Skip to main content

Home/ Robotics/ Group items tagged ground

Rss Feed Group items tagged

York Jong

BEAM From the Ground Up - 0 views

  •  
    Welcome to the leaner, cleaner, BEAM From the Ground Up! This site is designed to be a useful collection of material for BEAM roboticists of all experience levels and abilities. The unifying focus here is on learning -- so this is the place to look for tu
marketngedwisor

How to become Data Scientist in 2019? | edWisor - 0 views

  •  
    Are you starting for your career as a data scientist? To become an expert in data science you need to begin from the ground up. And you need to get a step-by-step guide to becoming a data scientist and for learning a particular skill. Instead of jumping for a master program in computer science you need to focus mathematics, python,r-programming or statistics or develop a skill in data science. If you are looking out for such a learning institute then you could also take a walk for edwisor.com as it works for enrolled students in data science career program as well as in the hiring process and gets 4 Guaranteed interviews at top organizations.
York Jong

Nv neuron variants - 0 views

  • By just tying a neuron's bias resistor to Vcc, rather than to ground, you can make a "regular logic" (active high) Nv:
  • putting diodes and other resistors in parallel to give different charge vs. discharge rates
  • >
  • ...3 more annotations...
  • >
York Jong

BEAM Pieces -- Integrated circuits - 0 views

  • 1381s are CMOS voltage-controlled triggers -- these "gate" a source until the voltage is above some "trip" limit, at which point it is allowed onto a third pin
  • We use them as 3- or 5-volt triggers
  • This chip is often considered the heart of Nv net technology
  • ...22 more annotations...
  • The '240 is often called "the bicore chip," because we can take advantage of the 240's inverters to turn a single 74*240 into a bicore
  • The '240 also has tri-state outputs, so an enable line can be used to turn its outputs on and off simply (good for adding reversing capability to a 'bot).
  • any *cores built with a 74*04 will require additional logic "downstream" to amplify the current to levels sufficient to drive a moto
  • Schmitt triggers can't easily be used in suspended bicore implementations
  • use its buffers as little current amplifiers
  • it is usable for either grounded or suspended bicore designs (but better for suspended)
  • 74HC/HCTxx non-buffers (74HC14 or 74HC04) draw about half of the current consumption, and have about half the drive current compared to HC / HCT buffer chips (74HC240 or 74HC245). Non-buffer chips are thus better for oscillators, say Nv and Nu applications; they are not suited for use in driving motors.
  • 74AC is best suited for motor driver applications with all inputs driven rail to rail.
  • The '245 is an octal buffer chip, and so has 8 channels of buffering power available for our misuse. This chip was designed for data transmission uses, but we'll misuse it as a motor driver chip
  • The '244 provides us with 8 (thus the "octal") buffers, enableable in banks of 4. This is a very useful chip for amplifying small currents
  • it can drive up to 4 motors in 2 directions each, or you can "buddy up" inputs and outputs to drive fewer motors at higher current
  • it can drive up to 4 motors in 2 directions each, or you can "buddy up" inputs and outputs to drive fewer motors at higher current
  • If you can't find 1381s locally, you might have better luck finding its European cousin, the TC-54 -- for details on it
  • Note that if you need more than about 200 mA per motor, you'll need to use an H-bridge, or some similar motor driver
  • The ideal BEAM circuit would use a low (2V-3V) voltage core and sensors combined with level shifting high (5-6V) volt motor drivers to maximize efficiency.
  • 74ACxxx used in typical BEAM applications uses 4x more supply current than does 74HC/HCTxxx.
  •  
    The following material is intended to cover usage and part selection details of ICs you're most likely to see in BEAM robots.
York Jong

Robot Room - IRB and Roundabout Resourcess - 0 views

  • "Exposing a Flaw: Shoot-Through" describes the serious problem with that circuit, especially when pulsed
  • Above is an improved version of the circuit, which is now PWM compatible. PWM, coast mode, and the capability to avoid shoot-through are provided by adding a fifth MOSFET (labeled Q5) to the source/ground connections of Q1 and Q3.
  • ...1 more annotation...
  • By default at power-up, the circuit is in coast mode. To brake, set IN A to 0 V, IN B to 0 V, and Q5 to 5 V. To spin clockwise, set IN A to 5 V, IN B to 0 V, and Q5 to 5 V. To spin counterclockwise, set IN A to 0 V, IN B to 5 V, and Q5 to 5 V. At any time you can return to coast by applying 0 V to Q5. Or, you can apply pulses of 0 V/5 V/0 V/5 V (and so on) to control the speed. The more time spent at 5 V, the faster the motor will spin. Whenever you change modes, if you set Q5 to 0 V before making changes to IN A and IN B (and then set Q5 back to 5 V or pulsing) there will be no shoot-through.
  •  
    This secret page is for owners of the book, Intermediate Robot Building. On this page, you'll find updates, corrections, and source files. Thank you for buying the book!
1 - 7 of 7
Showing 20 items per page