Skip to main content

Home/ Robotics/ Group items tagged circuit

Rss Feed Group items tagged

York Jong

74*14-based photopopper circuits - 0 views

  • Droidmakr (Cliff Boerema) came up with an interesting idea for a light-tracking head with a form of peripheral vision. As often happens, the circuit turned into something different -- a photopopper:
  • All done with a single 74HC14 (the '240 being a motor driver).
  • I tried the same setup with the 74*240 (with an extra inverter per motor) and 7404, but the 74HC14 seems to work best.
  • ...6 more annotations...
  • John-Isaac Mumford started off by simplifying the Maxibug design, and wound up with an entirely new circuit -- Mazibug
  • The tactiles switches behave even more strongly: if a switch is closed then the bot turns away unconditionally. If both switches are closed the robots reverse straight back regardless of light level.
  • When the robot bumps into something on one side, it over-rides all the photodiode circuits and reverses the motor on the OPPOSITE side
  • From the title it would appear that all 4 photodiodes face forward but the 2 inner PDs face directly forward and the outer 2 are angled to the left and right
    • York Jong
       
      behavior-based control that all done with a sigle 74HC14
York Jong

Build this simple "electronic electroscope," a FET electrometer - 0 views

  • This simple circuit can detect the invisible fields of voltage which surround all electrified objects
  • ...9 more annotations...
  • The Gate acts as an antenna, so leave it unconnected.
  • The 1-meg resistor helps protect the FET from being harmed by any accidental sparks to its Gate lead. The circuit will work fine without this resistor. Just don't intentionally "zap" the Gate wire with a charged object or your charged finger.
  • To test the circuit, charge up a pen or a comb on your hair, then wave it close to the little "antenna" wire. The LED should go dark. When you remove the electrified pen or comb, the LED should light up again.
  • If you suspect that humidity is very high, test this by rubbing a balloon or a plastic object upon your arm. If the balloon does not attract your arm hairs, humidity is too high.
  • This FET sensor is not an ideal educational device because it responds differently to positive than to negative.
  • negative objects turn the LED off, it lights again when removed. positive objects make the LED bright, then dark when removed.
  • Obtain a small capacitor with a value below 100 picofarads. Connect it between the FET gate lead and one of the other FET leads (doesn't matter which one.) This greatly reduces the sensitivity of the device
  • Now make the circuit MORE sensitive. Obtain an alligator clip-lead, and connect it to the Gate lead of the FET. Let it hang loose without touching anything. You'll find that this has vastly increased the sensitivity of your FET circuit.
  •  
    This simple circuit can detect the invisible fields of voltage which surround all electrified objects. It acts as an electronic "electroscope.
York Jong

74*240-based photopopper circuits - 0 views

  • This adapted photodiode is not as sensitive as large area types so C2 may need to be reduced to 0.01uF while the value of R2 and R3 can be increased by a factor of 10.
  • Two leaded phototransistors can also be used but may require extra shielding to reduce light current in the bridge to acceptable levels
  • basic photopopper functions plus reverse -- all on a single chip
  • ...8 more annotations...
  • The monocore capacitor is for positive feedback for fast switching between the two motors and to slow down and avoid high frequency oscillations.
  • R2 together with C2 limits the maximum frequency of the monocore and motor drivers when the light is bright and the sensors are equally lit
  • R3 together with C2 sets the minimum frequency of the waggle even in the complete dark which is more interesting than twirling endlessly in a circle.
  • Having said that, maxibug is not perfect: it churns its wheels while feeding and does not back out of the feeding station when full. CD MaxiBug v5 uses just a few more parts but has powerful and efficient motor drivers, its motors are off while feeding, and it backs up when full.
  • The CD Maxibug v5 uses just one 74AC240 chip
York Jong

BEAM Circuits -- Field sensors - 0 views

  • note that the human body is a good absorber of stray RF fields, so this sensor should be a good people-detector
    • York Jong
       
      should be shield, not sheilduses two of six inverting Schmitt trigger in a 74HC14 IC
York Jong

A Bot With Peripheral Vision - 0 views

  • I wanted to share an adaptation of the Schead v4, that I have been experimenting with. It is (for lack of a better term) a Master/Slave Schmitt Comparitor Head (M/S SC-H). With the addition of a 74 AC 240 or two (as motor drivers) and a pair of motors, you can put together an interesting little light seeking, wheeled robot with peripheral vision.
  • As long as the light reaching the photo-bridge of the Master SC-H is balanced, then the Slave SC-H acts as a regular, lone SC-H would. So, if one of the slave photo-diodes detects more light then the other, the inverter that controls the motor on that side changes states and is now the same as the inverter of the Master SC-H tied to the same motor. This turns that motor off and the robot will pivot around the stopped wheel toward the greater light source until the light on each sensors is balanced and the motor again begins to turn.
  • I am also using SCar to continue experimenting with Stacking separate Sensor/Behavior circuits onto a robot. I will post more as progress is made.
  • ...9 more annotations...
  • The diodes between the  photo-diodes create a constant voltage drop between the inputs of the inverters. They cause  a dead band to exist between the thresholds of the two inverters. In a way they cause the circuit to act like a kind of window  comparator. Without these diodes both inverters would always be in the same state. With them, there is a small range where their outputs are in opposite states.
  • The Slave section has only two diodes (or one LED) between the photo-diodes. This makes it respond to smaller differences in light levels than does the Master part of the circuit
  • Basically, what I did was to stack one SC-H on top of another
  • I?m using a 74 HC 139 to direct the outputs of the M/S SC-H circuit to the appropriate motor(s)
  • Cheesy works very well. I?ve had fun making him chase a spot of light from a flashlight around on the floor. He has even been able to detect and react to the flashlight spot on the floor of the brightly lighted lab where I work.
    • York Jong
       
      Stacking separate Sensor/Behavior
York Jong

BEAM Circuits -- Solar engines - 0 views

  • The purpose of a solar engine is to act like a power "savings account" -- a small trickle of incoming energy is saved up until a useable amount is stored
  • A solar-powered robot can be made to work, even in relatively-low light levels
  • Solar cell size is minimized
  • ...2 more annotations...
  • by far the predominant
  • theoretically the most efficient
  •  
    At the heart of most solar-powered robots is a circuit called the solar engine (variously called Solar Engines, solarengines, SEs; a.k.a,relaxation oscillators). The purpose of a solar engine is to act like a power "savings account" -- a small trickle of incoming energy is saved up until a useable amount is stored. This stored energy is then released in a burst, in order to drive some useful (if only sporadic and incremental) work.
York Jong

BEAMbot Circuits << BEAM Reference Library - 0 views

  •  
    This section of the BEAM Reference Library is devoted to collecting designs (and links to designs hosted elsewhere) for circuits of interest to BEAMers.
York Jong

自製感應器 - 56 views

作者: Mick (大寶GO!GO!GO!) 看板: Robotics 標題: Re: 自製感應器 時間: Thu Nov 2 22:43:03 2006 ※ 引述《ykjiang (York)》之銘言: > 感應器是機器人很重要的一環,之前看過有利用包裝電子產品的 > 導電海綿壓縮後電阻會改變這一點,自製了感壓的 sensor 。 > 此外,很實用的機器鬍鬚,可感測障礙物: > Obs...

diy sensor

York Jong

Nervous Neurons - Process and Transitions - 0 views

  • The Nv neuron circuit may look familiar as it is found in most CMOS data handbooks as an example of a simple edge detector or one-shot or mono-stable circuit application.
York Jong

Short Period Astetics Intelligence - 0 views

  • These bots are powered by a Gold Cap and for a period of about one minute they move, always looking for the brightest lightspot, so in fact they will even follow a lightsource.
  • All these bots are powered by a 3,3F Gold Cap ( F= farad). You can charge them with a regulated power supply
  • the two 5 mm red LED's it is capable of following a light source.
  • ...8 more annotations...
  • When ALI bumps into something it will go backward for a short time and then go forward in another direction, so they will find their way all alone.
  • The first one is a light seeker and the second one is a line follower. This version I like very much.
  • When you are making the line follower you need to place the small light bulb. The light seeker doesn't need it.
  • When bumbing into something it can also reverse for several seconds. The time of going reverse can be changed. I've used 2M2 and 3,3 uF, this will give a reverse time of about 5 seconds
  • For the LED’s you can almost use any type or color, I used red ones 5 mm.
  • When you "power on" Bully it will first go backwards for some time. After a few seconds it seems that it doesn’t know what to do, it looks like it’s shivering. Then it starts of going to the brightest lightspot it can see, first slowly and then like "in a hurry". When it reaches the lightspot it makes turns which make it look like it’s happy! In the time doing all this stuff, each bump into a obstacle makes it move backwards for a few seconds. The time doing this can be changed with the 10 uF elco. Smaller means less seconds and bigger means reversing for more seconds.
York Jong

Robot Room - IRB and Roundabout Resourcess - 0 views

  • "Exposing a Flaw: Shoot-Through" describes the serious problem with that circuit, especially when pulsed
  • Above is an improved version of the circuit, which is now PWM compatible. PWM, coast mode, and the capability to avoid shoot-through are provided by adding a fifth MOSFET (labeled Q5) to the source/ground connections of Q1 and Q3.
  • ...1 more annotation...
  • By default at power-up, the circuit is in coast mode. To brake, set IN A to 0 V, IN B to 0 V, and Q5 to 5 V. To spin clockwise, set IN A to 5 V, IN B to 0 V, and Q5 to 5 V. To spin counterclockwise, set IN A to 0 V, IN B to 5 V, and Q5 to 5 V. At any time you can return to coast by applying 0 V to Q5. Or, you can apply pulses of 0 V/5 V/0 V/5 V (and so on) to control the speed. The more time spent at 5 V, the faster the motor will spin. Whenever you change modes, if you set Q5 to 0 V before making changes to IN A and IN B (and then set Q5 back to 5 V or pulsing) there will be no shoot-through.
  •  
    This secret page is for owners of the book, Intermediate Robot Building. On this page, you'll find updates, corrections, and source files. Thank you for buying the book!
York Jong

BEAM Circuits -- Motor drivers - 0 views

  • Motor drivers are essentially little current amplifiers
  • the control signal is likely on the order of 10 mA, and the motor may require 100's of mA to make it turn
York Jong

Reversing a motor without use of sensors - 0 views

  • The motor is driven in either the forward or reverse direction, but will swap polarity if the motor encounters too sudden or great of a load
  •  
    The sensorless reversing circuit is used for driving one motor of a wheeled robot. The motor is driven in either the forward or reverse direction, but will swap polarity if the motor encounters too sudden or great of a load.
York Jong

BEAM Pieces -- Integrated circuits - 0 views

  • 1381s are CMOS voltage-controlled triggers -- these "gate" a source until the voltage is above some "trip" limit, at which point it is allowed onto a third pin
  • We use them as 3- or 5-volt triggers
  • This chip is often considered the heart of Nv net technology
  • ...22 more annotations...
  • The '240 is often called "the bicore chip," because we can take advantage of the 240's inverters to turn a single 74*240 into a bicore
  • The '240 also has tri-state outputs, so an enable line can be used to turn its outputs on and off simply (good for adding reversing capability to a 'bot).
  • any *cores built with a 74*04 will require additional logic "downstream" to amplify the current to levels sufficient to drive a moto
  • Schmitt triggers can't easily be used in suspended bicore implementations
  • use its buffers as little current amplifiers
  • it is usable for either grounded or suspended bicore designs (but better for suspended)
  • 74HC/HCTxx non-buffers (74HC14 or 74HC04) draw about half of the current consumption, and have about half the drive current compared to HC / HCT buffer chips (74HC240 or 74HC245). Non-buffer chips are thus better for oscillators, say Nv and Nu applications; they are not suited for use in driving motors.
  • 74AC is best suited for motor driver applications with all inputs driven rail to rail.
  • The '245 is an octal buffer chip, and so has 8 channels of buffering power available for our misuse. This chip was designed for data transmission uses, but we'll misuse it as a motor driver chip
  • The '244 provides us with 8 (thus the "octal") buffers, enableable in banks of 4. This is a very useful chip for amplifying small currents
  • it can drive up to 4 motors in 2 directions each, or you can "buddy up" inputs and outputs to drive fewer motors at higher current
  • it can drive up to 4 motors in 2 directions each, or you can "buddy up" inputs and outputs to drive fewer motors at higher current
  • If you can't find 1381s locally, you might have better luck finding its European cousin, the TC-54 -- for details on it
  • Note that if you need more than about 200 mA per motor, you'll need to use an H-bridge, or some similar motor driver
  • The ideal BEAM circuit would use a low (2V-3V) voltage core and sensors combined with level shifting high (5-6V) volt motor drivers to maximize efficiency.
  • 74ACxxx used in typical BEAM applications uses 4x more supply current than does 74HC/HCTxxx.
  •  
    The following material is intended to cover usage and part selection details of ICs you're most likely to see in BEAM robots.
York Jong

BEAM Circuits -- 74*24x-based motor drivers compared - 0 views

  • In many ways, both the 74*240 and 74*245 are equally handy for BEAM use; both have 20 pins, and so the main difference that most folks will care about is that one inverts drive inputs, while the other doesn't. Out of curiousity, I decided to torture test the two chips to see how they compared under load.
York Jong

Maxibug, Minibug, Microbug - 0 views

  • It is powered with two 3.3F Goldcaps. They can be charged in a few seconds. When they are charged, MAXIBUg gets "afraid" of light, and wanders of to go to play "in the dark". After a while, about 20 seconds (depending on the current used by the two motors ), the power has dropped, and it wants to "eat". It gets light attracted, and will turn and go to the light. When it gets there, it will recharge and still will be atrackted to the light until it reaches a trigger voltage , at which it gets "afraid"of the light again. This will go on all day until someone turns off the lightsource. While doing all this it also will backup when bumping into something.
  • Because of the "on-off" output of the first schmitt trigger, the inputs for the LDRs will switch. That's why it gets light atracted -light afraid. This also means that you cannot use IR diodes (like SHF205). You have to use LDRs !
  • ...2 more annotations...
  • The change in output is visualised with two red LEDs. When the LEDs are burning, the bot is "afraid" of light. They are mounted as eyes off the bot, that's why I used two off them. One LED will do also, but doesn't look nice !
York Jong

Robotics, Mechatronics, and Artificial Intelligence - 0 views

  •  
    this book simplifies the process of finding basic circuits to perform simple tasks such as how to control a DC or step motor, and offers instruction on creating moving robotic parts such as an eye or an ear.
York Jong

Furby Resurrection - 0 views

  •  
    There are several websites documenting the original Furby circuit board. I decided to replace the original circuit entirely and replace it with a PIC based controller.
1 - 20 of 41 Next › Last »
Showing 20 items per page