Skip to main content

Home/ Groups/ Robotics
York Jong

74*240-based photopopper circuits - 0 views

  • This adapted photodiode is not as sensitive as large area types so C2 may need to be reduced to 0.01uF while the value of R2 and R3 can be increased by a factor of 10.
  • Two leaded phototransistors can also be used but may require extra shielding to reduce light current in the bridge to acceptable levels
  • basic photopopper functions plus reverse -- all on a single chip
  • ...8 more annotations...
  • The monocore capacitor is for positive feedback for fast switching between the two motors and to slow down and avoid high frequency oscillations.
  • R2 together with C2 limits the maximum frequency of the monocore and motor drivers when the light is bright and the sensors are equally lit
  • R3 together with C2 sets the minimum frequency of the waggle even in the complete dark which is more interesting than twirling endlessly in a circle.
  • Having said that, maxibug is not perfect: it churns its wheels while feeding and does not back out of the feeding station when full. CD MaxiBug v5 uses just a few more parts but has powerful and efficient motor drivers, its motors are off while feeding, and it backs up when full.
  • The CD Maxibug v5 uses just one 74AC240 chip
York Jong

How to make Tactile Sensors! - 0 views

  •  
    What you need.... * "2 paper clip * 'Click type' pen * Sheet of paper * Thin piano wire * Soldering iron * Solder * Wire clippers * Tape
York Jong

Making a Guitar String Touch Sensors - BEAM Wiki - 0 views

  • I will go through the process of making a guitar string physical touch sensor.
York Jong

[原创]简易陀螺仪的制作!--sjx - 0 views

  • 看到上面一个大大的玻璃试管和里面的液体、引脚我就知道肯定是通过液体摆动跟触角接触面积引起的阻值变化测量角度的
York Jong

Electronics Applications - 0 views

  • The current through a photodiode is directly proportional to the light intensity
  • The photodiode and phototransistor can be both photovoltaic (generators of potential difference) and photoconductive (modifiers of an electric current), depending on the application.
  • A reverse-biased photodiode operates in what is called photoconductive mode, since the conduction of the semiconductor junction varies with the illuminating light intensity.  If the reverse-biased voltage is relatively large (i.e. several volts) the reverse-biased photodiode will have a very fast response time (much faster than an LDR) and is suitable for detecting light signals that vary down to a time scale of a fraction of a microsecond.
  • ...8 more annotations...
  • When light shines on the LDR, it has low resistance and allows current to flow.  When light does not shine on it, the LDR has a very high resistance, and a much smaller current will not flow through it.
York Jong

SENSORS - SHARP IR RANGE FINDER - 0 views

  • The Sharp IR Range Finder works by the process of triangulation. A pulse of light (wavelength range of 850nm +/-70nm) is emitted and then reflected back (or not reflected at all). When the light returns it comes back at an angle that is dependent on the distance of the reflecting object. Triangulation works by detecting this reflected beam angle - by knowing the angle, distance can then be determined.
  • The IR range finder reciever has a special precision lens that transmits the reflected light onto an enclosed linear CCD array based on the triangulation angle.
  • The Sharp IR has a non-linear output. This means that as the distance increases linearly (by set increments), the analog output increases/decreases non-linearly.
  • ...10 more annotations...
  • To effectively use your Sharp IR Range Finder, you must have a voltage output versus distance chart to reference from.
  • One major issue with the Sharp IR Range Finder and that is going below the minimum sensor range. This is when an object is so close the sensor cannot get an accurate reading, and it tells your robot that a really close object is really far.
  • Another issue is the high narrowness of the IR beam. In reading sharp details and getting high accuracy, a thin beam is ideal. But the problem with a thin beam is that if it is not pointed exactly at the object, the object is therefore invisible.
  • A more advanced use for the Sharp IR Range Finder is to do mapping. To do this, you need at least one Range Finder, and at least one non-modified servo.
  • The sharp IR can be used as a quick and easy front non-contact robot bumper on your robot. Just place two IR devices in front of your robot and cross beams as shown. Ideally you would perfer to use rangers that have wider beams. Note: A single sonar can do this job just as well.
  • For example, a box in front of your robot might appear like this: 0 0 0 0 0 106 120 124 121 109 0 0 0 0 0
York Jong

Light Sensors of The Ants: Hardware - 0 views

  • Usually, the operating system takes all the values from the sensors, averages them, then finds the one that is the furthest away from that average
  • The Ant Farm is built next to a very large window that faces east. As a result, with the lab lights off, the brightest light source is always to the east. The robots can use this as a reference and then find all the other directions.
York Jong

Microprocessor of The Ants: Hardware - 0 views

  • This chip is great for building robots because it has extensive input/output hardware built right into the chip. This reduces the need for external components.
York Jong

nonsolder bicore - 0 views

  •  
    A complete tutorial on creating a fully adjustable bicore, master/slave bicore, head or any other circuit around any other chip!
York Jong

Short Period Astetics Intelligence - 0 views

  • These bots are powered by a Gold Cap and for a period of about one minute they move, always looking for the brightest lightspot, so in fact they will even follow a lightsource.
  • All these bots are powered by a 3,3F Gold Cap ( F= farad). You can charge them with a regulated power supply
  • the two 5 mm red LED's it is capable of following a light source.
  • ...8 more annotations...
  • When ALI bumps into something it will go backward for a short time and then go forward in another direction, so they will find their way all alone.
  • The first one is a light seeker and the second one is a line follower. This version I like very much.
  • When you are making the line follower you need to place the small light bulb. The light seeker doesn't need it.
  • When bumbing into something it can also reverse for several seconds. The time of going reverse can be changed. I've used 2M2 and 3,3 uF, this will give a reverse time of about 5 seconds
  • For the LED’s you can almost use any type or color, I used red ones 5 mm.
  • When you "power on" Bully it will first go backwards for some time. After a few seconds it seems that it doesn’t know what to do, it looks like it’s shivering. Then it starts of going to the brightest lightspot it can see, first slowly and then like "in a hurry". When it reaches the lightspot it makes turns which make it look like it’s happy! In the time doing all this stuff, each bump into a obstacle makes it move backwards for a few seconds. The time doing this can be changed with the 10 uF elco. Smaller means less seconds and bigger means reversing for more seconds.
York Jong

Nu neuron basics - 0 views

  • One essential difference is that the Nv responds immediately to an input, and sends the output for a time duration -- the delay occurs AFTER the output is sent. The Nu responds to an input after a delay and sends the output continuously -- the delay occurs BEFORE the output is sent.
  • "on" first, then a delay, then "off"
  • delay, then "on", stays "on"
York Jong

Nv neuron variants - 0 views

  • By just tying a neuron's bias resistor to Vcc, rather than to ground, you can make a "regular logic" (active high) Nv:
  • putting diodes and other resistors in parallel to give different charge vs. discharge rates
  • >
  • ...3 more annotations...
  • >
York Jong

Reversing a motor without use of sensors - 0 views

  • The motor is driven in either the forward or reverse direction, but will swap polarity if the motor encounters too sudden or great of a load
  •  
    The sensorless reversing circuit is used for driving one motor of a wheeled robot. The motor is driven in either the forward or reverse direction, but will swap polarity if the motor encounters too sudden or great of a load.
York Jong

How to freeform the H-bridge - by Brian Hendrickson - 0 views

  •  
    Most of us are familiar with Beckingham's photovore block (also known as Chiu's). The following is a similar format used for freeforming a simple H-bridge motor driver that can be used for walkers, heads, and any other project that uses motors that requir
York Jong

BEAM Circuits -- 74*24x-based motor drivers compared - 0 views

  • In many ways, both the 74*240 and 74*245 are equally handy for BEAM use; both have 20 pins, and so the main difference that most folks will care about is that one inverts drive inputs, while the other doesn't. Out of curiousity, I decided to torture test the two chips to see how they compared under load.
York Jong

Retired Robots - The Ants - 0 views

shared by York Jong on 03 Jun 07 - Cached
  •  
    The Ants are a community of cubic-inch microrobots at the MIT Artificial Intelligence Lab. There are two main goals for this project. The first is to push the limits of microrobotics by integrating many sensors and actuators into a small package. The second is to form a structured robotic community from the interactions of many simple individuals. The inspiration behind this idea comes from nature -- the ant colony.
York Jong

PROGRAMMING - PID CONTROL - 0 views

  • The only time you will need this term is when acceleration plays a big factor with your robot. If your robot is really heavy, or gravity is not on it's side (such as steep hills), then you will need the integral term.
  • The sampling rate is the speed at which your control algorithm can update itself.
  • To increase sampling rate, you want an even faster update of sensor readings, and minimal delay in your program loop.
York Jong

ROBOT GEARS TUTORIAL - 0 views

  • motors commercially available do not normally have a desirable speed to torque ratio (the main exception being servos and high torque motors with built in gearboxes)
  • With gears, you will exchange the high velocity with a better torque.
  • the larger gear will move more slowly than the smaller gear, but it will move with more torque.
  • ...1 more annotation...
  • Suppose your gearing ratio is 3/1. This would mean you would multiple your torque by 3 and your velocity by the inverse, or 1/3.
  •  
    No good robot can ever be built without gears. As such, a good understanding of how gears affect parameters such as torque and velocity are very important.
« First ‹ Previous 81 - 100 of 177 Next › Last »
Showing 20 items per page