Skip to main content

Home/ Dr. Goodyear/ Group items tagged abdominal fat

Rss Feed Group items tagged

fitspresso

https://www.thefastleanpro.us/ - 0 views

  •  
    Fast Lean Pro™ (official) | weight lose Formula thefastleanpro.us · by Fast Lean Pro Fast Lean Pro Only $49/Bottle Limited Time Offer! Fast Lean Pro Special Deal + Special 51% Discount Save $300 + 180 Days Money Back Guarantee FastLeanPro The #1 Solution To natural metabolism booster helps you lose weight quickly without starving yourself. Fast Lean Pro is a natural powder supplement for weight loss that has recently been developed by Japanese scientists. Regular Price: $99/per bottle Only for: $49/per bottle What Is Fast Lean Pro? Fast Lean Pro is a powdered dietary powdery supplement designed to aid in weight loss. It contains a unique combination of ingredients that are believed to activate the body's "fasting switch" to optimize results. This product focuses not only on weight loss but also on promoting cellular rejuvenation, fasting, and a healthy metabolism. The concept behind Fast Lean Pro is that incorporating fasting into one's lifestyle can lead to positive outcomes irrespective of individual food choices and eating habits. To comprehend the mechanism of the Fast Lean Pro process, it is necessary to delve into its specific details. One of the few weight loss pills on the market that contains Fibersol is Fast Lean Pro. This safe, specialized fiber adds bulk to its weight when combined with water, curbing your appetite before it throws off your meal plan. If you're trying to lose weight or curb your appetite, Fast Lean Pro can help. Supporting substances such as niacin and chromium contribute to this. The body can further benefit from these nutrients, such as through improved metabolic regulation. Fast lean Pro is non-GMO, vegan friendly, and contains no artificial ingredients or stimulants. Fast Lean Pro is a weight loss product that promotes the body's natural self-feeding process. The body naturally removes old, damaged cells through a process known as autophagy to encourage cell regeneration and repair. Recent studies by a group
fitspresso

LeanBiome™ (Official) | Get Save UpTo $540 Today Only! - 0 views

  •  
    LeanBiome™ (Official) | Get Save UpTo $540 Today Only! usleanbiome.com LeanBiome™ Hurry Up! Offer Expires in: 00 HOUR 29 MINUTE 59 SECOND LeanBiome Attention! Get Special 84% Discount Today Faster fat burning and weight loss Healthy cholesterol and sugar levels Higher energy levels Regular price: $129 Only for: 39$ What Is LeanBiome? LeanBiome Lean for Good is a weight loss dietary supplement derived from scientifically researched ingredients and comprehensively developed to help people achieve sustainable weight control. The formula comes in a capsule format that is easy to take and is made with natural ingredients from plants and other sources to achieve its goals. The main ingredient in LeanBiome is piperine, which has been found to affect the body's ability to absorb micronutrients and other compounds more effectively. LeanBiome is a dietary supplement that claims to help weight management. It contains 100% natural ingredients that support healthy weight loss. It does not interfere with any natural process making it safe for use. It ranks among the top weight loss supplements that claim to provide a permanent solution. LeanBiome is made by a company named Lean for Good. It is made with natural and research-backed ingredients that help you lose excess fat without hassles. It is sold in capsule form. The company assures the composition is GMO, gluten, and soy-free. As for manufacturing standards, you need not fret. The company makes the supplement in a facility certified by the FDA. How Does LeanBiome Work? The starting period of the LeanBiome program includes a detoxification process that effectively removes any accumulated ree radicals, toxins, fand oxidative stress. This cleansing enables improved blood circulation, setting the stage for the body to initiate its own fat-burning mechanisms. To enhance metabolic activity, introducing the lean bacteria contained in LeanBiome to your gut microbiome is a beneficial approach. This activation triggers r
Nathan Goodyear

The Effect of Abdominal Exercise on Abdominal Fat. [J Strength Cond Res. 2011] - PubMed... - 0 views

  • Six weeks of abdominal exercise training alone was not sufficient to reduce abdominal subcutaneous fat and other measures of body composition
  •  
    Abdominal exercise doesn't decrease abdominal fat in 6 week study.
wheelchairindia9

Tynor Rib Belt - 0 views

  •  
    Tynor Rib Belt Rib belt is applied to the thoracic and upper abdominal region to compress and bind the rib cage during rib fractures and postoperative care, while allowing sufficient flexibility for comfortable breathing. Extra porous. With splinting pad. No buckling or rolling over. Controlled compression. Tynor Rib Belt Features Light weight and thin construction, does not peep through the clothes improves patient compliance. Extra porous webbing improves ventilation and comfort of the patient. Broad hook and loop tape panel offers better holding and size adjust ability. Optimal compression, tones up abdominal muscles following surgery, CS or delivery. Special nylon reeves prevent rolling over of belt. Tynor Rib Belt Measurements Measure circumference around the chest.
Nathan Goodyear

Lowered testosterone in male obesity: Mechanisms, morbidity and management Tang Fui MN,... - 0 views

  • The number of overweight people is expected to increase from 937 million in 2005 to 1.35 billion in 2030
  • Similarly the number of obese people is projected to increase from 396 million in 2005 to 573 million in 2030
  • By 2030, China alone is predicted to have more overweight men and women than the traditional market economies combined
  • ...37 more annotations...
  • diacylglycerol O-acyltransferase 2 (DGAT2), mechanistically implicated in this differential storage, [10] is regulated by dihydrotestosterone, [11] suggesting a potential role for androgens to influence the genetic predisposition to either the MHO or MONW phenotype.
  • bariatric surgery achieves 10%-30% long-term weight loss in controlled studies
  • The fact that obese men have lower testosterone compared to lean men has been recognized for more than 30 years
  • Reductions in testosterone levels correlate with the severity of obesity and men
  • epidemiological data suggest that the single most powerful predictor of low testosterone is obesity, and that obesity is a major contributor of the age-associated decline in testosterone levels.
  • healthy ageing by itself is uncommonly associated with marked reductions in testosterone levels
  • obesity blunts this LH rise, obesity leads to hypothalamic-pituitary suppression irrespective of age which cannot be compensated for by physiological mechanisms
  • Reductions in total testosterone levels are largely a consequence of reductions in sex hormone binding globulin (SHBG) due to obesity-associated hyperinsulinemia
  • although controversial, measurement of free testosterone levels may provide a more accurate assessment of androgen status than the (usually preferred) measurement of total testosterone in situations where SHBG levels are outside the reference range
  • SHBG increases with age
  • marked obesity however is associated with an unequivocal reduction of free testosterone levels, where LH and follicle stimulating hormone (FSH) levels are usually low or inappropriately normal, suggesting that the dominant suppression occurs at the hypothalamic-pituitary level
  • adipose tissue, especially when in the inflamed, insulin-resistant state, expresses aromatase which converts testosterone to estradiol (E 2 ). Adipose E 2 in turn may feedback negatively to decrease pituitary gonadotropin secretion
  • diabetic obesity is associated with decreases in circulatory E 2
  • In addition to E 2 , increased visceral fat also releases increased amounts of pro-inflammatory cytokines, insulin and leptin; all of which may inhibit the activity of the HPT axis at multiple levels
  • In the prospective Massachusetts Male Aging Study (MMAS), moving from a non-obese to an obese state resulted in a decline of testosterone levels
  • weight loss, whether by diet or surgery, increases testosterone levels proportional to the amount of weight lost
  • fat is androgen-responsive
  • low testosterone may augment the effects of a hypercaloric diet
  • In human male ex vivo adipose tissue, testosterone decreased adipocyte differentiation by 50%.
  • Testosterone enhances catecholamine-induced lipolysis in vitro and reduces lipoprotein lipase activity and triglyceride uptake in human abdominal adipose tissue in vivo
  • in men with prostate cancer receiving 12 months of androgen deprivation therapy, fat mass increased by 3.4 kg and abdominal VAT by 22%, with the majority of these changes established within 6 months
  • severe sex steroid deficiency can increase fat mass rapidly
  • bidirectional relationship between testosterone and obesity
  • increasing body fat suppresses the HPT axis by multiple mechanisms [30] via increased secretion of pro-inflammatory cytokines, insulin resistance and diabetes; [19],[44] while on the other hand low testosterone promotes further accumulation of total and visceral fat mass, thereby exacerbating the gonadotropin inhibition
  • androgens may play a more significant role in VAT than SAT
  • men undergoing androgen depletion for prostate cancer show more marked increases in visceral compared to subcutaneous fat following treatment
    • Nathan Goodyear
       
      Interesting: low T increases VAT, yet T therapy does not reduce VAT, yet T therapy reduces SAT.
  • irisin, derived from muscle, induces brown fat-like properties in rodent white fat
  • androgens can act via the PPARg-pathway [37] which is implicated in the differentiation of precursor fat cells to the energy-consuming phenotype
  • low testosterone may compound the effect of increasing fat mass by making it more difficult for obese men to lose weight via exercise
  • pro-inflammatory cytokines released by adipose tissue may contribute to loss of muscle mass and function, leading to inactivity and further weight gain in a vicious cycle
  • Sarcopenic obesity, a phenotype recapitulated in men receiving ADT for prostate cancer, [55] may not only be associated with functional limitations, but also aggravate the metabolic risks of obesity;
  • observational evidence associating higher endogenous testosterone with reduced loss of muscle mass and crude measures of muscle function in men losing weight
  • genuine reactivation of the HPT axis in obese men requires more substantial weight-loss
  • A number of intervention studies have confirmed that both diet- and surgically-induced weight losses are associated with increased testosterone, with the rise in testosterone generally proportional to the amount of weight lost
  • men, regardless of obesity level, can benefit from the effect of weight loss.
  • inconsistent effect of testosterone on VAT
  •  
    to be read
Nathan Goodyear

Fructose decreases physical activity and increases body fat without affecting hippocamp... - 0 views

  • the fructose animals gained significantly more weight than the glucose animals
  • The average liver mass of mice in the fructose treatment group was 20% heavier than for mice in the glucose group
  • The fat pads of mice consuming the fructose diet were 69% heavier than the fat pads of animals consuming the glucose diet
  • ...12 more annotations...
  • there are many studies showing that consumption of fructose in comparison to other monosaccharides results in increased de novo lipogenesis, dyslipidemia, insulin resistance, BW6, 7 and, most recently, impaired cognitive function
  • in the present study, the intake of fructose by mice was more similar to that of typical human consumption in comparison to previous studies
  • prolonged consumption of diets containing fructose (11 weeks) increased BW and body fat deposition
  • studies in humans confirm that fructose, but not glucose (when provided as 25% of energy requirements), in the context of an energy-balanced diet increases de novo lipogenesis and visceral adiposity along with dyslipidemia, decreases insulin sensitivity10, 12 and decreases in fat oxidation
  • we hypothesize that fructose may reduce voluntary energy expenditure in terms of physical activity.
  • significant reduction (~20%) in physical activity in the fructose-fed animals in comparison to glucose
  • a recent study reported that ingestion of fructose (25% energy intake, 10 weeks) in human volunteers also resulted in reduced energy expenditure in relation to a diet with the same glucose dose
  • There is certainly evidence to suggest that, for example, exercise is able to prevent dyslipidemia in healthy subjects fed a weight-maintenance high-fructose diet (30%)54, which strongly suggests a protective role of physical activity in metabolic regulation.
  • the potential negative effects of fructose in brain and cognitive function have been investigated, with a series of studies showing cognitive deficits in spatial memory and learning in adolescent and adult animals following access to a high fructose diet
  • access to both fructose and sucrose, but not glucose, results in a 40% reduction in hippocampal neurogenesis
  • Collectively these studies seem to suggest that fructose consumption can have a considerable impact on hippocampal function and learning, which is in direct contrast with what we observed.
  • the impact of fructose is apparent only in BW, liver mass and body fat, but not in cognitive measures or rates of neurogenesis
  •  
    animal study finds that fructose increased liver mass, abdominal fat and decreased physical activity when compared to glucose.  The study groups were iso caloric, but one group was fed 18% fructose and the other 18% glucose.
Nathan Goodyear

A Lower-Carbohydrate, Higher-Fat Diet Reduces Abdominal and Intermuscular Fat and Incre... - 0 views

  •  
    Diet higher in fats and lower in carbs associated with a reduction in weight, fat mass, improved insulin sensitivity, lowered fasting glucose, and a reduction in TNF-alpha
Nathan Goodyear

Testosterone: a metabolic hormone in health and disease - 0 views

  • E2 and the inflammatory adipocytokines tumour necrosis factor α (TNFα) and interleukin 6 (IL6) inhibit hypothalamic production of GNRH and subsequent release of LH and FSH from the pituitary
  • Leptin, an adipose-derived hormone with a well-known role in regulation of body weight and food intake, also induces LH release under normal conditions via stimulation of hypothalamic GNRH neurons
  • In human obesity, whereby adipocytes are producing elevated amounts of leptin, the hypothalamic–pituitary axis becomes leptin resistant
  • ...39 more annotations...
  • there is evidence from animal studies that leptin resistance, inflammation and oestrogens inhibit neuronal release of kisspeptin
  • Beyond hypothalamic action, leptin also directly inhibits the stimulatory action of gonadotrophins on the Leydig cells of the testis to decrease testosterone production; therefore, elevated leptin levels in obesity may further diminish androgen status
  • Prostate cancer patients with pre-existing T2DM show a further deterioration of insulin resistance and worsening of diabetic control following ADT
  • ADT for the treatment of prostatic carcinoma in some large epidemiological studies has been shown to be associated with an increased risk of developing MetS and T2DM
  • Non-diabetic men undergoing androgen ablation show increased occurrence of new-onset diabetes and demonstrate elevated insulin levels and worsening glycaemic control
  • increasing insulin resistance assessed by glucose tolerence test and hypoglycemic clamp was shown to be associated with a decrease in Leydig cell testosterone secretion in men
  • The response to testosterone replacement of insulin sensitivity is in part dependent on the androgen receptor (AR)
  • Low levels of testosterone have been associated with an atherogenic lipoprotein profile, characterised by high LDL and triglyceride levels
  • a positive correlation between serum testosterone and HDL has been reported in both healthy and diabetic men
  • up to 70% of the body's insulin sensitivity is accounted for by muscle
  • Testosterone deficiency is associated with a decrease in lean body mass
  • relative muscle mass is inversely associated with insulin resistance and pre-diabetes
  • GLUT4 and IRS1 were up-regulated in cultured adipocytes and skeletal muscle cells following testosterone treatment at low dose and short-time incubations
  • local conversion of testosterone to DHT and activation of AR may be important for glucose uptake
  • inverse correlation between testosterone levels and adverse mitochondrial function
  • orchidectomy of male Wistar rats and associated testosterone deficiency induced increased absorption of glucose from the intestine
  • (Kelley & Mandarino 2000). Frederiksen et al. (2012a) recently demonstrated that testosterone may influence components of metabolic flexibility as 6 months of transdermal testosterone treatment in aging men with low–normal bioavailable testosterone levels increased lipid oxidation and decreased glucose oxidation during the fasting state.
  • Decreased lipid oxidation coupled with diet-induced chronic FA elevation is linked to increased accumulation of myocellular lipid, in particular diacylglycerol and/or ceramide in myocytes
  • In the Chang human adult liver cell line, insulin receptor mRNA expression was significantly increased following exposure to testosterone
  • Testosterone deprivation via castration of male rats led to decreased expression of Glut4 in liver tissue, as well as adipose and muscle
  • oestrogen was found to increase the expression of insulin receptors in insulin-resistant HepG2 human liver cell line
  • FFA decrease hepatic insulin binding and extraction, increase hepatic gluconeogenesis and increase hepatic insulin resistance.
  • Only one, albeit large-scale, population-based cross-sectional study reports an association between low serum testosterone concentrations and hepatic steatosis in men (Völzke et al. 2010)
  • This suggests that testosterone may confer some of its beneficial effects on hepatic lipid metabolism via conversion to E2 and subsequent activation of ERα.
  • hypogonadal men exhibiting a reduced lean body mass and an increased fat mass, abdominal or central obesity
  • visceral adipose tissue was inversely correlated with bioavailable testosterone
  • there was no change in visceral fat mass in aged men with low testosterone levels following 6 months of transdermal TRT, yet subcutaneous fat mass was significantly reduced in both the thigh and the abdominal areas when analysed by MRI (Frederiksen et al. 2012b)
  • ADT of prostate cancer patients increased both visceral and subcutaneous abdominal fat in a 12-month prospective observational study (Hamilton et al. 2011)
  • Catecholamines are the major lipolysis regulating hormones in man and regulate adipocyte lipolysis through activation of adenylate cyclase to produce cAMP
  • deficiency of androgen action decreases lipolysis and is primarily responsible for the induction of obesity (Yanase et al. 2008)
  • may be some regional differences in the action of testosterone on subcutaneous and visceral adipose function
  • proinflammatory adipocytokines IL1, IL6 and TNFα are increased in obesity with a downstream effect that stimulates liver production of CRP
  • observational evidence suggests that IL1β, IL6, TNFα and CRP are inversely associated with serum testosterone levels in patients
  • TRT has been reported to significantly reduce these proinflammatory mediators
  • This suggests a role for AR in the metabolic actions of testosterone on fat accumulation and adipose tissue inflammatory response
  • testosterone treatment may have beneficial effects on preventing the pathogenesis of obesity by inhibiting adipogenesis, decreasing triglyceride uptake and storage, increasing lipolysis, influencing lipoprotein content and function and may directly reduce fat mass and increase muscle mass
  • Early interventional studies suggest that TRT in hypogonadal men with T2DM and/or MetS has beneficial effects on lipids, adiposity and parameters of insulin sensitivity and glucose control
  • Evidence that whole-body insulin sensitivity is reduced in testosterone deficiency and increases with testosterone replacement supports a key role of this hormone in glucose and lipid metabolism
  • Impaired insulin sensitivity in these three tissues is characterised by defects in insulin-stimulated glucose transport activity, in particular into skeletal muscle, impaired insulin-mediated inhibition of hepatic glucose production and stimulation of glycogen synthesis in liver, and a reduced ability of insulin to inhibit lipolysis in adipose tissue
  •  
    Great review of the Hypogonadal-obesity-adipocytokine hypothesis.
Nathan Goodyear

Growth hormone treatment of abdomina... [J Clin Endocrinol Metab. 1997] - PubMed - NCBI - 0 views

  •  
    Growth hormone treatment of abdominally obese men reduces abdominal fat mass, improves glucose and lipoprotein metabolism, and reduces diastolic blood pressure.
Nathan Goodyear

Testosterone and glucose metabolism in men: current concepts and controversies - 0 views

    • Nathan Goodyear
       
      80% of E2 production in men, that will cause low T in men, comes from SQ adiposity.  This leads to increase in visceral adiposity.
  • Only 5% of men with type 2 diabetes have elevated LH levels (Dhindsa et al. 2004, 2011). This is consistent with recent findings that the inhibition of the gonadal axis predominantly takes place in the hypothalamus, especially with more severe obesity
  • Metabolic factors, such as leptin, insulin (via deficiency or resistance) and ghrelin are believed to act at the ventromedial and arcuate nuclei of the hypothalamus to inhibit gonadotropin-releasing hormone (GNRH) secretion
  • ...32 more annotations...
  • kisspeptin has emerged as one of the most potent secretagogues of GNRH release
  • Consistent with the hypothesis that obesity-mediated inhibition of kisspeptin signalling contributes to the suppression of the HPT axis, infusion of a bioactive kisspeptin fragment has been recently shown to robustly increase LH pulsatility, LH levels and circulating testosterone in hypotestosteronaemic men with type 2 diabetes
  • Figure 4
  • Interestingly, a recent 16-week study of experimentally induced hypogonadism in healthy men with graded testosterone add-back either with or without concomitant aromatase inhibitor treatment has in fact suggested that low oestradiol (but not low testosterone) may be responsible for the hypogonadism-associated increase in total body and intra-abdominal fat mass
    • Nathan Goodyear
       
      This does not fit with the research on receptors, specifically estrogen receptors.  These studies that the authors are referencing are looking at "circulating" levels, not tissue levels.
  • A smaller study with a similar experimental design found that acute testosterone withdrawal reduced insulin sensitivity independent of body weight, whereas oestradiol withdrawal had no effects
  • Obesity and dysglycaemia and associated comorbidities such as obstructive sleep apnoea (Hoyos et al. 2012b) are important contributors to the suppression of the HPT axis
  • This is supported by observational studies showing that weight gain and development of diabetes accelerate the age-related decline in testosterone
  • Weight loss can reactivate the hypothalamic–pituitary–testicular axis
  • The hypothalamic–pituitary–testicular axis remains responsive to treatment with aromatase inhibitors or selective oestrogen receptor modulators in obese men
  • Kisspeptin treatment increases LH secretion, pulse frequency and circulating testosterone levels in hypotestosteronaemic men with type 2 diabetes
  • Several observational and randomised studies reviewed in Grossmann (2011) have shown that weight loss, whether by diet or surgery, leads to substantial increases in testosterone, especially in morbidly obese men
  • This suggests that weight loss can lead to genuine reactivation of the gonadal axis by reversal of obesity-associated hypothalamic suppression
  • There is pre-clinical and observational evidence that chronic hyperglycaemia can inhibit the HPT axis
  • in those men in whom glycaemic control worsened, testosterone decreased
  • successful weight loss combined with optimisation of glycaemic control may be sufficient to normalise circulating testosterone levels in the majority of such men
  • weight loss, optimisation of diabetic control and assiduous care of comorbidities should remain the first-line approach.
    • Nathan Goodyear
       
      This obviously goes against marketing-based medicine
  • In part, the discrepant results may be due to the fact men in the Vigen cohort (Vigen et al. 2013) had a higher burden of comorbidities. Given that one (Basaria et al. 2010), but not all (Srinivas-Shankar et al. 2010), RCTs in men with a similarly high burden of comorbidities reported an increase in cardiovascular events in men randomised to testosterone treatment (see section on Testosterone therapy: potential risks below) (Basaria et al. 2010), testosterone should be used with caution in frail men with multiple comorbidities
  • The retrospective, non-randomised and non-blinded design of these studies (Shores et al. 2012, Muraleedharan et al. 2013, Vigen et al. 2013) leaves open the possibility for residual confounding and multiple other sources of bias. These have been elegantly summarised by Wu (2012).
  • Effects of testosterone therapy on body composition were metabolically favourable with modest decreases in fat mass and increases in lean body mass
  • This suggests that testosterone has limited effects on glucose metabolism in relatively healthy men with only mildly reduced testosterone.
  • it is conceivable that testosterone treatment may have more significant effects on glucose metabolism in uncontrolled diabetes, akin to what has generally been shown for conventional anti-diabetic medications.
  • the evidence from controlled studies show that testosterone therapy consistently reduces fat mass and increases lean body mass, but inconsistently decreases insulin resistance.
  • Interestingly, testosterone therapy does not consistently improve glucose metabolism despite a reduction in fat mass and an increase in lean mass
  • the majority of RCTs (recently reviewed in Ng Tang Fui et al. (2013a)) showed that testosterone therapy does not reduce visceral fat
    • Nathan Goodyear
       
      visceral and abdominal adiposity are biologically different and thus the risks associated with the two are different.
    • Nathan Goodyear
       
      yet low T is associated with an increase in visceral adiposity--confusing!
  • testosterone therapy decreases SHBG
  • testosterone is inversely associated with total cholesterol, LDL cholesterol and triglyceride (Tg) levels, but positively associated with HDL cholesterol levels, even if adjusted for confounders
  • Although observational studies show a consistent association of low testosterone with adverse lipid profiles, whether testosterone therapy exerts beneficial effects on lipid profiles is less clear
  • Whereas testosterone-induced decreases in total cholesterol, LDL cholesterol and Lpa are expected to reduce cardiovascular risk, testosterone also decreases the levels of the cardio-protective HDL cholesterol. Therefore, the net effect of testosterone therapy on cardiovascular risk remains uncertain.
  • data have not shown evidence that testosterone causes prostate cancer, or that it makes subclinical prostate cancer grow
  • compared with otherwise healthy young men with organic androgen deficiency, there may be increased risks in older, obese men because of comorbidities and of decreased testosterone clearance
  • recent evidence that fat accumulation may be oestradiol-, rather than testosterone-dependent
Nathan Goodyear

High aromatase activity in hypogonadal men is associated with higher spine bone mineral... - 0 views

  •  
    Only abstract available here--high Estradiol:Testosterone, thus high aromatase activity, increased abdominal fat and reduced lean muscle mass.  The authors also reported an higher bone mineral density, but that pales in the comparison of the metabolic dysfunction of high fat and low muscle mass causes.
Nathan Goodyear

Inflammation in Response to Glucose Ingestion Is Independent of Excess Abdominal Adipos... - 0 views

  •  
    women with PCOS, inflammatory cytokines TNF-alpha and CRP, associated with increasing androgen levels and with abdominal fat.  Women with less fat had lower levels of TNF-alpha and CRP than their higher weight counterparts, though the inflammatory cytokines were still evident.
Nathan Goodyear

Adrenocortical dysregulation as a major player in insulin resistance and onset of obesity - 0 views

  • acute GC secretion during stress mobilizes peripheral amino acids from muscle as well as fatty acids and glycerol from peripheral fat stores to provide substrates for glucose synthesis by the liver
  • chronically elevated GC levels alter body fat distribution and increase visceral adiposity as well as metabolic abnormalities in a fashion reminiscent of metabolic syndrome
  • This local production may play an important role in the onset of obesity and insulin resistance.
  • ...9 more annotations...
  • In adipocytes, cortisol inhibits lipid mobilization in the presence of insulin, thus leading to triglyceride accumulation and retention.
  • Since the density of GC receptors is higher in intra-abdominal (visceral) fat than in other fat depots, the activity of cortisol leading to accumulation of fat is accentuated in visceral adipose tissue (24, 158), providing a mechanism by which excessive endogenous or exogenous GC lead to abdominal obesity and IR
  • obese patients generally have normal or subnormal plasma cortisol concentrations
  • This may be explained by an increased intratissular/cellular concentration of cortisol in adipose tissues
  • Intracellular GC may be produced from recycling of GC metabolites such as cortisone in adipose tissues
  • Local GC recycling metabolism is mediated by 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2
  • Cortisol also increases 11β-HSD1 expression in human adipocytes
  • In humans, elevated 11β-HSD1 expression in visceral adipose tissue is also associated with obesity
  • even if obese patients generally have normal or subnormal plasma cortisol concentrations (131, 158), triglyceride accumulation in visceral adipose tissue may be due, at least in part, to the local production of GC in insulin- and GC-responsive organs such as adipose tissue, liver, and skeletal muscle
  •  
    another nice article on the dysregulation of cortisol and its role in insulin resistance, metabolic syndrome, and obesity.
Nathan Goodyear

An Open-Label Pilot Study to Assess the Efficacy and Safety of Virgin Coconut Oil in Re... - 0 views

  •  
    short 4 week pilot study of coconut oil aids abdominal weight loss shows.  Must take the right fat to lose fat.
Nathan Goodyear

The Effect of High-Intensity Intermittent Exercise on Body Composition of Overweight Yo... - 0 views

  •  
    another study that shows that High intensity interval training (HIT) results in fat loss.  IN this study, training consisted of 20 minutes 3 x weekly for 12 weeks.  Fat loss in total, abdominal, trunk, and visceral was decreased.  This study only looked at men.
Nathan Goodyear

Access : Lifestyle Factors and 5-Year Abdominal Fat Accumulation in a Minority Cohort: ... - 0 views

  •  
    soluble fiber helps you burn fat
Nathan Goodyear

The effects of testosterone treatment on body composition and metab... - PubMed - NCBI - 0 views

  •  
    Small study found that Testosterone therapy in men reduced visceral adiposity, but not abdominal adiposity.  This is in contrast to other studies.  IR improved in men with low T levels.
Nathan Goodyear

ScienceDirect.com - Cell Metabolism - Estrogen Receptors and the Metabolic Network - 0 views

  • The pro-opiomelanocortin (POMC) neurons have an anorexigenic action and, when activated, reduce food intake through the release of two peptides, α-melanocyte-stimulating hormone (α-MSH) and cocaine-and-amphetamine-regulated transcripts (CART). The neuropeptide Y (NPY) neurons, on the other hand, release NPY hormone and agouti gene-related protein (AgRP), which prevent the binding of α-MSH to MC3R and MC4R, increasing food intake
  • This suggests that the central anorexic effects of E2 may occur via ERβ
  • The main hypothalamic areas involved in food intake and satiety are the arcuate nucleus (ARC), the lateral hypothalamus (LH), the paraventricular nucleus (PVN), the ventromedial hypothalamus (VMH), and the dorsomedial hypothalamus (DMH)
  • ...22 more annotations...
  • Leptin is a potent anorexigenic and catabolic hormone secreted by adipose cells that reduces food intake and increases energy expenditure
  • E2 not only modulates leptin receptor mRNA in the ARC and VMH, but also increases hypothalamic sensitivity to leptin, altering peripheral fat distribution
  • ghrelin. It acts on growth hormone secretagogue receptors (GHSR1a) located in the ARC and is a potent stimulator of food intake
  • It thus appears that of the two ERs, ERα plays a predominant role in the CNS regulation of lipid and carbohydrate homeostasis.
  • Both ERs have been identified in the ARC
  • Stimulation of MCH neurons increases food intake and fat accumulation while its inhibition leads to decreased food intake and reduced fat accumulation.
  • Both ERs have been identified in the LH
  • both ERs have been identified in this nucleus
  • The PVN is the region of the hypothalamus with the highest expression of ERβ and is reported to be weakly ERα positive
  • The VMH is ERα regulated
  • Skeletal muscle is responsible for 75% of the insulin-induced glucose uptake in the body
  • GLUT4 is highly expressed in muscle and represents a rate-limiting step in the insulin-induced glucose uptake
  • data suggest that in the physiological range, E2 is beneficial for insulin sensitivity, whereas hypo- or hyperestrogenism is related to insulin resistance
  • In aging female rats, E2 treatment improves glucose homeostasis mainly through its ability to increase muscle GLUT4 content on the cell membrane
  • It is evident that ERα and ERβ have distinct actions and that much more research is needed to clearly identify the function of each receptor in muscle.
  • E2 prevents accumulation of visceral fat, increases central sensitivity to leptin, increases the expression of insulin receptors in adipocytes, and decreases the lipogenic activity of lipoprotein lipase in adipose tissue
  • In rats, ovariectomy increases body weight, intra-abdominal fat, fasting glucose and insulin levels, and insulin resistance followed by decreased phosphorylation of AMPK and its substrate acetyl-CoA carboxylase in adipose tissue
  • decreased adiponectin, PPARγ coactivator-1α (PGC-1α), and uncoupling protein 2 (UCP2) and increased resistin
  • Men with aromatase deficiency have truncal obesity, elevated blood lipids, and severe insulin resistance
  • Although not all studies are in agreement, polymorphisms of ERα in humans have been associated with risk factors for CVDs
  • Human subcutaneous and visceral adipose tissues express both ERα and ERβ, whereas only ERα mRNA has been identified in brown adipose tissue
  • suggesting that ERα is the main regulator of GLUT4 expression in adipose tissue
  •  
    very nice article that looks at the balance of ER-alpha/ER-beta and their role in metabolic syndrome.  This article discusses the balance of  these receptors are tissue dependent in their effect.  I like their conclusion: "...but these mechanisms will never be completely understood if they are not considered in the context of a whole system.
Nathan Goodyear

Effects of dietary coconut oil on the biochemical and... [Lipids. 2009] - PubMed - NCBI - 0 views

  •  
    30 ml of coconut oil daily over 12 weeks reduced abdominal fat and improved HDL cholesterol.
Nathan Goodyear

Covariation of change in bioavailable testosterone and adiposity in... - PubMed - NCBI - 0 views

  •  
    Bioavailable Testosterone is positively associated with Visceral adipose tissue and to a lesser degree subcutaneous fat in women.  
1 - 20 of 29 Next ›
Showing 20 items per page