth despite the majority of spirochetes remaining viable
  • The possibility that the spirochetes were intact but dead also exists, though this may be unlikely given the precedence for viable but non-cultivable B. burgdorferi post-treatment
  • The doxycycline dose utilized in this study (5mg/kg) was based on a previous pharmacokinetic analysis of oral doxycycline in rhesus macaques proven to be comparable to levels achieved in humans and was meant to mimic treatment of disseminated LD
  • In addition to the brain of two treated animals, rare morphologically intact spirochetes immunoreactive to OspA were observed in the heart of one treated animal
  • Although we did not measure the doxycycline levels in the cerebrospinal fluid, they have been found to be 12% to 15% of the amount measured in serum
  • We and others have demonstrated the development of a drug-tolerant persister population when B. burgdorferi are treated with antibiotics in vitro
  • The adoption of a dormant or slow-growing phenotype likely allows the spirochetes to survive and re-grow following removal of antibiotic
  • The basic premise that antibiotic tolerance may be an adaptation of the sophisticated stringent response required for the enzootic cycle by the spirochetes is described in a recent review as well
  • Although current IDSA guidelines recommend intravenous ceftriaxone (2g daily for 30 days) over oral doxycycline for treatment of neuroborreliosis, a randomized clinical trial failed to show any enhanced efficacy of I.V. penicillin G to oral doxycycline for treatment of Lyme neuroborreliosis (no treatment failures were reported in this study of 54 patients).
  • we can speculate that the minimal to moderate inflammation that was observed, especially within the CNS and PNS can, in part, explain the breadth of symptoms experienced by late stage Lyme disease patients, such as cognitive impairment and neuralgia.
  • Erythema migrans, the clinical hallmark of early localized Lyme disease, was observed in one of the rhesus macaques from this study.
  • In 2014, a trailblazing study in mice demonstrated a dramatic decline in B. burgdorferi DNA in the tissues for up to eight months after antibiotic treatment followed by the resurgence of B. burgdorferi growth 12 months after treatment
  • This study provides evidence that the slow-growing spirochetes which persist after treatment, but are not cultivable in standard growth media may remain viable.
  • The first well-documented indication of Lyme disease (LD) in the United States occurred in the early 1970s
  • Lyme, Connecticut.
  • Lyme disease is now known to be caused by multiple closely related genospecies classified within the Bb sensu lato complex, representing the most common tick-borne human disease in the Northern Hemisphere
  • approximately 30,000 physician-reported cases occur annually in the United States, the annual incidence has been estimated to be 10-fold higher by the Centers for Disease Control and Prevention.6
  • Current antibiotic therapy guidelines outlined by the Infectious Disease Society of America (IDSA) are successful in the treatment of LD for the majority of LD patients, especially when administered early in disease immediately following identification of erythema migrans (EM)
  • ‘post-treatment Lyme disease syndrome’ (PTLDS)
  • host-adapted spirochetes that persist in the tissues, probably in small numbers, inaccessible or impervious to antibiotic
  • inflammatory responses to residual antigens from dead organisms
  • residual tissue damage following pathogen clearance;
  • autoimmune responses, possibly elicited by antigenic mimicry
  • Experimental studies on immunocompetent mice, dogs, and rhesus macaques have provided evidence for the persistence of Bb spirochetes subsequent to antibiotic treatment in the form of residual spirochetes detected within tissue by IFA and PCR, and recovered by xenodiagnoses
  • Ten male rhesus macaques
  • half (five) of the NHP received antibiotic treatment, consisting of 5 mg/kg oral doxycycline twice per day.
  • Minimal and focal lymphoplasmacytic inflammation
  • inflammation was observed in the leptomeninges overlying a section of temporal cerebral cortex
  • Minimal localized lymphoplasmacytic choroiditis
  • Peripheral nerves contained minimal to moderate lymphoplasmacytic inflammation with a predilection for collagen-rich epineurium and perivascular spaces
  • Inflammation was observed in 56% (5/9) of the NHPs irrespective of treatment group
  • For all animals, inflammation was reserved to perineural tissue
  • The treatment lasted 28 days
  • Minimal to mild lymphoplasmacytic inflammation of either the myocardial interstitium (Figure 2Figure 2A), pericardium (Figure 2Figure 2B), or combination therein was observed in 60% of NHPs
  • A single morphologically intact spirochete, as indicated by positive red immunofluorescence (Figure 2Figure 2C), was observed in the myocardium of one treated animal
  • mild, multifocal lymphoplasmacytic inflammation was observed in one doxycycline-treated animal
  • three animals exhibited minimal to mild lymphoplasmacytic inflammation affecting joint-associated structures
  • 10% to -20% of human patients treated
  • Multiple randomized placebo-controlled studies which evaluated sustained antimicrobial therapy concluded that there is no benefit in alleviating patients’ symptoms and indicated that long-term antibiotic therapy may even be detrimental to patients due to potential associated complications (ie, catheter infection and/or clostridial colitis)
  • and the rapid clearance of dead spirochetes in a murine model
  • higher doses may be needed to combat neuroborreliosis
  •  
    persistent borrelia burgdorferia were found in the brain (2) and the heart (1) up to 13 months post standard antibiotic treatment suggesting borrelia burdorferia, the cause of Lyme, can persist in a chronic, persistant state poste acute treatment.
Nathan Goodyear

Testosterone and glucose metabolism in men: current concepts and controversies - 0 views

    • Nathan Goodyear
       
      80% of E2 production in men, that will cause low T in men, comes from SQ adiposity.  This leads to increase in visceral adiposity.
  • Only 5% of men with type 2 diabetes have elevated LH levels (Dhindsa et al. 2004, 2011). This is consistent with recent findings that the inhibition of the gonadal axis predominantly takes place in the hypothalamus, especially with more severe obesity
  • Metabolic factors, such as leptin, insulin (via deficiency or resistance) and ghrelin are believed to act at the ventromedial and arcuate nuclei of the hypothalamus to inhibit gonadotropin-releasing hormone (GNRH) secretion
  • ...32 more annotations...
  • kisspeptin has emerged as one of the most potent secretagogues of GNRH release
  • Consistent with the hypothesis that obesity-mediated inhibition of kisspeptin signalling contributes to the suppression of the HPT axis, infusion of a bioactive kisspeptin fragment has been recently shown to robustly increase LH pulsatility, LH levels and circulating testosterone in hypotestosteronaemic men with type 2 diabetes
  • Figure 4
  • Interestingly, a recent 16-week study of experimentally induced hypogonadism in healthy men with graded testosterone add-back either with or without concomitant aromatase inhibitor treatment has in fact suggested that low oestradiol (but not low testosterone) may be responsible for the hypogonadism-associated increase in total body and intra-abdominal fat mass
    • Nathan Goodyear
       
      This does not fit with the research on receptors, specifically estrogen receptors.  These studies that the authors are referencing are looking at "circulating" levels, not tissue levels.
  • A smaller study with a similar experimental design found that acute testosterone withdrawal reduced insulin sensitivity independent of body weight, whereas oestradiol withdrawal had no effects
  • Obesity and dysglycaemia and associated comorbidities such as obstructive sleep apnoea (Hoyos et al. 2012b) are important contributors to the suppression of the HPT axis
  • This is supported by observational studies showing that weight gain and development of diabetes accelerate the age-related decline in testosterone
  • Weight loss can reactivate the hypothalamic–pituitary–testicular axis
  • The hypothalamic–pituitary–testicular axis remains responsive to treatment with aromatase inhibitors or selective oestrogen receptor modulators in obese men
  • Kisspeptin treatment increases LH secretion, pulse frequency and circulating testosterone levels in hypotestosteronaemic men with type 2 diabetes
  • Several observational and randomised studies reviewed in Grossmann (2011) have shown that weight loss, whether by diet or surgery, leads to substantial increases in testosterone, especially in morbidly obese men
  • This suggests that weight loss can lead to genuine reactivation of the gonadal axis by reversal of obesity-associated hypothalamic suppression
  • There is pre-clinical and observational evidence that chronic hyperglycaemia can inhibit the HPT axis
  • in those men in whom glycaemic control worsened, testosterone decreased
  • successful weight loss combined with optimisation of glycaemic control may be sufficient to normalise circulating testosterone levels in the majority of such men
  • weight loss, optimisation of diabetic control and assiduous care of comorbidities should remain the first-line approach.
    • Nathan Goodyear
       
      This obviously goes against marketing-based medicine
  • In part, the discrepant results may be due to the fact men in the Vigen cohort (Vigen et al. 2013) had a higher burden of comorbidities. Given that one (Basaria et al. 2010), but not all (Srinivas-Shankar et al. 2010), RCTs in men with a similarly high burden of comorbidities reported an increase in cardiovascular events in men randomised to testosterone treatment (see section on Testosterone therapy: potential risks below) (Basaria et al. 2010), testosterone should be used with caution in frail men with multiple comorbidities
  • The retrospective, non-randomised and non-blinded design of these studies (Shores et al. 2012, Muraleedharan et al. 2013, Vigen et al. 2013) leaves open the possibility for residual confounding and multiple other sources of bias. These have been elegantly summarised by Wu (2012).
  • Effects of testosterone therapy on body composition were metabolically favourable with modest decreases in fat mass and increases in lean body mass
  • This suggests that testosterone has limited effects on glucose metabolism in relatively healthy men with only mildly reduced testosterone.
  • it is conceivable that testosterone treatment may have more significant effects on glucose metabolism in uncontrolled diabetes, akin to what has generally been shown for conventional anti-diabetic medications.
  • the evidence from controlled studies show that testosterone therapy consistently reduces fat mass and increases lean body mass, but inconsistently decreases insulin resistance.
  • Interestingly, testosterone therapy does not consistently improve glucose metabolism despite a reduction in fat mass and an increase in lean mass
  • the majority of RCTs (recently reviewed in Ng Tang Fui et al. (2013a)) showed that testosterone therapy does not reduce visceral fat
    • Nathan Goodyear
       
      visceral and abdominal adiposity are biologically different and thus the risks associated with the two are different.
    • Nathan Goodyear
       
      yet low T is associated with an increase in visceral adiposity--confusing!
  • testosterone therapy decreases SHBG
  • testosterone is inversely associated with total cholesterol, LDL cholesterol and triglyceride (Tg) levels, but positively associated with HDL cholesterol levels, even if adjusted for confounders
  • Although observational studies show a consistent association of low testosterone with adverse lipid profiles, whether testosterone therapy exerts beneficial effects on lipid profiles is less clear
  • Whereas testosterone-induced decreases in total cholesterol, LDL cholesterol and Lpa are expected to reduce cardiovascular risk, testosterone also decreases the levels of the cardio-protective HDL cholesterol. Therefore, the net effect of testosterone therapy on cardiovascular risk remains uncertain.
  • data have not shown evidence that testosterone causes prostate cancer, or that it makes subclinical prostate cancer grow
  • compared with otherwise healthy young men with organic androgen deficiency, there may be increased risks in older, obese men because of comorbidities and of decreased testosterone clearance
  • recent evidence that fat accumulation may be oestradiol-, rather than testosterone-dependent
Nathan Goodyear

PLOS ONE: Probiotic Microbes Sustain Youthful Serum Testosterone Levels and Testicular ... - 0 views

  • Studies in both humans and rodents, however, suggest that low testosterone is due to age-related lesions in testes rather than irregular luteinizing hormone metabolism
  • Various dietary factors and diet-induced obesity have been shown to increase the risk for late onset male hypogonadism and low testosterone production in both humans and mice
  • Testosterone deficiency and metabolic diseases such as obesity appear to inter-digitate in complex cause-and-effect relationships
  • ...28 more annotations...
  • dietary supplementation of aged mice with the probiotic bacterium Lactobacillus reuteri makes them appear to be younger than their matched untreated sibling mice
  • These results indicate that gut microbiota induce modulation of local gastrointestinal immunity resulting in systemic effects on the immune system which activate metabolic pathways that restore tissue homeostasis and overall health
  • all these studies we consistently observed that young and aged mice consuming purified L. reuteri organisms had particularly large testes and a dominant male behavior.
  • The testes of probiotic-fed aged mice were rescued from both seminiferous tubule atrophy and interstitial Leydig cell area reduction typical of the normal aging process. Preservation of testicular architecture despite advanced age or high-fat diet coincided with remarkably high levels of circulating testosterone. The beneficial effects of probiotic consumption were recapitulated by the depletion of the pro-inflammatory cytokine Il-17.
  • feeding of L. reuteri consistently increased the gonadal weights, consumption of a non-pathogenic strain of Escherichia coli (E. coli) K12 organisms did not affect testicular weight
  • mice with dietary L. reuteri supplements were rescued from diet-induced obesity and had normal body weight and lean physique
  • Despite the comparable numbers of ST profiles, we determined that testes from L. reuteri-treated mice had increased ST cross-sectioned profiles
  • the probiotic organism induced prominent Leydig cell accumulations in the interstitial tissue between the ST's
  • The probiotic-associated increase of interstitial Leydig cell areas was sustained with advancing age at 7 (CD vs CD+LR, P = 0.0025; CD+E.coli vs CD+LR, P = 0.0251) and 12 months
  • mice eating L. reuteri had profoundly increased levels of circulating testosterone regardless of the type of diet they consumed
  • blocking pro-inflammatory Il-17 signaling entirely recapitulates the beneficial effects of probiotics
  • previous studies we found that dietary probiotics counteract obesity [19] and age-related integumentary pathology [18] at least in part by down-regulating systemic pro-inflammatory IL-17A-dependent signaling
  • Testes histomorphometry and serum androgen concentration data were both suggestive of a probiotic-associated up-regulation of spermatogenesis in mice
  • Lactobacillus reuteri we discovered that aging male animals had larger testes compared to their age-matched controls
  • xamined testes of probiotic microbe-fed mice and found that they had less testicular atrophy coinciding with higher levels of circulating testosterone compared to their age-matched controls
  • Similar testicular health benefits were produced using systemic depletion of the pro-inflammatory cytokine Il-17 alone, implicating a chronic inflammatory pathway in hypogonadism
  • One specific aspect of this paradigm is reciprocal activities of pro-inflammatory Th-17 and anti-inflammatory Treg cells
  • Feeding of L. reuteri organisms was previously shown to up-regulate IL-10 levels and reduce levels of IL-17 [19] serving to lower systemic inflammation
  • insufficient levels of IL-10 may increase the risk for autoimmunity, obesity, and other inflammatory disease syndromes
  • Westernized diets are also low in vitamin D, a nutrient that when present normally works together with IL-10 to protect against inflammatory disorders
  • Physiological feedback loops apparently exist between microbes, host hormones, and immunity
  • The hormone testosterone has been shown to act directly through androgen receptors on CD4+ cells to increase IL-10 expression
  • studies in both humans and rodents suggest that hypogonadism is due to age-related lesions in testes rather than irregular LH metabolism
  • We postulate that probiotic gut microbes function symbiotically with their mammalian hosts to impart immune homeostasis to maintain systemic and testicular health [34]–[35] despite suboptimal dietary conditions.
  • Dietary factors and diet-induced obesity were previously shown to increase risk for age-associated male hypogonadism, reduced spermatogenesis, and low testosterone production in both humans and mice [2]–[4], [8]–[11], [14]–[17], phenotypic features that in this study were inhibited by oral probiotic therapy absent milk sugars, extra protein, or vitamin D supplied in yogurt.
  • Similar beneficial effects of probiotic microbes on testosterone levels and sperm indices were reported in male mice that had been simultaneously supplemented with selenium
  • L. reuteri-associated prevention of age- and diet-related testicular atrophy correlates with increased numbers and size of Leydig cells
  • the initial changes of testicular atrophy begin to occur in mice from the age of 6 moths onwards [7] and indicates that the trophic effect of L. reuteri on Leydig cells is a key event which precedes and prevents age-related changes in the testes of mice. This effect is reminiscent of earlier studies describing Leydig cell hyperplasia and/or hypertrophy in the mouse and the rat testis that were achievable by the administration of gonadotropins, including human chorionic gonadotropin, FSH and LH
  •  
    Fascinating study on how the addition of Lactobacillus reuteri increased Testicular size, prevented testicular atrophy, increased serum Testosterone production and protected against diet-induced/obesity-induced hypogonadism.  This was a mouse model
Nathan Goodyear

Comparative Studies of the Estrogen Receptors β and α and the Androgen Recept... - 0 views

  • ER-β is predominately immunolocalized in basal cells and to a lesser extent in stromal cells of the morphologically normal human prostate
  • ER-α is detected in stromal cells and rarely in basal cells of the normal gland
  • AR was predominately localized in the nuclei of differentiated secretory cells and variably in basal cells of the normal acinar/duct unit as well as in stromal cells
  • ...9 more annotations...
  • Hall and colleagues44 have reported that ER-β functions as a transdominant inhibitor of ER-α transcription and that it acts to decrease overall cellular sensitivity to estradiol
  • The expression of ER-β was diminished in high-grade dysplasias when compared to normal glands and lower grade lesions.
  • The transition from normal to low/moderate dysplastic glands in the peripheral zone was marked by the appearance of ER-β homogeneously immunostained nuclei in secretory as well as basal cells with no changes in the localization of the other receptors.
  • proliferative signals mediated by AR in basal cells or by ER-α and AR in stromal cells may be opposed by the purported growth-inhibitory action of ER-β25, 26, 27, 28 localized in basal cells.
  • The diminution of ER-β expression in high-grade dysplasias and grade 4/5 cancers may be therefore related to the alteration of DNA methylation pattern in CpG islands of the promoter, resulting in down-regulation of the receptor at the transcriptional level
  • based on the proposed anti-proliferative function of the receptor,25, 26, 27, 28 the presence of ER-β in secretory cells of low/moderate-grade lesions may represent a transient abortive attempt to counter growth of these cells
  • the attrition of receptor-positive basal cells in the high-grade dysplasias may signify a continuing loss of growth inhibitory function mediated by ER-β in these precursor lesions
  • Our findings in prostate therefore differ from those reported for human colon cancer in which Folley and colleagues48 demonstrated that a selective loss of ER-β protein but not receptor message expression occurs in these neoplasms
  • Our findings therefore differed from those of Bonkhoff and colleagues33 who found immunostaining for the receptor in high-grade dysplasias and grade 4/5 carcinomas. Using in situ hybridization these authors also reported that a high percentage of dysplasias and carcinomas in their study contained cells that expressed ER-α message
  •  
    Very nice study.  The authors looked at normal prostate, early disease and late stage prostate cancer.  The authors found that ER beta expression, as a general rule, was lost as progression occurred to the high-grade dysplasias and grad 4/5 carcinomas of the prostate.  Early low/moderate dysplasia was associated with an increase in ER beta--the authors propose that this was due to an attempt of the basal epithelium to counter the paracrine effect of ER alpha.   In contrast, androgen receptors appeared to be equally expressed across all.
Nathan Goodyear

Stuck at the bench: Potential natural neuroprotective compounds for concussion - 0 views

  • Long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are highly enriched in neuronal synaptosomal plasma membranes and vesicles
  • The predominant CNS polyunsaturated fatty acid is DHA
  • effective supplementation and/or increased ingestion of dietary sources rich in EPA and DHA, such as cold-water fish species and fish oil, may help improve a multitude of neuronal functions, including long-term potentiation and cognition.
  • ...45 more annotations...
  • multiple preclinical studies have suggested that DHA and/or EPA supplementation may have potential benefit through a multitude of diverse, but complementary mechanisms
  • pre-injury dietary supplementation with fish oil effectively reduces post-traumatic elevations in protein oxidation
  • The benefits of pre-traumatic DHA supplementation have not only been independently confirmed,[150] but DHA supplementation has been shown to significantly reduce the number of swollen, disconnected and injured axons when administered following traumatic brain injury.
  • DHA has provided neuroprotection in experimental models of both focal and diffuse traumatic brain injury
  • potential mechanisms of neuroprotection, in addition to DHA and EPA's well-established anti-oxidant and anti-inflammatory properties
  • Despite abundant laboratory evidence supporting its neuroprotective effects in experimental models, the role of dietary DHA and/or EPA supplementation in human neurological diseases remains uncertain
  • Several population-based, observational studies have suggested that increased dietary fish and/or omega-3 polyunsaturated fatty acid consumption may reduce risk for ischemic stroke in several populations
  • Randomized control trials have also demonstrated significant reductions in ischemic stroke recurrence,[217] relative risk for ischemic stroke,[2] and reduced incidence of both symptomatic vasospasm and mortality following subarachnoid hemorrhage
  • Clinical trials in Alzheimer's disease have also been largely ineffective
  • The clinical evidence thus far appears equivocal
  • curcumin has gained much attention from Western researchers for its potential therapeutic benefits in large part due to its potent anti-oxidant[128,194,236] and anti-inflammatory properties
  • Curcumin is highly lipophilic and crosses the blood-brain barrier enabling it to exert a multitude of different established neuroprotective effects
  • in the context of TBI, a series of preclinical studies have suggested that pre-traumatic and post-traumatic curcumin supplementation may bolster the brain's resilience to injury and serve as a valuable therapeutic option
  • Curcumin may confer significant neuroprotection because of its ability to act on multiple deleterious post-traumatic, molecular cascades
  • studies demonstrated that both pre- and post-traumatic curcumin administration resulted in a significant reduction of neuroinflammation via inhibition of the pro-inflammatory molecules interleukin 1β and nuclear factor kappa B (NFκB)
  • no human studies have been conducted with respect to the effects of curcumin administration on the treatment of TBI, subarachnoid or intracranial hemorrhage, epilepsy or stroke
  • studies have demonstrated that resveratrol treatment reduces brain edema and lesion volume, as well as improves neurobehavioral functional performance following TBI
  • green tea consumption or supplementation with its derivatives may bolster cognitive function acutely and may slow cognitive decline
  • At least one population based study, though, did demonstrate that increased green tea consumption was associated with a reduced risk for Parkinson's disease independent of total caffeine intake
  • a randomized, placebo-controlled trial demonstrated that administration of green tea extract and L-theanine, over 16 weeks of treatment, improved indices of memory and brain theta wave activity on electroencephalography, suggesting greater cognitive alertness
  • Other animal studies have also demonstrated that theanine, another important component of green tea extract, exerts a multitude of neuroprotective benefits in experimental models of ischemic stroke,[63,97] Alzheimer's disease,[109] and Parkinson's disease
  • Theanine, like EGCG, contains multiple mechanisms of neuroprotective action including protection from excitotoxic injury[97] and inhibition of inflammation
  • potent anti-oxidant EGCG which is capable of crossing the blood-nerve and blood-brain barrier,
  • Epigallocatechin-3-gallate also displays neuroprotective properties
  • More recent research has suggested that vitamin D supplementation and the prevention of vitamin D deficiency may serve valuable roles in the treatment of TBI and may represents an important and necessary neuroprotective adjuvant for post-TBI progesterone therapy
  • Progesterone is one of the few agents to demonstrate significant reductions in mortality following TBI in human patients in preliminary trials
  • in vitro and in vivo studies have suggested that vitamin D supplementation with progesterone administration may significantly enhance neuroprotection
  • Vitamin D deficiency may increase inflammatory damage and behavioral impairment following experimental injury and attenuate the protective effects of post-traumatic progesterone treatment.[37]
  • emerging evidence has suggested that daily intravenous administration of vitamin E following TBI significantly decreases mortality and improves patient outcomes
  • high dose vitamin C administration following injury stabilized or reduced peri-lesional edema and infarction in the majority of patients receiving post-injury treatment
  • it has been speculated that combined vitamin C and E therapy may potentiate CNS anti-oxidation and act synergistically with regards to neuroprotection
  • one prospective human study has found that combined intake of vitamin C and E displays significant treatment interaction and reduces the risk of stroke
  • Pycnogenol has demonstrated the ability to slow or reduce the pathological processes associated with Alzheimer's disease
  • Pcynogenol administration, in a clinical study of elderly patients, led to improved cognition and reductions in markers of lipid peroxidase
  • One other point of consideration is that in neurodegenerative disease states like Alzheimer's disease and Parkinson's disease, where there are high levels of reactive oxygen species generation, vitamin E can tend to become oxidized itself. For maximal effectiveness and to maintain its anti-oxidant capacity, vitamin E must be given in conjunction with other anti-oxidants like vitamin C or flavonoids
  • These various factors might account for the null effects of alpha-tocopherol supplementation in patients with MCI and Alzheimer's disease
  • preliminary results obtained in a pediatric population have suggested that post-traumatic oral creatine administration (0.4 g/kg) given within four hours of traumatic brain injury and then daily thereafter, may improve both acute and long-term outcomes
  • Acutely, post-traumatic creatine administration seemed to reduce duration of post-traumatic amnesia, length of time spent in the intensive care unit, and duration of intubation
  • At three and six months post-injury, subjects in the creatine treatment group demonstrated improvement on indices of self care, communication abilities, locomotion, sociability, personality or behavior and cognitive function when compared to untreated controls
  • patients in the creatine-treatment group were less likely to experience headaches, dizziness and fatigue over six months of follow-up
  • CNS creatine is derived from both its local biosynthesis from the essential amino acids methionine, glycine and arginine
  • Studies of patients with CNS creatine deficiency and/or murine models with genetic ablation of creatine kinase have consistently demonstrated significant neurological impairment in the absence of proper creatine, phosphocreatine, or creatine kinase function; thus highlighting its functional importance
  • chronic dosing may partially reverse neurological impairments in human CNS creatine deficiency syndromes
  • Several studies have suggested that creatine supplementation may also reduce oxidative DNA damage and brain glutamate levels in Huntington disease patients
  • Another study highlighted that creatine supplementation marginally improved indices of mood and reduced the need for increased dopaminergic therapy in patients with Parkinson's disease
  •  
    great review of natural therapies in the treatment of concussions
Nathan Goodyear

Vitamin C increases viral mimicry induced by 5-aza-2′-deoxycytidine | PNAS - 0 views

  • Vitamin C alone at concentrations up to 57 μM had little effect on cell growth but was toxic at 228 μM (SI Appendix, Fig. S1B), in line with recent studies of high vitamin C concentrations (125–2,000 μM)
  • In our combination approach, vitamin C increased the effects of low doses of 5-aza-CdR, with 57 μM vitamin C almost doubling the growth inhibition
  • Using the Chou–Talalay method (28), we found that the two compounds indeed acted synergistically, rather than additively, to inhibit cancer cell growth over the physiological ranges of vitamin C in healthy individuals (26–84 μM)
  • ...12 more annotations...
  • These results show that targeting the cancer DNA methylome by combining low-dose 5-aza-CdR and vitamin C stimulates the expression of ERVs, the induction of a cell-autonomous immune activation response, and increased apoptosis of cancer cells
  • The addition of vitamin C to treatment protocols therefore may be a straightforward way to increase the clinical efficacy of such drugs in MDS and leukemia patients
  • Vitamin C deficiency has been seen previously in patients with multiple types of cancer, including hematological malignancies (35⇓–37). We predict that these patients might receive the most benefits from the combination treatment.
  • induction of an innate immune response
  • We therefore measured plasma concentrations of vitamin C in a small number of patients with miscellaneous hematologic malignancies. Strikingly, 58% of patients with hematological neoplasia who were not taking vitamin C supplements had severe vitamin C deficiency (serum concentration <11.4 μM, at which clinical features of scurvy may be manifested) (34), and 33% had vitamin C levels below the normal range
  • it is possible that vitamin C was oxidized to DHA before it was transported into the cells
  • Oral administration of vitamin C should be sufficient for the therapeutic strategy, because the concentrations reported in this study would not require i.v. administration.
    • Nathan Goodyear
       
      This statement lacks a basic understanding of vitamin C pharmacokinetics.
  • Vitamin C is an essential nutrient for humans and has been reported to increase IFN levels in human cells upon virus infection
  • daily treatment with vitamin C alone at physiological concentrations enhanced the expression of viral-defense genes relative to untreated cells
  • When combined with low-dose 5-aza-CdR, physiological concentrations of vitamin C synergistically inhibited cancer-cell growth and induced apoptosis. Such synergy was associated with increased ERV expression and dsRNA in treated cells. The mechanism of action differs from that of vitamin C at higher doses, which involves its pro-oxidant activity, including GSH inhibition, to generate reactive oxygen species
  • This activity has been shown to induce DNA damage and to enhance the sensitivities of myeloid malignancies, multiple myeloma, and cutaneous T-cell lymphoma to arsenic trioxide (41⇓⇓–44). It also can increase chemosensitivity of ovarian cancer cells (27) and selectively kill KRAS or BRAF mutant colorectal cancer cells by inhibiting GAPDH
  • reactive oxygen species
  •  
    91% of patients with hematologic malignancies have vitamin C levels that are either low or severly deficient. This study found that vitamin C plus low dose DNA methyltransferase inhibitors have synergistic inhibition of cancer cell proliferation and increased apoptosis.  Unfortunately, the authors claimed that oral vitamin C would be sufficient which indicates an incredible lack of understanding of vitamin C pharmacokinetics.
Nathan Goodyear

Hyperthermia as an immunotherapy strategy for cancer - 1 views

  • the notion of treating human cancers with heat dates back to the writings of Hippocrates
  • enhance the efficiency of standard cancer therapies, such as chemotherapy and radiation treatment
  • After antigen uptake at tumor sites, APCs have the ability to create a robust response by entering lymphoid compartments and programming lymphocytes
  • ...36 more annotations...
  • Hyperthermia differs fundamentally from fever in that it elevates the core body temperature without changing the physiological set point
  • hyperthermia is induced by increasing the heat load and/or inactivating heat dissipation
  • mor cells [2]. Although significant cell killing could be achieved by heating cells or tissues to temperatures > 42°C for 1 or more hours, the application, measurement and consistency of this temperature range within the setting of cancer clinical trials
  • mild temperature hyperthermia (ie, within the fever-range, 39–41°C)
    • Nathan Goodyear
       
      101.2 to 105.8
  • moderate hyperthermia (41°C)
    • Nathan Goodyear
       
      105.8 F
  • Hsps are a family of stress-induced proteins
  • they are key regulators of cellular protein activity, turnover and trafficking
  • Hsps ensure appropriate post-translational protein folding, and are able to refold denatured proteins, or mark irreversibly damaged proteins for destruction
  • the ability of fever-range hyperthermia to induce reactive immunity against tumor antigens through DCs and NK-cells is likely mediated by Hsps
  • thermotolerance
  • Hsps support the malignant phenotype of cancer cells by not only affecting the cells’ survival, but also participating in angiogenesis, invasion, metastasis and immortalization mechanisms
  • Hsps released from stressed or dying cells activate dendritic cells (DCs), transforming them into mature APCs
  • In theory, fever-range hyperthermia may take advantage of tumor cell Hsps by inducing their release from tumor cells and augmenting DC priming against tumor antigens
  • In several models of hyperthermia, heat-treated tumors exhibited improved DC priming and generation of systemic immunity to tumor cell
  • hyperthermia alone can enhance antigen display by tumor cells, thus rendering them even more susceptible to programmed immune clearance
  • Fever-range hyperthermia may also induce Hsps
  • Hsps may exert an adjuvant effect by bolstering MHC class II and co-stimulatory molecule expression by DCs
  • thermal ablation of liver tumors in particular has demonstrated an ability to potentiate immune responses [57, 58] and elicit robust T-cell infiltrates at ablation sites
  • specific Hsp, Hsp70, directly inhibits apoptosis pathways in cancer cells, as demonstrated in human pancreatic, prostate and gastric cancer cells
  • Cross-priming is the ability of extracellular Hsps complexed to tumor peptides to be internalized and presented in the context of MHC class I molecules on APCs, thus allowing potent priming of CTLs against tumor antigens
  • It has been reported that Hsps are generated from necrotic tumor cell lysates, but not from tumor cells undergoing apoptosis
  • tumor cells exposed to hyperthermia in the heat shock range (42°C for 4h) prior to lysing, DC activation and cross-priming were significantly enhanced with the application of heat
  • Due to the ability of Hsps to activate DCs directly by chaperoning tumor antigens upon their release [28], it is possible that both local and regional immune stimulation can be achieved with hyperthermia.
  • support the use of hyperthermia as an inducer of Hsps to serve as ‘danger signals’, activating antitumor immune responses
  • whole-body hyperthermia not only augments immune responses, but also stimulates the migration of skin-derived DCs to draining lymph nodes
    • Nathan Goodyear
       
      This allows for the activation of lymphocytes by the activated dendritic cells.
  • suggest a valuable role of hyperthermia in DC cancer vaccine strategies
  • In mice treated with fever-range whole-body hyperthermia, tumor growth was significantly inhibited and NK-cell infiltration increased
    • Nathan Goodyear
       
      Hyperthermia increased NK cell activation, proliferation, and infiltration, which equals increased cytotoxicity.
  • exposure to fever-range hyperthermia resulted in improved endogenous NK-cell cytotoxicity to several cancer types
  • improved activation and function of DCs and NK cells following hyperthermia
  • Hyperthermia increases the expression ICAM-1 a key adhesion molecule,
  • The combined effects of hyperthermia on lymphoid tissue endothelium and lymphocytes can promote immune surveillance and increase the probability of naive lymphocytes leaving the circulation and encountering their cognate antigen displayed by DCs in lymphoid organs.
  • In independent clinical studies, whole-body hyperthermia resulted in a transient decrease in circulating lymphocytes in patients with advanced cancer [12, 94, 99, 100], a finding which mirrored observations in animal models in which lymphocyte entry into lymph noeds was increased following hyperthermia treatment [93]. Enhanced recruitment of lymphocytes to lymphoid tissues may be exploited in the treatment of malignancies.
  • The initial tumor antigen presentation and initiation of clonal expansion of CTLs transpires in the lymph nodes and cannot take place outside this specialized compartment
  • the ability of DCs present in the lymph nodes to stimulate an anti-tumor immune response is critical
  • hyperthermia has been shown to improve immune surveillance by T-cell
  • and to increase DC trafficking to lymph nodes
  •  
    Great review of hyperthermia.
Nathan Goodyear

Hyperbaric Oxygen Therapy Can Improve Post Concussion Syndrome Years after Mild Traumat... - 0 views

  • The changes in SPECT images after treatment indicate that HBOT led to reactivation of neuronal activity in stunned areas that seemed normal under CT and MRI imaging. While SPECT imaging has a limited spatial resolution (compared, for example, to fMRI), the changes in activity were sufficiently robust to be clearly detected by the SPECT images.
  • HBOT might initiate a cellular and vascular repair mechanism and improve cerebral vascular flow
  • HBOT induces regeneration of axonal white matter [61], [62], [63], [64], has positive effect upon the myelinization and maturation of injured neural fibers [65], and can stimulate axonal growth and increase the ability of neurons to function and communicate with each other
  • ...6 more annotations...
  • HBOT was found to have a role in initiation and/or facilitation of angiogenesis and cell proliferation processes needed for axonal regeneration [67].
  • The observed reactivation of neuronal activity in the stunned areas found here, along with similar results in post-stroke patients
  • At the cellular level, HBOT can improve cellular metabolism, reduce apoptosis, alleviate oxidative stress and increase levels of neurotrophins and nitric oxide through enhancement of mitochondrial function (in both neurons and glial cells)
  • HBOT may promote the neurogenesis of endogenous neural stem cells
  • With regard to secondary injury mechanisms in mTBI, HBOT can initiate vascular repair mechanism and improve cerebral vascular flow [58], [59], [68], [69], promote blood brain barrier integrity and reduce inflammatory reactions [28] as well as brain edema
  • It might be possible that HBOT enables the metabolic change simply by supplying the missing energy/oxygen needed for those regeneration processes.
  •  
    Hbot therapy, according to study, induces neuroplasticity and improves brain function in post concussion syndrome and those with mTBI.  The important point about this study was that the study was done years after the injury; what if the therapy was employed immediately after...
Nathan Goodyear

Ibuprofen alters human testicular physiology to produce a state of compensated hypogona... - 0 views

  • The levels of LH in the ibuprofen group had increased by 23% after 14 d of administration
  • This increase was even more pronounced at 44 d, at 33%
  • We found an 18% decrease (P = 0.056) in the ibuprofen group compared with the placebo group after 14 d (Fig. 1A) and a 23% decrease (P = 0.02) after 44 d (Fig. 1C). Taken together, these in vivo data suggest that ibuprofen induced a state of compensated hypogonadism during the trial, which occurred as early as 14 d and was maintained until the end of the trial at 44 d
  • ...27 more annotations...
  • We first investigated testosterone production after 24 and 48 h of ibuprofen exposure to assess its effects on Leydig cell steroidogenesis. Inhibition of testosterone levels was significant and dose-dependent (β = −0.405, P = 0.01 at 24 h and β = −0.664, P < 0.0001 at 48 h) (Fig. 2A) and was augmented over time
  • The AMH data show that the hypogonadism affected not only Leydig cells but also Sertoli cells and also occurred as early as 14 d of administration
  • Sertoli cell activity showed that AMH levels decreased significantly with ibuprofen administration, by 9% (P = 0.02) after 14 d (Fig. 1B) and by 7% (P = 0.05) after 44 d compared with the placebo group
  • Examination of the effect of ibuprofen exposure on both the ∆4 and ∆5 steroid pathways (Fig. 2B) showed that it generally inhibited all steroids from pregnenolone down to testosterone and 17β-estradiol; the production of each steroid measured decreased at doses of 10−5–10−4 M. Under control conditions, production of androstenediol and dehydroepiandrosterone (DHEA) was below the limit of detection except in one experiment with DHEA
  • Measuring the mRNA expression of genes involved in steroidogenesis in vitro showed that ibuprofen had a profound inhibitory effect on the expression of these genes (Fig. 3 B–D), consistent with that seen above in our ex vivo organ model. Taken together, these data examining effects on the endocrine cells confirm that ibuprofen-induced changes in the transcriptional machinery were the likely reason for the inhibition of steroidogenesis.
  • Suppression of gene expression concerned the initial conversion of cholesterol to the final testosterone synthesis. Hence, expression of genes involved in cholesterol transport to the Leydig cell mitochondria was impaired
  • A previous study reported androsterone levels decreased by 63% among men receiving 400 mg of ibuprofen every 6 h for 4 wk
  • We next examined the gene expression involved in testicular steroidogenesis ex vivo and found that levels of expression of every gene that we studied except CYP19A1 decreased after exposure for 48 h compared with controls
  • the changes in gene expression indicate that the transcriptional machinery behind the endocrine action of Leydig cells was most likely impaired by ibuprofen exposure.
  • Together, these data show that ibuprofen also directly impairs Sertoli cell function ex vivo by inhibiting transcription
  • ibuprofen use in men led to (i) elevation of LH; (ii) a decreased testosterone/LH ratio and, to a lesser degree, a decreased inhibin B/FSH ratio; and (iii) a reduction in the levels of the Sertoli cell hormone AMH
  • The decrease in the free testosterone/LH ratio resulted primarily from the increased LH levels, revealing that testicular responsiveness to gonadotropins likely declined during the ibuprofen exposure. Our data from the ex vivo experiments support this notion, indicating that the observed elevation in LH resulted from ibuprofen’s direct antiandrogenic action
  • AMH levels were consistently suppressed by ibuprofen both in vivo and ex vivo, indicating that this hormone is uncoupled from gonadotropins in adult men. The ibuprofen suppression of AMH further demonstrated that the analgesic targeted not only the Leydig cells but also the Sertoli cells, a feature encountered not only in the human adult testis but also in the fetal testis
  • ibuprofen displayed broad transcription-repression abilities involving steroidogenesis, peptide hormones, and prostaglandin synthesis
  • a chemical compound, through its effects on the signaling compounds, can result in changes in the testis at gene level, resulting in perturbations at higher physiological levels in the adult human
  • The analgesics acetaminophen/paracetamol and ibuprofen have previously been shown to inhibit the postexercise response in muscles by repressing transcription
  • Previous ex vivo studies on adult testis have indeed pointed to an antiandrogenicity, only on Leydig cells, of phthalates (41), aspirin, indomethacin (42), and bisphenol A (BPA) and its analogs
  • ibuprofen’s effects were not restricted to Leydig and Sertoli cells, as data showed that the expression of genes in peritubular cells was also affected
  • short-term exposure
  • In the clinical setting, compromised Leydig cell function resulting in increased insensitivity to LH is defined as compensated hypogonadism (4), an entity associated with all-cause mortality
  • compensated hypogonadic men present with an increased likelihood of reproductive, cognitive, and physical symptoms
  • an inverse relationship was recently reported between endurance exercise training and male sexual libido
  • AMH concentrations are lower in seminal plasma from patients with azoospermia than from men with normal sperm levels
  • inhibin B is a key clinical marker of reproductive health (32). The function of AMH, also secreted by Sertoli cells, and its regulation through FSH remain unclear in men
  • the striking dual effect of ibuprofen observed here on both Leydig and Sertoli cells makes this NSAID the chemical compound, of all the chemical classes considered, with the broadest endocrine-disturbing properties identified so far in men.
  • after administration of 600 mg of ibuprofen to healthy volunteers
  • 14 d or at the last day of administration at 44 d
  •  
    ibuprofen alters genetic expression that results in decreased Testosterone production.
Nathan Goodyear

PosterSessionOnline - 0 views

  • Poster number: 552 No. visits: 16 Title: ALCAT test results in the treatment of gastrointestinal symptoms Authors : Mara De Amici , Centre: Foundation IRCCS Hospital San Matteo
  • Poster number: 553 No. visits: 12 Title: Evaluation of ALCAT test results in the non IgE-mediated pathology of the skin Authors : Mara De Amici , Centre: Foundation IRCCS Hospital San Matteo
  •  
    Recent Poster presentation at European Academy of Allergy and Clinical Immunology reveals 66 % improvement in skin conditions with ALCAT diet.  Read poster #552
Nathan Goodyear

Effect of resistance exercise on muscle steroidogenesis | Journal of Applied Physiology - 0 views

  • skeletal muscle cell cultures incubated with DHEA produced testosterone in a DHEA dose-dependent manner
  • Muscle joins a growing list of tissues found to be capable of steroidogenesis
  • testosterone appears to have a role in the maintenance of muscle mass in women, although the importance of this role has not yet been fully established.
  • ...7 more annotations...
  • Circulating testosterone concentrations are generally elevated following a bout of resistance exercise in men (24, 31, 46, 52), whereas findings for the effect of resistance exercise on circulating testosterone in women are equivocal, with increases (10, 42) and no changes observed (22, 31)
  • swimming (51) and treadmill running (2) can significantly increase muscle testosterone concentrations in male and female rats
  • This upregulation of muscle testosterone in rats appears, at least in part, to be due to an increase in 3β-HSD and 17β-HSD type 1 expression
  • The primary finding in this study was that muscle steroidogenesis (i.e., testosterone production) in highly resistance-trained humans was not affected by an acute bout of heavy resistance exercise
  • A secondary finding was that the apparent molecular mass of 17β-HSD type 3 was increased following a single bout of heavy resistance exercise.
  • No differences were found for muscle testosterone or steroidogenic enzyme (17β-HSD type 3 and 3β-HSD types 1 and 2) concentrations between sexes or in response to resistance exercise
  • In conclusion, heavy resistance exercise did not induce changes in muscle steroidogenesis as measured by muscle concentrations of testosterone, 3β-HSD types 1 and 2, and 17β-HSD type 3 in highly resistance-trained young men and women.
  •  
    Resistance exercise did not increase muscle concentrations of Testosterone in men or women.  The individuals in this study were actively training.  These were not sedentary individuals.
Nathan Goodyear

Cortisol Exerts Bi-Phasic Regulation of Inflammation in Humans - 0 views

  • GCs induce increased cellular expression of receptors for several pro-inflammatory cytokines including interleukin (IL)-1 (Spriggs et al. 1990), IL-2 (Wiegers et al. 1995), IL-4 (Paterson et al. 1994), IL-6 (Snyers et al. 1990), and IFN-g (Strickland et al. 1986), as well as GM-CSF
  • GCs have also been shown to stimulate effector cell functions including phagocytosis by monocytes (van der Goes et al. 2000), effector cell proliferative responses (Spriggs et al. 1990), macrophage activation (Sorrells and Sapolsky 2010), and a delay of neutrophil apoptosis
  • a concentration- and time-dependent range of GC effects that are both pro- and anti-inflammatory
  • ...13 more annotations...
  • basal (diurnal) concentrations of cortisol do not exert an anti-inflammatory effect on several pro-and anti-inflammatory mediators of the human immune inflammatory response
  • withdrawal of cortisol activity in vivo did not lead to increased inflammatory responsiveness of immune effector cells
  • maximal suppression of inflammation was achieved by a stress-associated, but still physiologic, cortisol concentration. There was no greater anti-inflammatory effect at higher cortisol concentrations (Yeager et al. 2005) although IL-10 concentrations continued to increase with increasing cortisol concentrations as we and others have shown
  • acutely, physiological cortisol concentrations are anti-inflammatory and, as proposed, act to limit over expression of an inflammatory response that could lead to tissue damage
  • Acutely, cortisol has anti-inflammatory effects following a systemic inflammatory stimulus (Figure 4). However, a cortisol concentration that acts acutely to suppress systemic inflammation also has a delayed effect of augmenting the inflammatory response to subsequent, delayed stimulu
  • 1) GCs can exert pro-inflammatory effects on key inflammatory processes and, 2) GC regulation of inflammation can vary from anti- to a pro-inflammatory in a time-dependent manner
  • The immediate in vivo effect of both stress-induced and pharmacological GC concentrations is to suppress concurrent inflammation and protect the organism from an excessive or prolonged inflammatory response
  • GCs alone, in the absence of an inflammatory stimulus, up-regulate monocyte mRNA and/or receptors for several molecules that participate in pro-inflammatory signaling, as noted above and in the studies presented here.
  • In humans, as shown here, if in vivo GC concentrations are elevated concurrent with an inflammatory stimulus, anti-inflammatory effects are observed
  • In sharp contrast, with a time delay of 12 or more hours between an increased GC concentration and the onset of an inflammatory stimulus, enhancing effects on inflammation are observed. These effects have been shown to persist in humans for up to 6 days
  • GC-induced enhancement of inflammatory responses is maximal at an intermediate concentration, in our studies at a concentration that approximates that observed in vivo following a major systemic inflammatory stimulus
  • In addition to enhanced responses to LPS, recently identified pro-inflammatory effects of GCs also show enhanced localization of effector cells at inflammatory sites
  • we hypothesize that pre-exposure to stress-associated cortisol concentrations “prime” effector cells of the monocyte/macrophage lineage for an augmented pro-inflammatory response by; a) inducing preparative changes in key regulators of LPS signal transduction, and b) enhancing localization of inflammatory effector cells at potential sites of injury
  •  
    very interesting read on the effects of inflammation on cortisol and visa versa.
Nathan Goodyear

High Progesterone Receptor Expression in Prostate Cancer Is Associated with Clinical Fa... - 0 views

  • Currently, there is a general agreement of PGR presence in the stromal cells of PCa
  • expressed in both stromal and tumor cells of the PCa tissue
  • In univariate analysis, a high density level of PGR in both TE and TS was associated with CF
  • ...17 more annotations...
  • High density level of PGR in the TE was an independent prognostic factor for CF.
  • Our large-sized study demonstrates a wide distribution of PGR in stromal and epithelial cells of both benign and malignant prostate tissue
  • there seems to be a general agreement of PGR presence in the stromal cells of PCa
  • In line with our findings, several have also reported a high PGR expression in TE of PCa [9,10,23,25]. In contrast, others have demonstrated a total lack of PGR expression in TE
  • the actions of progesterone are tissue specific
  • In our work univariate analysis demonstrated a high PGR expression in TS to be associated with clinical failure in PCa patients. So far we have not yet demonstrated the mechanism underlying this association
  • Several non-genomic proliferative actions of progesterone have been proposed in tumor cells of other organs, including breast [35–37], astrocytoma [38] and osteosarcoma [39] cell lines. However, such results are contradicted by suggestions of anti-proliferative actions of progesterone in endometrial cancer
  • Yu et al. found PGR to be negatively regulating stromal cell proliferation in vitro
  • high PGR density level in TE was associated with CF in patients with Gleason score ≥ 7
  • Bonkhoff et al. have suggested progressive emergence of PGR during PCa progression and metastasis
  • Latil and co-workers found a decreased PGR expression in clinically localized tumors and increased PGR expression in hormone-refractory tumors, when compared with normal prostate tissue
  • Our findings provide further support to these findings, indicating that PGR plays a role in the pathogenesis of PCa
  • Ki67 and PGR in TE were correlated with CF (S3 Text), indicating an association between PGR and proliferative activity
  • The mechanism behind the PGR up-regulation in PCa has not yet been elucidated
  • The PGR is, like the glucocorticoid receptor, similar to androgen receptor with 88% sequence homology in the ligand-binding domain
  • progesterone induced expression of androgen receptor-regulated genes could be a potential mechanism contributing to the development of castrate resistant PCa
  • A possibility of different roles by the two PGR isoforms in normal prostate tissue and PCa, as is suggested for the estrogen receptors [13], must also be taken into account
  •  
    STudy finds that increased Progesterone receptor expression on epithelial and stromal cells is associated with increased clinical failure of therapy.  Several proposed mechanisms: 88% homologous with androgen receptor suggesting cross-stimulation and via progesterone induced increased androgen receptor gene stimulation i.e. epigenetics.
Nathan Goodyear

Metabolic management of brain cancer - 0 views

  • Glutamine is a major metabolic fuel for both brain tumor cells and tumor-associated macrophages (TAMs)
  • the malignant phenotype of brain tumor cells that survive radiotherapy is often greater than that of the cells from the original tumor.
  • Conventional chemotherapy has faired little better than radiation therapy for the long-term management of malignant brain cancer
  • ...37 more annotations...
  • most conventional radiation and brain cancer chemotherapies can enhance glioma energy metabolism and invasive properties, which would contribute to tumor recurrence and reduced patient survival [34].
  • We contend that all cancer regardless of tissue or cellular origin is a disease of abnormal energy metabolism
  • complex disease phenotypes can be managed through self-organizing networks that display system wide dynamics involving oxidative and non-oxidative (substrate level) phosphorylation
  • As long as brain tumors are provided a physiological environment conducive for their energy needs they will survive; when this environment is restricted or abruptly changed they will either grow slower, growth arrest, or perish [8] and [19]
  • New information also suggests that ketones are toxic to some human tumor cells and that ketones and ketogenic diets might restrict availability of glutamine to tumor cells [68], [69] and [70].
  • The success in dealing with environmental stress and disease is therefore dependent on the integrated action of all cells in the organism
  • Tumor cells survive in hypoxic environments not because they have inherited genes making them more fit or adaptable than normal cells, but because they have damaged mitochondria and have thus acquired the ability to derive energy largely through substrate level phosphorylation
  • Cancer cells survive and multiply only in physiological environments that provide fuels (mostly glucose and glutamine) subserving their requirement for substrate level phosphorylation
  • Integrity of the inner mitochondrial membrane is necessary for ketone body metabolism since β-hydroxybutyrate dehydrogenase, which catalyzes the first step in the metabolism of β-OHB to acetoacetate, interacts with cardiolipin and other phospholipids in the inner membrane
  • the mitochondria of many gliomas and most tumors for that matter are dysfunctional
  • Cardiolipin is essential for efficient oxidative energy production and mitochondrial function
  • Any genetic or environmental alteration in the content or composition of cardiolipin will compromise energy production through oxidative phosphorylation
  • The Crabtree effect involves the inhibition of respiration by high levels of glucose
  • the Warburg effect involves elevated glycolysis from impaired oxidative phosphorylation
  • the Crabtree effect can be reversible, the Warburg effect is largely irreversible because its origin is with permanently damaged mitochondria
  • The continued production of lactic acid in the presence of oxygen is the metabolic hallmark of most cancers and is referred to as aerobic glycolysis or the Warburg effect
  • We recently described how the retrograde signaling system could induce changes in oncogenes and tumor suppressor genes to facilitate tumor cell survival following mitochondrial damage [48].
  • In addition to glycolysis, glutamine can also increase ATP production under hypoxic conditions through substrate level phosphorylation in the TCA cycle after its metabolism to α-ketoglutarate
  • mitochondrial lipid abnormalities, which alter electron transport activities, can account in large part for the Warburg effect
  • targeting both glucose and glutamine metabolism could be effective for managing most cancers including brain cancer
  • The bulk of experimental evidence indicates that mitochondria are dysfunctional in tumors and incapable of generating sufficient ATP through oxidative phosphorylation
  • Cardiolipin defects in tumor cells are also associated with reduced activities of several enzymes of the mitochondrial electron transport chain making it unlikely that tumor cells with cardiolipin abnormalities can generate adequate energy through oxidative phosphorylation
  • The Crabtree effect involves the inhibition of respiration by high levels of glucose
  • Warburg effect involves elevated glycolysis from impaired oxidative phosphorylation
  • TCA cycle substrate level phosphorylation could therefore become another source of ATP production in tumor cells with impairments in oxidative phosphorylation
  • Caloric restriction, which lowers glucose and elevates ketone bodies [63] and [64], improves mitochondrial respiratory function and glutathione redox state in normal cells
  • DR naturally inhibits glycolysis and tumor growth by lowering circulating glucose levels, while at the same time, enhancing the health and vitality of normal cells and tissues through ketone body metabolism
  • DR is anti-angiogenic
  • DR also reduces angiogenesis in prostate and breast cancer
  • We suggest that apoptosis resistance arises largely from enhanced substrate level phosphorylation of tumor cells and to the genes associated with elevated glycolysis and glutaminolysis, e.g., c-Myc, Hif-1a, etc, which inhibit apoptosis
  • Modern medicine has not looked favorably on diet therapies for managing complex diseases especially when well-established procedures for acceptable clinical practice are available, regardless of how ineffective these procedures might be in managing the disease
  • More than 60 years of clinical research indicates that such approaches are largely ineffective in extending survival or improving quality of life
  • The process is rooted in the well-established scientific principle that tumor cells are largely dependent on substrate level phosphorylation for their survival and growth
  • Glucose and glutamine drive substrate level phosphorylation
  • targeting the glycolytically active tumor cells that produce pro-cachexia molecules, restricted diet therapies can potentially reduce tumor cachexia
  • It is important to recognize, however, that “more is not better” with respect to the ketogenic diet
  • Blood glucose ranges between 3.0 and 3.5 mM (55–65 mg/dl) and β-OHB ranges between 4 and 7 mM should be effective for tumor management
  •  
    Dr Seyfriend presents his metabolic approach to the treatment of brain cancer.
‹ Previous 21 - 40 of 335 Next › Last »
Showing 20 items per page