Skip to main content

Home/ Robotics/ Group items tagged diode

Rss Feed Group items tagged

York Jong

A Bot With Peripheral Vision - 0 views

  • I wanted to share an adaptation of the Schead v4, that I have been experimenting with. It is (for lack of a better term) a Master/Slave Schmitt Comparitor Head (M/S SC-H). With the addition of a 74 AC 240 or two (as motor drivers) and a pair of motors, you can put together an interesting little light seeking, wheeled robot with peripheral vision.
  • As long as the light reaching the photo-bridge of the Master SC-H is balanced, then the Slave SC-H acts as a regular, lone SC-H would. So, if one of the slave photo-diodes detects more light then the other, the inverter that controls the motor on that side changes states and is now the same as the inverter of the Master SC-H tied to the same motor. This turns that motor off and the robot will pivot around the stopped wheel toward the greater light source until the light on each sensors is balanced and the motor again begins to turn.
  • I am also using SCar to continue experimenting with Stacking separate Sensor/Behavior circuits onto a robot. I will post more as progress is made.
  • ...9 more annotations...
  • The diodes between the  photo-diodes create a constant voltage drop between the inputs of the inverters. They cause  a dead band to exist between the thresholds of the two inverters. In a way they cause the circuit to act like a kind of window  comparator. Without these diodes both inverters would always be in the same state. With them, there is a small range where their outputs are in opposite states.
  • The Slave section has only two diodes (or one LED) between the photo-diodes. This makes it respond to smaller differences in light levels than does the Master part of the circuit
  • Basically, what I did was to stack one SC-H on top of another
  • I?m using a 74 HC 139 to direct the outputs of the M/S SC-H circuit to the appropriate motor(s)
  • Cheesy works very well. I?ve had fun making him chase a spot of light from a flashlight around on the floor. He has even been able to detect and react to the flashlight spot on the floor of the brightly lighted lab where I work.
    • York Jong
       
      Stacking separate Sensor/Behavior
York Jong

Diode - 0 views

  • To use a photodiode in its photoconductive mode, the photodiode is reverse-biased; the photodiode will then allow a current to flow when it is illuminated.
  • LEDs can be used as photodiodes
  • FLEDs are light-sensitive, and so flash faster in brighter light
York Jong

Nv neuron variants - 0 views

  • By just tying a neuron's bias resistor to Vcc, rather than to ground, you can make a "regular logic" (active high) Nv:
  • putting diodes and other resistors in parallel to give different charge vs. discharge rates
  • >
  • ...3 more annotations...
  • >
York Jong

Maxibug, Minibug, Microbug - 0 views

  • It is powered with two 3.3F Goldcaps. They can be charged in a few seconds. When they are charged, MAXIBUg gets "afraid" of light, and wanders of to go to play "in the dark". After a while, about 20 seconds (depending on the current used by the two motors ), the power has dropped, and it wants to "eat". It gets light attracted, and will turn and go to the light. When it gets there, it will recharge and still will be atrackted to the light until it reaches a trigger voltage , at which it gets "afraid"of the light again. This will go on all day until someone turns off the lightsource. While doing all this it also will backup when bumping into something.
  • Because of the "on-off" output of the first schmitt trigger, the inputs for the LDRs will switch. That's why it gets light atracted -light afraid. This also means that you cannot use IR diodes (like SHF205). You have to use LDRs !
  • ...2 more annotations...
  • The change in output is visualised with two red LEDs. When the LEDs are burning, the bot is "afraid" of light. They are mounted as eyes off the bot, that's why I used two off them. One LED will do also, but doesn't look nice !
York Jong

Photo Diodes - BEAM Wiki - 0 views

  • To use a photodiode in its photoconductive mode, the photodiode is reverse-biased; the photodiode will then allow a current to flow when it is illuminated.
York Jong

Electronics Applications - 0 views

  • The current through a photodiode is directly proportional to the light intensity
  • The photodiode and phototransistor can be both photovoltaic (generators of potential difference) and photoconductive (modifiers of an electric current), depending on the application.
  • A reverse-biased photodiode operates in what is called photoconductive mode, since the conduction of the semiconductor junction varies with the illuminating light intensity.  If the reverse-biased voltage is relatively large (i.e. several volts) the reverse-biased photodiode will have a very fast response time (much faster than an LDR) and is suitable for detecting light signals that vary down to a time scale of a fraction of a microsecond.
  • ...8 more annotations...
  • When light shines on the LDR, it has low resistance and allows current to flow.  When light does not shine on it, the LDR has a very high resistance, and a much smaller current will not flow through it.
1 - 6 of 6
Showing 20 items per page