Skip to main content

Home/ Dr. Goodyear/ Group items tagged carbohydrates

Rss Feed Group items tagged

Nathan Goodyear

JISSN | Full text | International Society of Sports Nutrition position stand: creatine ... - 0 views

  • the energy supplied to rephosphorylate adenosine diphosphate (ADP) to adenosine triphosphate (ATP) during and following intense exercise is largely dependent on the amount of phosphocreatine (PCr) stored in the muscle
  • Creatine is chemically known as a non-protein nitrogen
  • It is synthesized in the liver and pancreas from the amino acids arginine, glycine, and methionine
  • ...26 more annotations...
  • Approximately 95% of the body's creatine is stored in skeletal muscle
  • About two thirds of the creatine found in skeletal muscle is stored as phosphocreatine (PCr) while the remaining amount of creatine is stored as free creatine
  • The body breaks down about 1 – 2% of the creatine pool per day (about 1–2 grams/day) into creatinine in the skeletal muscle
  • The magnitude of the increase in skeletal muscle creatine content is important because studies have reported performance changes to be correlated to this increase
  • "loading" protocol. This protocol is characterized by ingesting approximately 0.3 grams/kg/day of CM for 5 – 7 days (e.g., ≃5 grams taken four times per day) and 3–5 grams/day thereafter [18,22]. Research has shown a 10–40% increase in muscle creatine and PCr stores using this protocol
  • Additional research has reported that the loading protocol may only need to be 2–3 days in length to be beneficial, particularly if the ingestion coincides with protein and/or carbohydrate
  • A few studies have reported protocols with no loading period to be sufficient for increasing muscle creatine (3 g/d for 28 days)
  • Cycling protocols involve the consumption of "loading" doses for 3–5 days every 3 to 4 weeks
  • Most of these forms of creatine have been reported to be no better than traditional CM in terms of increasing strength or performance
  • Recent studies do suggest, however, that adding β-alanine to CM may produce greater effects than CM alone
  • These investigations indicate that the combination may have greater effects on strength, lean mass, and body fat percentage; in addition to delaying neuromuscular fatigue
  • creatine phosphate has been reported to be as effective as CM at improving LBM and strength
  • Green et al. [24] reported that adding 93 g of carbohydrate to 5 g of CM increased total muscle creatine by 60%
  • Steenge et al. [23] reported that adding 47 g of carbohydrate and 50 g of protein to CM was as effective at promoting muscle retention of creatine as adding 96 g of carbohydrate.
  • It appears that combining CM with carbohydrate or carbohydrate and protein produces optimal results
  • Studies suggest that increasing skeletal muscle creatine uptake may enhance the benefits of training
  • Nearly 70% of these studies have reported a significant improvement in exercise capacity,
  • Long-term CM supplementation appears to enhance the overall quality of training, leading to 5 to 15% greater gains in strength and performance
  • Nearly all studies indicate that "proper" CM supplementation increases body mass by about 1 to 2 kg in the first week of loading
  • short-term adaptations reported from CM supplementation include increased cycling power, total work performed on the bench press and jump squat, as well as improved sport performance in sprinting, swimming, and soccer
  • Long-term adaptations when combining CM supplementation with training include increased muscle creatine and PCr content, lean body mass, strength, sprint performance, power, rate of force development, and muscle diameter
  • subjects taking CM typically gain about twice as much body mass and/or fat free mass (i.e., an extra 2 to 4 pounds of muscle mass during 4 to 12 weeks of training) than subjects taking a placebo
  • The gains in muscle mass appear to be a result of an improved ability to perform high-intensity exercise via increased PCr availability and enhanced ATP synthesis, thereby enabling an athlete to train harder
  • there is no evidence to support the notion that normal creatine intakes (< 25 g/d) in healthy adults cause renal dysfunction
  • no long-term side effects have been observed in athletes (up to 5 years),
  • One cohort of patients taking 1.5 – 3 grams/day of CM has been monitored since 1981 with no significant side effects
  •  
    Nice review of the data, up to the publication date, on creatine.
Nathan Goodyear

Effect of a low-carbohydrate diet on appetite... [Ann Intern Med. 2005] - PubMed - NCBI - 0 views

  •  
    low carbohydrate diet found to improve glucose and insulin function in those obese with type II diabetes
Nathan Goodyear

RPE, blood glucose, and carbohydrate oxidation dur... [Med Sci Sports Exerc. 1991] - Pu... - 0 views

  • The data suggest that ingestion of carbohydrate beverages during endurance cycling can maintain plasma glucose and CHO oxidation during the latter stages of prolonged exercise
  •  
    carbohydrate drinks help to maintain glucose levels in exercise
Nathan Goodyear

Recovery from endurance exercise. - PubMed - NCBI - 0 views

  •  
    Carbohydrates required to restore muscle/liver glycogen stores.  This older article, abstract available, points to 8-10 grams of carbohydrates/kg body weight.  Though repletion of glycogen stores can occur, recovery of muscle performance may require longer time.  Studies have point to 4-6 days.
Nathan Goodyear

Weight Loss with a Low-Carbohydrate, Mediterranean, or Low-Fat Diet - NEJM - 0 views

  •  
    Nice study, the DIRECT study, found a better weight loss and longer maintenance of weight loss in low carbohydrate diet compared to low fat diet and mediterranean diet.  
Nathan Goodyear

JAMA Network | JAMA: The Journal of the American Medical Association | Effects of Prote... - 0 views

  •  
    In this study, a high carbohydrate diet was replaced with a diet higher in monosaturated fats.  The result was: a lower carb diet with resultant increase in monosaturated fats resulted in a reduction in triglycerides, reduction in systolic B/P, increase in HDL, and resultant decrease in CVD risk
Nathan Goodyear

Early pregnancy urinary biomarkers of fatty acid and carbohydrate metabolism in pregnan... - 0 views

  •  
    Study finds that fatty acid and carbohydrate metabolism markers can be used to assess gestational diabetes risk in pregnancy.  
Nathan Goodyear

Nutritional Modulation of Insulin Resistance - 0 views

  • Five branched chain and aromatic amino acids (isoleucine, leucine, valine, tyrosine, and phenylalanine) showed significant associations with future diabetes
  • there is increasing evidence that longer term high-protein intake may have detrimental effects on insulin resistance [68, 117–123], diabetes risk [69], and the risk of developing cardiovascular disease
  • high-protein and the high GI diets significantly increased markers of low-grade inflammation
  • ...5 more annotations...
  • significant and clinically relevant worsening of insulin sensitivity with an isoenergetic plant-based high-protein diet
  • healthy humans that are exposed to amino acid infusions rapidly develop insulin resistance
  • longer term high-protein intake has been shown to result in whole-body insulin resistance [68, 118], associated with upregulation of factors involved in the mammalian target of rapamycin (mTOR)/S6K1 signalling pathway [68], increased stimulation of glucagon and insulin within the endocrine pancreas, high glycogen turnover [118] and stimulation of gluconeogenesis [68, 118].
  • it was recently shown in a large prospective cohort with 10 years followup that consuming 5% of energy from both animal and total protein at the expense of carbohydrates or fat increases diabetes risk by as much as 30% [69]. This reinforces the theory that high-protein diets can have adverse effects on glucose metabolism.
  • Another recent study showed that low-carbohydrate high-protein diets, used on a regular basis and without consideration of the nature of carbohydrates or the source of proteins, are also associated with increased risk of cardiovascular disease [70], thereby indicating a potential link between high-protein Western diets, T2DM, and cardiovascular risk.
  •  
    macronutrient intake and effect on glucose regulation and thus metabolism.
Nathan Goodyear

Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion -- ... - 0 views

  •  
    carbohydrate intake during exercise reduces post-exercise fatigue
Nathan Goodyear

Carbohydrate feeding during prolonged strenuous ex... [J Appl Physiol. 1983] - PubMed r... - 1 views

  •  
    carbohydrates during exercise delay fatigue development
Nathan Goodyear

A Randomized Pilot Trial of a Moderate Carbohydrate Diet Compared to a Very Low Carbohy... - 0 views

  •  
    low carb ketogenic diet, high in fat worked better in glycemic control versus DA low fat, medium carbohydrate, calorie restricted diet.
Nathan Goodyear

Effect of 6-month adherence to a very low carbohydrate diet program - 0 views

  •  
    low carb diet resulted in 6 month weight loss.
Nathan Goodyear

Dietary carbohydrate restriction as the first approach in diabetes management: Critical... - 0 views

  •  
    Excellent article on the ketogenic diet and the treatment of diabetes.   A ketogenic diet here was defined as < 10% carbs
Nathan Goodyear

http://jap.physiology.org/content/jap/82/1/49.full.pdf - 0 views

  •  
    To much protein intake can be a bad thing.  This study found that high protein intake and high protein/carbohydrate intake lowered basal Testosterone levels.
Nathan Goodyear

Dietary glycemic index and glycemic load and breast cancer risk in the European Prospec... - 0 views

  •  
    high carbohydrate intake associated with increased risk of ER/PR negative breast cancer in Postmenopausal women.
Nathan Goodyear

http://care.diabetesjournals.org/content/early/2013/02/07/dc12-1912.full.pdf - 0 views

  •  
    Study finds that higher protein to carbohydrate intake has a positive effect on inflammatory cytokines, oxidative stress, improves insulin sensitivity and improves Beta cell function in premenopausal, non diabetic obese women.
Nathan Goodyear

Nutrition & Metabolism | Full text | Fructose, insulin resistance, and metabolic dyslip... - 0 views

  • For thousands of years humans consumed fructose amounting to 16–20 grams per day
  • daily consumptions amounting to 85–100 grams of fructose per day
  • Of key importance is the ability of fructose to by-pass the main regulatory step of glycolysis, the conversion of glucose-6-phosphate to fructose 1,6-bisphosphate, controlled by phosphofructokinase
  • ...29 more annotations...
  • Thus, while glucose metabolism is negatively regulated by phosphofructokinase, fructose can continuously enter the glycolytic pathway. Therefore, fructose can uncontrollably produce glucose, glycogen, lactate, and pyruvate, providing both the glycerol and acyl portions of acyl-glycerol molecules. These particular substrates, and the resultant excess energy flux due to unregulated fructose metabolism, will promote the over-production of TG (reviewed in [53]).
  • Glycemic excursions and insulin responses were reduced by 66% and 65%, respectively, in the fructose-consuming subjects
  • reduction in circulating leptin both in the short and long-term as well as a 30% reduction in ghrelin (an orexigenic gastroenteric hormone) in the fructose group compared to the glucose group.
  • A prolonged elevation of TG was also seen in the high fructose subjects
  • Both fat and fructose consumption usually results in low leptin concentrations which, in turn, leads to overeating in populations consuming energy from these particular macronutrients
  • Chronic fructose consumption reduces adiponectin responses, contributing to insulin resistance
  • A definite relationship has also been found between metabolic syndrome and hyperhomocysteinemia
  • the liver takes up dietary fructose rapidly where it can be converted to glycerol-3-phosphate. This substrate favours esterification of unbound FFA to form the TG
  • Fructose stimulates TG production, but impairs removal, creating the known dyslipidemic profile
  • the effects of fructose in promoting TG synthesis are independent of insulinemia
  • Although fructose does not appear to acutely increase insulin levels, chronic exposure seems to indirectly cause hyperinsulinemia and obesity through other mechanisms. One proposed mechanism involves GLUT5
  • If FFA are not removed from tissues, as occurs in fructose fed insulin resistant models, there is an increased energy and FFA flux that leads to the increased secretion of TG
  • In these scenarios, where there is excess hepatic fatty acid uptake, synthesis and secretion, 'input' of fats in the liver exceed 'outputs', and hepatic steatosis occurs
  • Carbohydrate induced hypertriglycerolemia results from a combination of both TG overproduction, and inadequate TG clearance
  • fructose-induced metabolic dyslipidemia is usually accompanied by whole body insulin resistance [100] and reduced hepatic insulin sensitivity
  • Excess VLDL secretion has been shown to deliver increased fatty acids and TG to muscle and other tissues, further inducing insulin resistance
  • the metabolic effects of fructose occur through rapid utilization in the liver due to the bypassing of the regulatory phosphofructokinase step in glycolysis. This in turn causes activation of pyruvate dehydrogenase, and subsequent modifications favoring esterification of fatty acids, again leading to increased VLDL secretion
  • High fructose diets can have a hypertriglyceridemic and pro-oxidant effect
  • Oxidative stress has often been implicated in the pathology of insulin resistance induced by fructose feeding
  • Administration of alpha-lipoic acid (LA) has been shown to prevent these changes, and improve insulin sensitivity
  • LA treatment also prevents several deleterious effects of fructose feeding: the increases in cholesterol, TG, activity of lipogenic enzymes, and VLDL secretion
  • Fructose has also been implicated in reducing PPARα levels
  • PPARα is a ligand activated nuclear hormone receptor that is responsible for inducing mitochondrial and peroxisomal β-oxidation
  • decreased PPARα expression can result in reduced oxidation, leading to cellular lipid accumulation
  • fructose diets altered the structure and function of VLDL particles causing and increase in the TG: protein ratio
  • LDL particle size has been found to be inversely related to TG concentration
  • therefore the higher TG results in a smaller, denser, more atherogenic LDL particle, which contributes to the morbidity of the metabolic disorders associated with insulin resistance
  • High fructose, which stimulates VLDL secretion, may initiate the cycle that results in metabolic syndrome long before type 2 diabetes and obesity develop
  • A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, disturbs normal hepatic carbohydrate metabolism leading to two major consequences (Figure 2): perturbations in glucose metabolism and glucose uptake pathways, and a significantly enhanced rate of de novo lipogenesis and TG synthesis, driven by the high flux of glycerol and acyl portions of TG molecules coming from fructose catabolism
  •  
    Fructose and metabolic syndrome.  Good discussion of the impact of high fructose intake and metabolic dysfunction.  This study also does a great job of highlighting the historical change of fructose intake.
Nathan Goodyear

The post-prandial rise in plasma cortisol in men is mediated by macronutrient-specific ... - 0 views

  •  
    Article finds that carbohydrate meals cause increase in extra-adrenal cortisol more than protein and fat.  This is via 11beta-HSD1.
Nathan Goodyear

Endurance training without weight loss lowers syst... [Free Radic Biol Med. 2008] - Pub... - 0 views

  •  
    endurance training in obese women increases inflammation; carbohydrates reduce
Nathan Goodyear

Dietary glycemic index, glycemic load, and the risk of breast cancer in an Italian pros... - 0 views

  • GI is a measure of carbohydrate quality in relation to glucose availability and is independent of quantity, whereas GL is a measure of the total glycemic effect and hence is anindicator of the insulin demand of the diet. High-glycemic diets are in fact generally associated with greater insulin secretion
  • the consumption of large quantities of high-GI foods rather than the consumption of high quantities of carbohydrates is linked to the development of breast cancer.
  •  
    High glycemic load and glycemic index associated with increased breast cancer risk in premenopausal women.
1 - 20 of 81 Next › Last »
Showing 20 items per page