Skip to main content

Home/ Dr. Goodyear/ Group items tagged relative risk

Rss Feed Group items tagged

Nathan Goodyear

Coffee and cancer risk: a summary overview - 0 views

  •  
    2017 meta-analysis finds no increase relative risk (RR) of cancer with coffee consumption.  First, this must consider all the "other" junk put in coffee these days.  Second, and most important, this study looked at RR which tells us nothing about risk.  Studies like this don't do much more than confuse the general public, doctors, and judges--recent judge ruling in California that coffee needs a carcinogenic lable.  Third, epigenetis will tell us about individual risk.  I am growing more concerned that the majority of studies published today are merely statistical dances to ensure publication.  Is it good that no RR was found? yes, does that give any indication of absolute risk?  No.  Take home: enjoy your morning cup of joe as nature prescribed--no additives.
Nathan Goodyear

Estrogen Metabolism and Risk of Breast Cancer in Postmenopausal Women - 0 views

  • The ratio of the 2-hydroxylation pathway to parent estrogens was associated with a statistically significantly decreased risk of breast cancer
  • In this study, this ratio was more strongly associated with the risk of breast cancer compared with the ratio of 2-hydroxylation pathway to 16-hydroxylation pathway or unconjugated estradiol alone
  • 2-hydroxylation pathway catechols have relatively low affinities for estrogen receptors (4) and are rapidly cleared from circulation
  • ...6 more annotations...
  • In this study, the ratio of the 2-hydroxylation pathway to the 16-hydroxylation pathway was associated with a non-statistically significantly decreased risk of breast cancer
  • In this study, the ratio of catechols to methylated catechols in the 4-hydroxylation pathway was associated with statistically significantly increased risk of breast cancer.
  • This result is consistent with the hypothesis that mutagenic quinones derived from 4-hydroxylation pathway catechols contribute to pathogenesis of postmenopausal breast cancer.
  • Catechols in both the 2- and 4-hydroxylation pathways can be oxidized to form quinones; these reactive electrophiles can then react with DNA to form a variety of adducts
  • Methylation of the catechols prevents their conversion to reactive quinones
  • the most common DNA adducts derived from 4-hydroxylation pathway catechols are depurinating and highly mutagenic (7,40), most of those derived from 2-hydroxylation pathway catechols are stable and can be repaired with little error
  •  
    Lower 2-OH estrone metabolism associated with lower risk of breast cancer, but 4-OH estrone associated with increased risk of breast cancer.
Nathan Goodyear

Unequal risks for breast cancer associated with di... [Breast Cancer Res Treat. 2008] -... - 0 views

  • The association of estrogen-progestagen combinations with breast cancer risk varied significantly according to the type of progestagen: the relative risk was 1.00 (0.83-1.22) for estrogen-progesterone, 1.16 (0.94-1.43) for estrogen-dydrogesterone, and 1.69 (1.50-1.91) for estrogen combined with other progestagens.
  • These findings suggest that the choice of the progestagen component in combined HRT is of importance regarding breast cancer risk; it could be preferable to use progesterone
  •  
    progesterone shows no increased risk of breast cancer; compared to synthetic progestins significantly increased risk
Nathan Goodyear

Substantial contribution of extrinsic risk factors to cancer development - 0 views

  • Here we provide evidence that intrinsic risk factors contribute only modestly (<10~30%) to cancer development
  • we conclude that cancer risk is heavily influenced by extrinsic factors. These results carry immense consequences for strategizing cancer prevention
  • cancers are proposed to originate from the malignant transformation of normal tissue progenitor and stem cells
  • ...14 more annotations...
  • “Intrinsic processes” include those that result in mutations due to random errors in DNA replication whereas “extrinsic factors” are environmental factors that affect mutagenesis rates (such as UV radiation, ionizing radiation, and carcinogens
  • intrinsic factors do not play a major causal role.
  • intrinsic cancer risk should be determined by the cancer incidence for those cancers with the least risk in the entire group controlling for total stem cell divisions
  • if one or more cancers would feature a much higher cancer incidence, for example, lung cancer among smokers vs. non-smokers, then this most likely reflects additional (and probably extrinsic) risk factors (smoking in this case)
  • Particularly, for breast and prostate cancers, it has long been observed that large international geographical variations exist in their incidences (5-fold for breast cancer, 25-fold for prostate cancer)14, and immigrants moving from countries with lower cancer incidence to countries with higher cancer rates soon acquire the higher risk of their new country
  • Colorectal cancer is another high-incidence cancer that is widely considered to be an environmental disease17, with an estimated 75% or more colorectal cancer risk attributable to diet
  • melanoma, its risk ascribed to sun exposure is around 65–86%
  • non-melanoma basal and squamous skin cancers, ~90% is attributable to UV
  • 75% of esophageal cancer, or head and neck cancer are caused by tobacco and alcohol
  • HPV may cause ~90% cases in cervical cancer23, ~90% cases in anal cancer24, and ~70% in oropharyngeal cancer
  • HBV and HCV may account for ~80% cases of hepatocellular carcinoma
  • H pylori may be responsible for 65–80% of gastric cancer
  • While a few cancers have relatively large proportions of intrinsic mutations (>50%), the majority of cancers have large proportions of extrinsic mutations, for example, ~100% for Myeloma, Lung and Thyroid cancers and ~80–90% for Bladder, Colorectal and Uterine cancers, indicating substantial contributions of carcinogen exposures in the development of most cancers
  • onsistent estimate of contribution of extrinsic factors of >70–90% in most common cancer types. This concordance lends significant credibility to the overall conclusion on the role of extrinsic factors in cancer development
  •  
    Really great read.  Cancer is a majority lifestyle disease.
Nathan Goodyear

Testosterone and glucose metabolism in men: current concepts and controversies - 0 views

  • Around 50% of ageing, obese men presenting to the diabetes clinic have lowered testosterone levels relative to reference ranges based on healthy young men
  • The absence of high-level evidence in this area is illustrated by the Endocrine Society testosterone therapy in men with androgen deficiency clinical practice guidelines (Bhasin et al. 2010), which are appropriate for, but not specific to men with metabolic disorders. All 32 recommendations made in these guidelines are based on either very low or low quality evidence.
  • A key concept relates to making a distinction between replacement and pharmacological testosterone therapy
  • ...59 more annotations...
  • The presence of symptoms was more closely linked to increasing age than to testosterone levels
  • Findings similar to type 2 diabetes were reported for men with the metabolic syndrome, which were associated with reductions in total testosterone of −2.2 nmol/l (95% CI −2.41 to 1.94) and in free testosterone
  • low testosterone is more predictive of the metabolic syndrome in lean men
  • Cross-sectional studies uniformly show that 30–50% of men with type 2 diabetes have lowered circulating testosterone levels, relative to references based on healthy young men
  • In a recent cross-sectional study of 240 middle-aged men (mean age 54 years) with either type 2 diabetes, type 1 diabetes or without diabetes (Ng Tang Fui et al. 2013b), increasing BMI and age were dominant drivers of low total and free testosterone respectively.
  • both diabetes and the metabolic syndrome are associated with a modest reduction in testosterone, in magnitude comparable with the effect of 10 years of ageing
  • In a cross-sectional study of 490 men with type 2 diabetes, there was a strong independent association of low testosterone with anaemia
  • In men, low testosterone is a marker of poor health, and may improve our ability to predict risk
    • Nathan Goodyear
       
      probably the most important point made in this article
  • low testosterone identifies men with an adverse metabolic phenotype
  • Diabetic men with low testosterone are significantly more likely to be obese or insulin resistant
  • increased inflammation, evidenced by higher CRP levels
  • Bioavailable but not free testosterone was independently predictive of mortality
  • It remains possible that low testosterone is a consequence of insulin resistance, or simply a biomarker, co-existing because of in-common risk factors.
  • In prospective studies, reviewed in detail elsewhere (Grossmann et al. 2010) the inverse association of low testosterone with metabolic syndrome or diabetes is less consistent for free testosterone compared with total testosterone
  • In a study from the Framingham cohort, SHBG but not testosterone was prospectively and independently associated with incident metabolic syndrome
  • low SHBG (Ding et al. 2009) but not testosterone (Haring et al. 2013) with an increased risk of future diabetes
  • In cross-sectional studies of men with (Grossmann et al. 2008) and without (Bonnet et al. 2013) diabetes, SHBG but not testosterone was inversely associated with worse glycaemic control
  • SHBG may have biological actions beyond serving as a carrier protein for and regulator of circulating sex steroids
  • In men with diabetes, free testosterone, if measured by gold standard equilibrium dialysis (Dhindsa et al. 2004), is reduced
    • Nathan Goodyear
       
      expensive, laborious process filled with variables
  • Low free testosterone remains inversely associated with insulin resistance, independent of SHBG (Grossmann et al. 2008). This suggests that the low testosterone–dysglycaemia association is not solely a consequence of low SHBG.
  • Experimental evidence reviewed below suggests that visceral adipose tissue is an important intermediate (rather than a confounder) in the inverse association of testosterone with insulin resistance and metabolic disorders.
  • testosterone promotes the commitment of pluripotent stem cells into the myogenic lineage and inhibits their differentiation into adipocytes
  • testosterone regulates the metabolic functions of mature adipocytes (Xu et al. 1991, Marin et al. 1995) and myocytes (Pitteloud et al. 2005) in ways that reduce insulin resistance.
  • Pre-clinical evidence (reviewed in Rao et al. (2013)) suggests that at the cellular level, testosterone may improve glucose metabolism by modulating the expression of the glucose-transported Glut4 and the insulin receptor, as well as by regulating key enzymes involved in glycolysis.
  • More recently testosterone has been shown to protect murine pancreatic β cells against glucotoxicity-induced apoptosis
  • Interestingly, a reciprocal feedback also appears to exist, given that not only chronic (Cameron et al. 1990, Allan 2013) but also, as shown more recently (Iranmanesh et al. 2012, Caronia et al. 2013), acute hyperglycaemia can lower testosterone levels.
  • There is also evidence that testosterone regulates insulin sensitivity directly and acutely
  • In men with prostate cancer commencing androgen deprivation therapy, both total as well as, although not in all studies (Smith 2004), visceral fat mass increases (Hamilton et al. 2011) within 3 months
  • More prolonged (>12 months) androgen deprivation therapy has been associated with increased risk of diabetes in several large observational registry studies
  • Testosterone has also been shown to reduce the concentration of pro-inflammatory cytokines in some, but not all studies, reviewed recently in Kelly & Jones (2013). It is not know whether this effect is independent of testosterone-induced changes in body composition.
  • the observations discussed in this section suggest that it is the decrease in testosterone that causes insulin resistance and diabetes. One important caveat remains: the strongest evidence that low testosterone is the cause rather than consequence of insulin resistance comes from men with prostate cancer (Grossmann & Zajac 2011a) or biochemical castration, and from mice lacking the androgen receptor.
  • Several large prospective studies have shown that weight gain or development of type 2 diabetes is major drivers of the age-related decline in testosterone levels
  • there is increasing evidence that healthy ageing by itself is generally not associated with marked reductions in testosterone
  • Circulating testosterone, on an average 30%, is lower in obese compared with lean men
  • increased visceral fat is an important component in the association of low testosterone and insulin resistance
  • The vast majority of men with metabolic disorders have functional gonadal axis suppression with modest reductions in testosterone levels
  • obesity is a dominant risk factor
  • men with Klinefelter syndrome have an increased risk of metabolic disorders. Interestingly, greater body fat mass is already present before puberty
  • Only 5% of men with type 2 diabetes have elevated LH levels
  • inhibition of the gonadal axis predominantly takes place in the hypothalamus, especially with more severe obesity
  • Metabolic factors, such as leptin, insulin (via deficiency or resistance) and ghrelin are believed to act at the ventromedial and arcuate nuclei of the hypothalamus to inhibit gonadotropin-releasing hormone (GNRH) secretion from GNRH neurons situated in the preoptic area
  • kisspeptin has emerged as one of the most potent secretagogues of GNRH release
  • hypothesis that obesity-mediated inhibition of kisspeptin signalling contributes to the suppression of the HPT axis, infusion of a bioactive kisspeptin fragment has been recently shown to robustly increase LH pulsatility, LH levels and circulating testosterone in hypotestosteronaemic men with type 2 diabetes
  • A smaller study with a similar experimental design found that acute testosterone withdrawal reduced insulin sensitivity independent of body weight, whereas oestradiol withdrawal had no effects
  • suppression of the diabesity-associated HPT axis is functional, and may hence be reversible
  • Obesity and dysglycaemia and associated comorbidities such as obstructive sleep apnoea (Hoyos et al. 2012b) are important contributors to the suppression of the HPT axis
  • weight gain and development of diabetes accelerate the age-related decline in testosterone
  • Modifiable risk factors such as obesity and co-morbidities are more strongly associated with a decline in circulating testosterone levels than age alone
  • 55% of symptomatic androgen deficiency reverted to a normal testosterone or an asymptomatic state after 8-year follow-up, suggesting that androgen deficiency is not a stable state
  • Weight loss can reactivate the hypothalamic–pituitary–testicular axis
  • Leptin treatment resolves hypogonadism in leptin-deficient men
  • The hypothalamic–pituitary–testicular axis remains responsive to treatment with aromatase inhibitors or selective oestrogen receptor modulators in obese men
  • Kisspeptin treatment increases LH secretion, pulse frequency and circulating testosterone levels in hypotestosteronaemic men with type 2 diabetes
  • change in BMI was associated with the change in testosterone (Corona et al. 2013a,b).
  • weight loss can lead to genuine reactivation of the gonadal axis by reversal of obesity-associated hypothalamic suppression
  • There is pre-clinical and observational evidence that chronic hyperglycaemia can inhibit the HPT axis
  • in men who improved their glycaemic control over time, testosterone levels increased. By contrast, in those men in whom glycaemic control worsened, testosterone decreased
  • testosterone levels should be measured after successful weight loss to identify men with an insufficient rise in their testosterone levels. Such men may have HPT axis pathology unrelated to their obesity, which will require appropriate evaluation and management.
  •  
    Article discusses the expanding evidence of low T and Metabolic syndrome.
Nathan Goodyear

Testosterone and the Cardiovascular System: A Comprehensive Review of the Clinical Lite... - 0 views

  • Low endogenous bioavailable testosterone levels have been shown to be associated with higher rates of all‐cause and cardiovascular‐related mortality.39,41,46–47 Patients suffering from CAD,13–18 CHF,137 T2DM,25–26 and obesity27–28
  • have all been shown to have lower levels of endogenous testosterone compared with those in healthy controls. In addition, the severity of CAD15,17,29–30 and CHF137 correlates with the degree of testosterone deficiency
  • In patients with CHF, testosterone replacement therapy has been shown to significantly improve exercise tolerance while having no effect on LVEF
  • ...66 more annotations...
  • testosterone therapy causes a shift in the skeletal muscle of CHF patients toward a higher concentration of type I muscle fibers
  • Testosterone replacement therapy has also been shown to improve the homeostatic model of insulin resistance and hemoglobin A1c in diabetics26,68–69 and to lower the BMI in obese patients.
  • Lower levels of endogenous testosterone have been associated with longer duration of the QTc interval
  • testosterone replacement has been shown to shorten the QTc interval
  • negative correlation has been demonstrated between endogenous testosterone levels and IMT of the carotid arteries, abdominal aorta, and thoracic aorta
  • These findings suggest that men with lower levels of endogenous testosterone may be at a higher risk of developing atherosclerosis.
  • Current guidelines from the Endocrine Society make no recommendations on whether patients with heart disease should be screened for hypogonadism and do not recommend supplementing patients with heart disease to improve survival.
  • The Massachusetts Male Aging Study also projects ≈481 000 new cases of hypogonadism annually in US men within the same age group
  • since 1993 prescriptions for testosterone, regardless of the formulation, have increased nearly 500%
  • Testosterone levels are lower in patients with chronic illnesses such as end‐stage renal disease, human immunodeficiency virus, chronic obstructive pulmonary disease, type 2 diabetes mellitus (T2DM), obesity, and several genetic conditions such as Klinefelter syndrome
  • A growing body of evidence suggests that men with lower levels of endogenous testosterone are more prone to develop CAD during their lifetimes
  • There are 2 major potential confounding factors that the older studies generally failed to account for. These factors are the subfraction of testosterone used to perform the analysis and the method used to account for subclinical CAD.
  • The biologically inactive form of testosterone is tightly bound to SHBG and is therefore unable to bind to androgen receptors
  • The biologically inactive fraction of testosterone comprises nearly 68% of the total testosterone in human serum
  • The biologically active subfraction of testosterone, also referred to as bioavailable testosterone, is either loosely bound to albumin or circulates freely in the blood, the latter referred to as free testosterone
  • It is estimated that ≈30% of total serum testosterone is bound to albumin, whereas the remaining 1% to 3% circulates as free testosterone
  • it can be argued that using the biologically active form of testosterone to evaluate the association with CAD will produce the most reliable results
  • English et al14 found statistically significant lower levels of bioavailable testosterone, free testosterone, and free androgen index in patients with catheterization‐proven CAD compared with controls with normal coronary arteries
  • patients with catheterization‐proven CAD had statistically significant lower levels of bioavailable testosterone
  • In conclusion, existing evidence suggests that men with CAD have lower levels of endogenous testosterone,13–18 and more specifically lower levels of bioavailable testosterone
  • low testosterone levels are associated with risk factors for CAD such as T2DM25–26 and obesity
  • In a meta‐analysis of these 7 population‐based studies, Araujo et al41 showed a trend toward increased cardiovascular mortality associated with lower levels of total testosterone, but statistical significance was not achieved (RR, 1.25
  • the authors showed that a decrease of 2.1 standard deviations in levels of total testosterone was associated with a 25% increase in the risk of cardiovascular mortality
  • the relative risk of all‐cause mortality in men with lower levels of total testosterone was calculated to be 1.35
  • higher risk of cardiovascular mortality is associated with lower levels of bioavailable testosterone
  • Existing evidence seems to suggest that lower levels of endogenous testosterone are associated with higher rates of all‐cause mortality and cardiovascular mortality
  • studies have shown that lower levels of endogenous bioavailable testosterone are associated with higher rates of all‐cause and cardiovascular mortality
  • It may be possible that using bioavailable testosterone to perform mortality analysis will yield more accurate results because it prevents the biologically inactive subfraction of testosterone from playing a potential confounding role in the analysis
  • The earliest published material on this matter dates to the late 1930s
  • the concept that testosterone replacement therapy improves angina has yet to be proven wrong
  • In more recent studies, 3 randomized, placebo‐controlled trials demonstrated that administration of testosterone improves myocardial ischemia in men with CAD
  • The improvement in myocardial ischemia was shown to occur in response to both acute and chronic testosterone therapy and seemed to be independent of whether an intravenous or transdermal formulation of testosterone was used.
  • testosterone had no effect on endothelial nitric oxide activity
  • There is growing evidence from in vivo animal models and in vitro models that testosterone induces coronary vasodilation by modulating the activity of ion channels, such as potassium and calcium channels, on the surface of vascular smooth muscle cells
  • Experimental studies suggest that the most likely mechanism of action for testosterone on vascular smooth muscle cells is via modulation of action of non‐ATP‐sensitive potassium ion channels, calcium‐activated potassium ion channels, voltage‐sensitive potassium ion channels, and finally L‐type calcium ion channels
  • Corona et al confirmed those results by demonstrating that not only total testosterone levels are lower among diabetics, but also the levels of free testosterone and SHBG are lower in diabetic patients
  • Laaksonen et al65 followed 702 Finnish men for 11 years and demonstrated that men in the lowest quartile of total testosterone, free testosterone, and SHBG were more likely to develop T2DM and metabolic syndrome.
  • Vikan et al followed 1454 Swedish men for 11 years and discovered that men in the highest quartile of total testosterone were significantly less likely to develop T2DM
  • authors demonstrated a statistically significant increase in the incidence of T2DM in subjects receiving gonadotropin‐releasing hormone antagonist therapy. In addition, a significant increase in the rate of myocardial infarction, stroke, sudden cardiac death, and development of cardiovascular disease was noted in patients receiving antiandrogen therapy.67
  • Several authors have demonstrated that the administration of testosterone in diabetic men improves the homeostatic model of insulin resistance, hemoglobin A1c, and fasting plasma glucose
  • Existing evidence strongly suggests that the levels of total and free testosterone are lower among diabetic patients compared with those in nondiabetics
  • insulin seems to be acting as a stimulant for the hypothalamus to secret gonadotropin‐releasing hormone, which consequently results in increased testosterone production. It can be argued that decreased stimulation of the hypothalamus in diabetics secondary to insulin deficiency could result in hypogonadotropic hypogonadism
  • BMI has been shown to be inversely associated with testosterone levels
  • This interaction may be a result of the promotion of lipolysis in abdominal adipose tissue by testosterone, which may in turn cause reduced abdominal adiposity. On the other hand, given that adipose tissue has a higher concentration of the enzyme aromatase, it could be that increased adipose tissue results in more testosterone being converted to estrogen, thereby causing hypogonadism. Third, increased abdominal obesity may cause reduced testosterone secretion by negatively affecting the hypothalamus‐pituitary‐testicular axis. Finally, testosterone may be the key factor in activating the enzyme 11‐hydroxysteroid dehydrogenase in adipose tissue, which transforms glucocorticoids into their inactive form.
  • increasing age may alter the association between testosterone and CRP. Another possible explanation for the association between testosterone level and CRP is central obesity and waist circumference
  • Bai et al have provided convincing evidence that testosterone might be able to shorten the QTc interval by augmenting the activity of slowly activating delayed rectifier potassium channels while simultaneously slowing the activity of L‐type calcium channels
  • consistent evidence that supplemental testosterone shortens the QTc interval.
  • Intima‐media thickness (IMT) of the carotid artery is considered a marker for preclinical atherosclerosis
  • Studies have shown that levels of endogenous testosterone are inversely associated with IMT of the carotid artery,126–128,32,129–130 as well as both the thoracic134 and the abdominal aorta
  • 1 study has demonstrated that lower levels of free testosterone are associated with accelerated progression of carotid artery IMT
  • another study has reported that decreased levels of total and bioavailable testosterone are associated with progression of atherosclerosis in the abdominal aorta
  • These findings suggest that normal physiologic testosterone levels may help to protect men from the development of atherosclerosis
  • Czesla et al successfully demonstrated that the muscle specimens that were exposed to metenolone had a significant shift in their composition toward type I muscle fibers
  • Type I muscle fibers, also known as slow‐twitch or oxidative fibers, are associated with enhanced strength and physical capability
  • It has been shown that those with advanced CHF have a higher percentage of type II muscle fibers, based on muscle biopsy
  • Studies have shown that men with CHF suffer from reduced levels of total and free testosterone.137 It has also been shown that reduced testosterone levels in men with CHF portends a poor prognosis and is associated with increased CHF mortality.138 Reduced testosterone has also been shown to correlate negatively with exercise capacity in CHF patients.
  • Testosterone replacement therapy has been shown to significantly improve exercise capacity, without affecting LVEF
  • the results of the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not cause an increase in the rate of adverse cardiovascular events
  • Data from 3 meta‐analyses seem to contradict the commonly held belief that testosterone administration may increase the risk of developing prostate cancer
  • One meta‐analysis reported an increase in all prostate‐related adverse events with testosterone administration.146 However, when each prostate‐related event, including prostate cancer and a rise in PSA, was analyzed separately, no differences were observed between the testosterone group and the placebo group
  • the existing data from the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not increase the risk of adverse cardiovascular events
  • the authors correctly point out the weaknesses of their study which include retrospective study design and lack of randomization, small sample size at extremes of follow‐up, lack of outcome validation by chart review and poor generalizability of the results given that only male veterans with CAD were included in this study
    • Nathan Goodyear
       
      The authors here present Total Testosterone as a "confounding" value
    • Nathan Goodyear
       
      This would be HSD-II
  • the studies that failed to find an association between testosterone and CRP used an older population group
  • low testosterone may influence the severity of CAD by adversely affecting the mediators of the inflammatory response such as high‐sensitivity C‐reactive protein, interleukin‐6, and tumor necrosis factor–α
  •  
    Good review of Testosterone and CHD.  Low T is associated with increased all cause mortality and cardiovascular mortality, CAD, CHF, type II diabetes, obesity, increased IMT,  increased severity of CAD and CHF.  Testosterone replacement in men with low T has been shown to improve exercise tolerance in CHF, improve insulin resistance, improve HgbA1c and lower BMI in the obese.
Nathan Goodyear

Postmenopausal circulating levels of 2- and 16α-hydroxyestrone and risk of en... - 0 views

  • our results do not support the hypothesis that greater metabolism of oestrogen via the 2-OH pathway, relative to the 16α-OH pathway, protects against endometrial cancer. Indeed our results are more suggestive of an increase in risk, rather than a decrease, with higher levels of 2-OHE1
  • women with a higher 2-OHE1 : 16α-OHE1 ratio did not have a decreased risk of endometrial cancer as compared with women with a lower ratio
  • The findings from this first prospective epidemiological study of oestrogen metabolites and endometrial cancer are in line with results from prospective studies on breast cancer, another oestrogen-related cancer. None of the seven studies on breast cancer reported significant associations overall
  • ...4 more annotations...
  • On the whole, prospective epidemiological data do not support the hypothesis that the 2-hydroxyestrogen pathway is protective, and the 16α-hydroxyestrogen pathway harmful, in hormone-dependent cancers
  • Both 2- and 4-hydroxyestrogens are catecholestrogens, and it has been suggested that catecholestrogens increase risk of oestrogen-mediated cancers through direct genotoxic effects, rather than through stimulation of cell proliferation via binding to oestrogen receptors
  • the evidence is stronger for 4-hydroxyestrogens than for 2-hydroxyestrogens
  • a significant increase in risk of breast cancer with levels of 2-OHE1 has also been reported previously, although it was limited to hormone receptor-negative tumours
  •  
    2:16 hydroxyestrone ratio not associated with uterine cancer risk.
Nathan Goodyear

Vitamin D supplementation for pre... [Cochrane Database Syst Rev. 2011] - PubMed - NCBI - 0 views

  •  
    6% relative risk reduction in mortality with vitamin D3 vs. 2% relative risk increase with vitamin D2.
Nathan Goodyear

Testosterone level in men with type 2 diabetes mellitus and related metabolic... - 0 views

  • defined by consistent symptoms and signs of androgen deficiency, and an unequivocally low serum testosterone level
  • the threshold serum testosterone level below which adverse clinical outcomes occur in the general population is not known
  • most population-based studies use the serum testosterone level corresponding to the lower limit, quoted from 8.7 to 12.7 nmol/L, of the normal range for young Caucasian men as the threshold
    • Nathan Goodyear
       
      this equals 251 to 366 in serum Total Testosterone
  • ...57 more annotations...
  • Researchers tried to examine whether serum total or free testosterone would be a better/more reliable choice when studying the effect of testosterone. The results were mixed. Some reported significant associations of both serum total and free testosterone level with clinical parameters25, whereas others reported that only serum free testosterone26 or only serum total testosterone6 showed significant associations.
  • −0.124 nmol/L/year in serum total testosterone
    • Nathan Goodyear
       
      this equates to a 4 ng/dl decline annually in total Testosterone.
  • In experimental studies, androgen receptor knockout mice developed significant insulin resistance rapidly
  • In mouse models, testosterone promoted differentiation of pluripotent stem cells to the myogenic lineage
  • testosterone decreased insulin resistance by enhancing catecholamine induced lipolysis in vitro, and reducing lipoprotein lipase activity and triglyceride uptake in human abdominal tissue in vivo
  • by promoting lipolysis and myogenesis, testosterone might lead to improved insulin resistance
  • testosterone regulated skeletal muscle genes involved in glucose metabolism that led to decreased systemic insulin resistance
  • In the liver, hepatic androgen receptor signaling inhibited development of insulin resistance in mice
  • independent and inverse association of testosterone with hepatic steatosis shown in a cross-sectional study carried out in humans
  • In short, androgen improves insulin resistance by changing body composition and reducing body fat.
  • Although a low serum testosterone level could contribute to the development of obesity and type 2 diabetes through changes in body composition, obesity might also alter the metabolism of testosterone
  • In obese men, the peripheral conversion from testosterone to estrogen could attenuate the amplitude of luteinizing hormone pulses and centrally inhibit testosterone production
  • leptin, an adipokine, has been shown to be inversely correlated with serum testosterone level in men
  • Leydig cells expressed leptin receptors and leptin has been shown to inhibit testosterone secretion, suggesting a role of obesity and leptin in the pathogenesis of low testosterone
    • Nathan Goodyear
       
      So what is "unequivocal"?
  • Baltimore Longitudinal Study of Aging (BLSA) cohort made up of 3,565 middle-class, mostly Caucasian men from the USA, the incidence of low serum total testosterone increased from approximately 20% of men aged over 60 years, 30% over 70 years, to 50% over 80 years-of-age
  • 30–44% sex hormone binding globulin (SHBG)-bound testosterone and 54–68% albumin-bound testosterone
  • As the binding of testosterone to albumin is non-specific and therefore not tight, the sum of free and albumin-bound testosterone is named bioavailable testosterone, which reflects the hormone available at the cellular level
  • Serum total testosterone is composed of 0.5–3.0% of free testosterone unbound to plasma proteins
  • alterations in SHBG concentration might affect total serum testosterone level without altering free or bioavailable testosterone
  • listed in Table​T
  • A significant, independent and longitudinal effect of age on testosterone has been observed with an average change of −0.124 nmol/L/year in serum total testosterone28. The same trend has been shown in Europe and Australia
  • Asian men residing in HK and Japan, but not those living in the USA, had 20% higher serum total testosterone than in Caucasians living in the USA, as shown in a large multinational observational prospective cohort of the Osteoporotic Fractures in Men Study
  • subjects with chronic diseases consistently had a 10–15% lower level compared with age-matched healthy subjects
  • In Caucasians, the mean serum total testosterone level for men in large epidemiological studies has been reported to range from 15.1 to 16.6 nmol/L
  • Asians, higher values, ranging from 18.1 to 19.1 nmol/L, were seen in Korea and Japan
  • Chinese middle-aged men reported a similar mean serum testosterone level of 17.1 nmol/L in 179 men who had a family history of type 2 diabetes and 17.8 nmol/L in 128 men who had no family history of type 2 diabetes
  • The reduction of total testosterone was 0.4% per year in both groups
  • HK involving a cohort of 1,489 community-dwelling men with a mean age of 72 years, a mean serum total testosterone of 19.0 nmol/L was reported
  • pro-inflammatory factors, such as tumor necrosis factor-α in the testes, could locally inhibit testosterone biosynthesis in Leydig cells47, and testosterone treatment in men was shown to reduce the level of tumor necrosis factor-α
  • In Asians, a genetic deletion polymorphism of uridine diphosphate-glucuronosyltransferase UGT2B17 was associated with reduced androgen glucuronidation. This resulted in higher level of active androgen in Asians as compared to Caucasians, as Caucasians' androgen would be glucuronidated into inactive forms faster.
  • Compared with Caucasians, the frequency of this deletion polymorphism of UGT2B17 was 22-fold higher in Asian subjects
  • Other researchers have suggested that environmental, but not genetic, factors influenced serum total testosterone
  • The basal and ligand-induced activity of the AR is inversely associated with the length of the CAG repeat chain
  • In the European Male Aging Study, increased estrogen/androgen ratio in association with longer AR CAG repeat was observed
  • a smaller number of AR CAG repeat had been shown to be associated with benign prostate hypertrophy and faster prostate growth during testosterone treatment
  • In India, men with CAG ≤19 had increased risk of prostate cancer
  • the odds of having a short CAG repeat (≤17) were substantially higher in patients with lymph node-positive prostate cancer than in those with lymph node-negative disease or in the general population
  • assessing the polymorphism at the AR level could be a potential tool towards individualized assessment and treatment of hypogonadism.
  • In elderly men, there was reduced testicular response to gonadotropins with suppressed and altered pulsatility of the hypothalamic pulse generator
  • a significant, independent and longitudinal effect of age on serum total testosterone level had been observed
  • A significant graded inverse association between serum testosterone level and insulin levels independent of age has also been reported in Caucasian men
  • Low testosterone is commonly associated with a high prevalence of MES
  • most studies showed that changes in serum testosterone level led to changes in body composition, insulin resistance and the presence of MES, the reverse might also be possible
  • MES predicted a 2.6-fold increased risk of development of low serum testosterone level independent of age, smoking and other potential confounders
  • Other prospective studies have shown that development of MES accelerated the age-related decline in serum testosterone level
  • In men with type 2 diabetes, changes in serum testosterone level over time correlated inversely with changes in insulin resistance
  • weight loss by either diet control or bariatric surgery led to a substantial increase in total testosterone, especially in morbidly obese men, and the rise in serum testosterone level was proportional to the amount of weight lost
  • To date, published clinical trials are small, of short duration and often used pharmacological, not physiological, doses of testosterone
  • In the population-based Osteoporotic Fractures in Men Study cohort from Sweden, men in the highest quartile of serum testosterone level had the lowest risk of cardiovascular events compared with men in the other three quartiles (hazard ratio [HR] 0.70
  • low serum total testosterone was associated with a significant fourfold higher risk of cardiovascular events when comparing men from the lowest testosterone tertile with those in the highest tertile
  • Shores et al. were the first to report that low serum testosterone level, including both serum total and free testosterone, was associated with increased mortality
  • low serum total testosterone predicted increased risk of cardiovascular mortality with a HR of 1.38
  • low serum total testosterone increased all-cause (HR 1.35, 95% CI 1.13–1.62, P < 0.001) and cardiovascular mortality (HR 1.25
  • European Association for the Study of Diabetes 2013 suggested there was an inverse relationship between serum testosterone level and acute myocardial infarction
  • Diabetic men in the highest quartile of serum total testosterone had a significantly reduced risk of acute MI when compared with those in the lower quartiles
  • serum total testosterone level in the middle two quartiles at baseline predicted reduced incidence of death compared with having the highest and lowest levels
  •  
    Nice review of Testosterone levels and some of the evidence linking Diabetes with low T.  However, the conclusion by the authors regarding what is causing the low T in men with Diabetes is baffling.  The literature does not point to one cause, it is clearly multifactorial--obesity, inflammation, high aromatase activity...I would suggest the authors continue their readings in the manner.
Nathan Goodyear

Menopausal Hormone Therapy and Risk of Colorectal Cancer - 0 views

  •  
    This study looked at relative risk, but estrogen plus progestin reduces the risk of colorectal cancer.  Progestin is a poor sythetic progesterone analogue.  One wonders what additional benefit progesterone may add as studies have shown with regards to breast cancer.
Nathan Goodyear

Postmenopausal hormone use and risk for color... [Ann Intern Med. 1998] - PubMed - NCBI - 0 views

  •  
    Study finds that HRT is associated with a 35% reduction in relative risk of colorectal cancer in postmenopausal women.  Even use within the previous 5 years was associated with reduced risk.  This benefit is lost at 5 years..
Nathan Goodyear

Plasma 25-hydroxyvitamin D concentration and subsequent risk of total and site specific... - 0 views

  •  
    New Study from BMJ finds that higher vitamin D levels are associated with a decreased relative risk for total cancer.  The most significant inverse association was found with risk of liver cancer. The study divided the vitamin D levels into quartiles.
Nathan Goodyear

Testosterone and glucose metabolism in men: current concepts and controversies - 0 views

    • Nathan Goodyear
       
      80% of E2 production in men, that will cause low T in men, comes from SQ adiposity.  This leads to increase in visceral adiposity.
  • Only 5% of men with type 2 diabetes have elevated LH levels (Dhindsa et al. 2004, 2011). This is consistent with recent findings that the inhibition of the gonadal axis predominantly takes place in the hypothalamus, especially with more severe obesity
  • Metabolic factors, such as leptin, insulin (via deficiency or resistance) and ghrelin are believed to act at the ventromedial and arcuate nuclei of the hypothalamus to inhibit gonadotropin-releasing hormone (GNRH) secretion
  • ...32 more annotations...
  • kisspeptin has emerged as one of the most potent secretagogues of GNRH release
  • Consistent with the hypothesis that obesity-mediated inhibition of kisspeptin signalling contributes to the suppression of the HPT axis, infusion of a bioactive kisspeptin fragment has been recently shown to robustly increase LH pulsatility, LH levels and circulating testosterone in hypotestosteronaemic men with type 2 diabetes
  • Figure 4
  • Interestingly, a recent 16-week study of experimentally induced hypogonadism in healthy men with graded testosterone add-back either with or without concomitant aromatase inhibitor treatment has in fact suggested that low oestradiol (but not low testosterone) may be responsible for the hypogonadism-associated increase in total body and intra-abdominal fat mass
    • Nathan Goodyear
       
      This does not fit with the research on receptors, specifically estrogen receptors.  These studies that the authors are referencing are looking at "circulating" levels, not tissue levels.
  • A smaller study with a similar experimental design found that acute testosterone withdrawal reduced insulin sensitivity independent of body weight, whereas oestradiol withdrawal had no effects
  • Obesity and dysglycaemia and associated comorbidities such as obstructive sleep apnoea (Hoyos et al. 2012b) are important contributors to the suppression of the HPT axis
  • This is supported by observational studies showing that weight gain and development of diabetes accelerate the age-related decline in testosterone
  • Weight loss can reactivate the hypothalamic–pituitary–testicular axis
  • The hypothalamic–pituitary–testicular axis remains responsive to treatment with aromatase inhibitors or selective oestrogen receptor modulators in obese men
  • Kisspeptin treatment increases LH secretion, pulse frequency and circulating testosterone levels in hypotestosteronaemic men with type 2 diabetes
  • Several observational and randomised studies reviewed in Grossmann (2011) have shown that weight loss, whether by diet or surgery, leads to substantial increases in testosterone, especially in morbidly obese men
  • This suggests that weight loss can lead to genuine reactivation of the gonadal axis by reversal of obesity-associated hypothalamic suppression
  • There is pre-clinical and observational evidence that chronic hyperglycaemia can inhibit the HPT axis
  • in those men in whom glycaemic control worsened, testosterone decreased
  • successful weight loss combined with optimisation of glycaemic control may be sufficient to normalise circulating testosterone levels in the majority of such men
  • weight loss, optimisation of diabetic control and assiduous care of comorbidities should remain the first-line approach.
    • Nathan Goodyear
       
      This obviously goes against marketing-based medicine
  • In part, the discrepant results may be due to the fact men in the Vigen cohort (Vigen et al. 2013) had a higher burden of comorbidities. Given that one (Basaria et al. 2010), but not all (Srinivas-Shankar et al. 2010), RCTs in men with a similarly high burden of comorbidities reported an increase in cardiovascular events in men randomised to testosterone treatment (see section on Testosterone therapy: potential risks below) (Basaria et al. 2010), testosterone should be used with caution in frail men with multiple comorbidities
  • The retrospective, non-randomised and non-blinded design of these studies (Shores et al. 2012, Muraleedharan et al. 2013, Vigen et al. 2013) leaves open the possibility for residual confounding and multiple other sources of bias. These have been elegantly summarised by Wu (2012).
  • Effects of testosterone therapy on body composition were metabolically favourable with modest decreases in fat mass and increases in lean body mass
  • This suggests that testosterone has limited effects on glucose metabolism in relatively healthy men with only mildly reduced testosterone.
  • it is conceivable that testosterone treatment may have more significant effects on glucose metabolism in uncontrolled diabetes, akin to what has generally been shown for conventional anti-diabetic medications.
  • the evidence from controlled studies show that testosterone therapy consistently reduces fat mass and increases lean body mass, but inconsistently decreases insulin resistance.
  • Interestingly, testosterone therapy does not consistently improve glucose metabolism despite a reduction in fat mass and an increase in lean mass
  • the majority of RCTs (recently reviewed in Ng Tang Fui et al. (2013a)) showed that testosterone therapy does not reduce visceral fat
    • Nathan Goodyear
       
      visceral and abdominal adiposity are biologically different and thus the risks associated with the two are different.
    • Nathan Goodyear
       
      yet low T is associated with an increase in visceral adiposity--confusing!
  • testosterone therapy decreases SHBG
  • testosterone is inversely associated with total cholesterol, LDL cholesterol and triglyceride (Tg) levels, but positively associated with HDL cholesterol levels, even if adjusted for confounders
  • Although observational studies show a consistent association of low testosterone with adverse lipid profiles, whether testosterone therapy exerts beneficial effects on lipid profiles is less clear
  • Whereas testosterone-induced decreases in total cholesterol, LDL cholesterol and Lpa are expected to reduce cardiovascular risk, testosterone also decreases the levels of the cardio-protective HDL cholesterol. Therefore, the net effect of testosterone therapy on cardiovascular risk remains uncertain.
  • data have not shown evidence that testosterone causes prostate cancer, or that it makes subclinical prostate cancer grow
  • compared with otherwise healthy young men with organic androgen deficiency, there may be increased risks in older, obese men because of comorbidities and of decreased testosterone clearance
  • recent evidence that fat accumulation may be oestradiol-, rather than testosterone-dependent
Nathan Goodyear

Tips for learners of evidence-based medicine: 1. Relative risk reduction, absolute risk... - 0 views

  •  
    Statistics
Nathan Goodyear

Biological functions and clinical implications of oestrogen receptors alfa and beta in ... - 0 views

  • ERα-positive cells respond to E2 with increased proliferation
  • ERβ was artificially introduced into these cells, E2-induced proliferation was inhibited
  • The proliferative response to E2 seems to be determined by the ratio of ERα/ERβ. The functions of ERβ in the breast are probably related to its antiproliferative as well as its prodifferentiative functions
  • ...7 more annotations...
  • The risk of developing PC seems to be related to the diet
  • In the human prostate, ERβ is expressed in the basal epithelial cells and AR in the luminal epithelium.
  • For many years, DHT was considered to be the main hormone guiding prostate development and function. However, the idea was challenged when in 2001 Mahendroo et al. showed that mice in which both forms of 5α-reductase had been inactivated, have a normal functional prostate [50]. The question was then raised as to what is the real function of DHT in the prostate. In 1989 we hypothesized that DHT is a precursor of an oestrogen, 5α-androstane-3β,17β-diol (3β-Adiol) and that physiological levels of an oestrogen could be produced in the total absence of aromatase [51]. We later demonstrated that 3β-Adiol is abundant in the prostate and is a good natural ligand for ERβ
  • The overall effect of oestrogens in the immune system is determined by a balance between ERα and ERβ signalling
  • The hypothesis of our group is that ERβ plays an important role in regulating the differentiation of pluripotent haematopoietic progenitor cells whereas ERα induces proliferation
  • In tissues and cell lines of mammary epithelium for example, it has been noticed that E2 in the presence of ERα elicits proliferation, but in the presence of ERβ it inhibits proliferation
  • ERα and ERβ have distinctive tissue distributions and to the great surprise of endocrinologists [7] many tissues previously thought to be ‘oestrogen-insensitive tissues’ were found to be ERβ positive and oestrogen sensitive. The most notable of the ERα-negative ERβ-abundant tissues were the epithelium of the rodent ventral prostate [8], the granulosa cells of the ovaries [9] and the parenchyma of the lungs
  •  
    Awesome article discusses the different balance of ER alpha and ER beta and the effects on tissue as it relates to proliferation versus differentiation.  This has clear implications in disease.  Physicians prescribing hormones without a knowledge and understanding of this are only causing potential harm to their clients.
Nathan Goodyear

Urinary estrogens and estrogen metabolites and subsequent risk of breast cancer among p... - 0 views

  • While the catechol estrogens have estrogenic and genotoxic potential, the methylated catechol estrogens, which are catechol estrogens with one hydroxyl group methylated, have been hypothesized to lower risk of breast cancer.
  • Despite the estrogenic and genotoxic potential of many of the EM, we only observed a significantly increased breast cancer risk with one EM, 17-epiestriol, which has particularly strong estrogenic activity and binds to both ERα and ERβ with an affinity comparable to estradiol
  • We did not observe reduced risk for higher concentrations of 2-pathway EM relative to 16-pathway EM, nor did we observe a consistent benefit of higher concentrations of methylated catechol EM compared with catechol EM.
  • ...4 more annotations...
  • EM also can be genotoxic, but the individual EM vary in their ability to induce DNA damage
  • Catechol estrogens can be oxidized into quinones and induce DNA damage directly through the formation of DNA adducts, or indirectly via redox cycling and generation of reactive oxygen species
  • the oxidized forms of the catechol estrogens differ in their ability to damage DNA through adducts, with oxidized 2-catechols forming stable and reversible DNA adducts and oxidized 4-catechols forming unstable adducts, which lead to depurination and mutations
  • 2- and 4-catechols have been shown to produce reactive oxygen species and induce oxidative DNA damage (46). These catechols also induce neoplastic transformation in ER-cells, and thus act independently from the ER
  •  
    Estrogen metabolites.
Nathan Goodyear

Stuck at the bench: Potential natural neuroprotective compounds for concussion - 0 views

  • Long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are highly enriched in neuronal synaptosomal plasma membranes and vesicles
  • The predominant CNS polyunsaturated fatty acid is DHA
  • effective supplementation and/or increased ingestion of dietary sources rich in EPA and DHA, such as cold-water fish species and fish oil, may help improve a multitude of neuronal functions, including long-term potentiation and cognition.
  • ...45 more annotations...
  • multiple preclinical studies have suggested that DHA and/or EPA supplementation may have potential benefit through a multitude of diverse, but complementary mechanisms
  • pre-injury dietary supplementation with fish oil effectively reduces post-traumatic elevations in protein oxidation
  • The benefits of pre-traumatic DHA supplementation have not only been independently confirmed,[150] but DHA supplementation has been shown to significantly reduce the number of swollen, disconnected and injured axons when administered following traumatic brain injury.
  • DHA has provided neuroprotection in experimental models of both focal and diffuse traumatic brain injury
  • potential mechanisms of neuroprotection, in addition to DHA and EPA's well-established anti-oxidant and anti-inflammatory properties
  • Despite abundant laboratory evidence supporting its neuroprotective effects in experimental models, the role of dietary DHA and/or EPA supplementation in human neurological diseases remains uncertain
  • Several population-based, observational studies have suggested that increased dietary fish and/or omega-3 polyunsaturated fatty acid consumption may reduce risk for ischemic stroke in several populations
  • Randomized control trials have also demonstrated significant reductions in ischemic stroke recurrence,[217] relative risk for ischemic stroke,[2] and reduced incidence of both symptomatic vasospasm and mortality following subarachnoid hemorrhage
  • Clinical trials in Alzheimer's disease have also been largely ineffective
  • The clinical evidence thus far appears equivocal
  • curcumin has gained much attention from Western researchers for its potential therapeutic benefits in large part due to its potent anti-oxidant[128,194,236] and anti-inflammatory properties
  • Curcumin is highly lipophilic and crosses the blood-brain barrier enabling it to exert a multitude of different established neuroprotective effects
  • in the context of TBI, a series of preclinical studies have suggested that pre-traumatic and post-traumatic curcumin supplementation may bolster the brain's resilience to injury and serve as a valuable therapeutic option
  • Curcumin may confer significant neuroprotection because of its ability to act on multiple deleterious post-traumatic, molecular cascades
  • studies demonstrated that both pre- and post-traumatic curcumin administration resulted in a significant reduction of neuroinflammation via inhibition of the pro-inflammatory molecules interleukin 1β and nuclear factor kappa B (NFκB)
  • no human studies have been conducted with respect to the effects of curcumin administration on the treatment of TBI, subarachnoid or intracranial hemorrhage, epilepsy or stroke
  • studies have demonstrated that resveratrol treatment reduces brain edema and lesion volume, as well as improves neurobehavioral functional performance following TBI
  • green tea consumption or supplementation with its derivatives may bolster cognitive function acutely and may slow cognitive decline
  • At least one population based study, though, did demonstrate that increased green tea consumption was associated with a reduced risk for Parkinson's disease independent of total caffeine intake
  • a randomized, placebo-controlled trial demonstrated that administration of green tea extract and L-theanine, over 16 weeks of treatment, improved indices of memory and brain theta wave activity on electroencephalography, suggesting greater cognitive alertness
  • Other animal studies have also demonstrated that theanine, another important component of green tea extract, exerts a multitude of neuroprotective benefits in experimental models of ischemic stroke,[63,97] Alzheimer's disease,[109] and Parkinson's disease
  • Theanine, like EGCG, contains multiple mechanisms of neuroprotective action including protection from excitotoxic injury[97] and inhibition of inflammation
  • potent anti-oxidant EGCG which is capable of crossing the blood-nerve and blood-brain barrier,
  • Epigallocatechin-3-gallate also displays neuroprotective properties
  • More recent research has suggested that vitamin D supplementation and the prevention of vitamin D deficiency may serve valuable roles in the treatment of TBI and may represents an important and necessary neuroprotective adjuvant for post-TBI progesterone therapy
  • Progesterone is one of the few agents to demonstrate significant reductions in mortality following TBI in human patients in preliminary trials
  • in vitro and in vivo studies have suggested that vitamin D supplementation with progesterone administration may significantly enhance neuroprotection
  • Vitamin D deficiency may increase inflammatory damage and behavioral impairment following experimental injury and attenuate the protective effects of post-traumatic progesterone treatment.[37]
  • emerging evidence has suggested that daily intravenous administration of vitamin E following TBI significantly decreases mortality and improves patient outcomes
  • high dose vitamin C administration following injury stabilized or reduced peri-lesional edema and infarction in the majority of patients receiving post-injury treatment
  • it has been speculated that combined vitamin C and E therapy may potentiate CNS anti-oxidation and act synergistically with regards to neuroprotection
  • one prospective human study has found that combined intake of vitamin C and E displays significant treatment interaction and reduces the risk of stroke
  • Pycnogenol has demonstrated the ability to slow or reduce the pathological processes associated with Alzheimer's disease
  • Pcynogenol administration, in a clinical study of elderly patients, led to improved cognition and reductions in markers of lipid peroxidase
  • One other point of consideration is that in neurodegenerative disease states like Alzheimer's disease and Parkinson's disease, where there are high levels of reactive oxygen species generation, vitamin E can tend to become oxidized itself. For maximal effectiveness and to maintain its anti-oxidant capacity, vitamin E must be given in conjunction with other anti-oxidants like vitamin C or flavonoids
  • These various factors might account for the null effects of alpha-tocopherol supplementation in patients with MCI and Alzheimer's disease
  • preliminary results obtained in a pediatric population have suggested that post-traumatic oral creatine administration (0.4 g/kg) given within four hours of traumatic brain injury and then daily thereafter, may improve both acute and long-term outcomes
  • Acutely, post-traumatic creatine administration seemed to reduce duration of post-traumatic amnesia, length of time spent in the intensive care unit, and duration of intubation
  • At three and six months post-injury, subjects in the creatine treatment group demonstrated improvement on indices of self care, communication abilities, locomotion, sociability, personality or behavior and cognitive function when compared to untreated controls
  • patients in the creatine-treatment group were less likely to experience headaches, dizziness and fatigue over six months of follow-up
  • CNS creatine is derived from both its local biosynthesis from the essential amino acids methionine, glycine and arginine
  • Studies of patients with CNS creatine deficiency and/or murine models with genetic ablation of creatine kinase have consistently demonstrated significant neurological impairment in the absence of proper creatine, phosphocreatine, or creatine kinase function; thus highlighting its functional importance
  • chronic dosing may partially reverse neurological impairments in human CNS creatine deficiency syndromes
  • Several studies have suggested that creatine supplementation may also reduce oxidative DNA damage and brain glutamate levels in Huntington disease patients
  • Another study highlighted that creatine supplementation marginally improved indices of mood and reduced the need for increased dopaminergic therapy in patients with Parkinson's disease
  •  
    great review of natural therapies in the treatment of concussions
Nathan Goodyear

Inborn-like errors of metabolism are determinants of breast cancer risk, clinical respo... - 0 views

  • We now recognize that human cancers evolve in an environment of metabolic stress. Rapidly proliferating tumor cells deprived of adequate oxygen, nutrients, hormones and growth factors up-regulate pathways that address these deficiencies to overcome hypoxia (HIF), vascular insufficiency (VEGF), growth factor deprivation (EGFR, HER2) and the loss of hormonal support (ER, PR, AR) all to enhance survival and proliferation
  • RAS, PI3K, TP53 and MYC
  • The results suggest that breast cancer could be preceded by systemic subclinical disturbances in glucose-insulin homeostasis characterized by mild, likely asymptomatic, IEM-like biochemical changes
  • ...16 more annotations...
  • The process would include variable periods of hyperinsulinemia with the consequent systemic MYC activation of glycolysis, glutaminolysis, structural lipidogenesis and further exacerbation of hypoglycemia, the result of MYC's known role as an inhibitor of liver gluconeogenesis
  • The metabolic changes we describe in breast cancer arise in concert with IEM-like changes in oxidative phosphorylation as detected by increased values of the ratio lactate/pyruvate (Supplementary Table 2A, 2B) characteristic of Ox/Phos deficiency [25]. In our study, 76% (70/92) of the European breast cancer patients had lactate/pyruvate ratios values higher than the normal value of 25.8
  • four-fold higher frequency of cancer (including breast) in patients with energy metabolism disorders
  • growing recognition that cancer cells differ from their normal counterparts in their use of nutrients, synthesis of biomolecules and generation of energy
  • glutamine concentrations in the cancer patients were reduced to nearly 1/8 of the levels observed in the normal population
  • blood concentrations of aspartate (p = 1.7e-67, FDR = 8.3e-67) (Figure ​(Figure1E)1E) and glutamate (p = 6.4e-96, FDR = 6.2e-95) (Figure ​(Figure1F)1F) were nearly 10 fold higher than the normal ranges of 0–5 μM/L and 40 μM/L, respectively
  • glutamine consumption associated with parallel increases in glutamate and aspartate (Figure ​(Figure1A1A red arrows) is considered a hallmark of MYC-driven “glutaminolysis”
  • Gln/Glu ratio inversely correlates with i- late stage metabolic syndrome and with ii- increased chance of death
  • changes in glutamine consumption, reflected by the Gln/Glu ratio could provide a metabolic link between breast cancer initiation and diabetes, reflective of a systemic metabolic reprogramming from glucose to glutamine as the preferred source of precursors for biosynthetic reactions and cellular energy
  • lower Gln/Glu ratios inversely correlated with insulin resistance and the risk of diabetes
  • the metabolic dependencies of cancer characterized by excessive glycolysis, glutaminolysis and malignant lipidogenesis, previously considered a consequence of local tumor DNA aberration [23] could, instead, represent a systemic biochemical aberration that predates and very likely promotes tumorigenesis
  • these metabolic disturbances would be expected to remain extant after therapeutic interventions
  • accumulation of very long chain acylcarnitines such as C14:1-OH (p = 0.0, FDR = 0.0), C16 (p = 0.0, FDR = 0.0), C18 (p = 0.0, FDR = 0.0) and C18:1 (p = 1.73e-322, FDR = 1.16-321) and lipids containing VLCFA (lysoPC a C28:0) (p = 1.14-e95, FDR = 1.65e-95) in the blood of breast and colon cancer patients
  • Among the most powerful metabolic equations for MYC-activation is that which links the widely used MYC-driven desaturation marker ratio of SFA/MUFA to the MYC glutaminolysis-associated ratio of (Asp/Gln)
  • liver dysfunction shares many features with both IEM and cancer suggesting a role for hepatic dysfunction in carcinogenesis
  • cancer “conscripts” the human genome to meet its needs under conditions of systemic metabolic stress
  •  
    Breast cancer is a metabolic disease.  Now, where have I heard that cancer is a metabolic disease?
Nathan Goodyear

Bisphenol A Promotes Human Prostate Stem-Progenitor Cell Self-Renewal and Increases In ... - 0 views

  • these findings show that estrogen stimulates human prostate epithelial stem cell self-renewal and progenitor cell amplification (prostasphere size), with the greatest effects observed at lower E2 doses.
  • Similar to E2, BPA increased prostasphere number and size with significant and maximal effects observed at 10 nM BPA
  • Taken together, these results provide strong evidence that, similar to E2, BPA increases stem cell self-renewal and progenitor amplification in normal human prostate epithelial cells
  • ...13 more annotations...
  • these findings provide further support that E2 and BPA maintain the stem-like state within the normal prostate epithelial cell population
  • Our previous findings demonstrated that normal prostate stem-progenitor cells within the prostaspheres expressed ERα and ERβ, implicating them as direct targets for E2 and BPA action
  • p-Akt and p-Erk, well established downstream targets of membrane-associated ERs
  • BPA and E2 had equimolar capacity for activation of these rapid signaling pathways in human prostaspheres, thus identifying a dynamic and robust signaling pathway initiated by low-dose BPA exposure in prostate stem-progenitor cells.
  • these findings indicate that both rapid membrane-initiated estrogen action and genomic ER signaling pathways are operative in human prostate progenitor cells.
  • these results document the fact that levels of bioactive BPA in the present study are similar to levels found in human umbilical cord blood and newborns in the general population
  • the present findings identify for the first time that in vivo exposure of the human prostate epithelium to low doses of BPA significantly increases the susceptibility of the human prostate epithelium to hormonal carcinogenesis.
  • The current study provides clear evidence that, similar to E2, normal human prostate stem and progenitor cells are direct targets for BPA action
  • Both hormones increased stem-like cell numbers in primary prostate epithelial cultures in a dose-dependent manner and augmented the number and size of 3-D cultured prostaspheres, markers of stem cell self-renewal and progenitor cell proliferation, respectively
  • signaling pathways engaged by estrogens through these separate receptors are multiple and complex, including both membrane-initiated signaling and genomic activation via ER transcriptional activity
  • Estrogen action is mediated by ERα and ERβ
  • the current results indicate that developmental exposure to BPA, at doses routinely found in humans, significantly increases the cancer risk in human prostate epithelium in response to elevated estrogen levels in an androgen-supported milieu. Because relative estrogen levels rise in aging men, we suggest that humans may be susceptible to BPA-driven prostate disease in a manner similar to that in the rodent models.
  • We propose that early-life perturbations in estrogen signaling including inappropriate exposure to BPA have the potential to amplify and modify the stem-progenitor cell populations within the human prostate gland and, in so doing, alter the normal homeostatic mechanisms that maintain a growth neutral state throughout life
  •  
    Bisphenol A exposure in utero found to increase prostate cancer risk later in life.  This exposure occurred at typical life exposure levels as found in umbilical cord blood sampling,  This occurred through stem cell self-renewal and progenitor amplification
Nathan Goodyear

Lipoprotein(a) as a cardiovascular risk factor: current status - 0 views

  • Lipoprotein(a) is a plasma lipoprotein consisting of a cholesterol-rich LDL particle with one molecule of apolipoprotein B100 and an additional protein, apolipoprotein(a)
  • Elevated Lp(a) levels can potentially increase the risk of CVD (i) via prothrombotic/anti-fibrinolytic effects as apolipoprotein(a) possesses structural homology with plasminogen and plasmin but has no fibrinolytic activity and (ii) via accelerated atherogenesis as a result of intimal deposition of Lp(a) cholesterol, or both
  • evidence suggests that apolipoprotein(a) adducts extracellularly and covalently to apolipoprotein B100-containing lipoproteins, predominantly LDL
  • ...2 more annotations...
  • Lp(a) is relatively refractory to both lifestyle and drug intervention.
  • Other agents reported to decrease Lp(a) to a minor degree (<10%) include aspirin, l-carnitine, ascorbic acid combined with l-lysine, calcium antagonists, angiotensin-converting enzyme inhibitors, androgens, oestrogen, and its replacements (e.g. tibolone), anti-estrogens (e.g. tamoxifen), and thyroxine replacement in hypothyroid subjects
  •  
    full article on the previously posted abstract on Lp(a).  
1 - 20 of 37 Next ›
Showing 20 items per page