Skip to main content

Home/ Dr. Goodyear/ Group items matching "Insulin" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
Nathan Goodyear

Berberine Improves Insulin Sensitivity by Inhibiting Fat Store and Adjusting Adipokines Profile in Human Preadipocytes and Metabolic Syndrome Patients - 0 views

  •  
    berberine reduces leptin and fat in humans. It also improves insulin sensitivity and reduces insulin levels. This study also found a decrease in adiponectin.
Nathan Goodyear

Dihydrotestosterone Treatment in Adolescents with Delayed Puberty: Does it Explain Insulin Resistance of Puberty? - 0 views

  •  
    DHT found to have no effect insulin and insulin resistance in young men.
Nathan Goodyear

Increasing Insulin Resistance Is Associated with a Decrease in Leydig Cell Testosterone Secretion in Men - 0 views

  •  
    insulin resistance inversely associated with Testosterone.  As insulin resistance increases, Testosterone decreases.
Nathan Goodyear

The relation of proinsulin, insulin, and proinsulin... [Diabetes. 1997] - PubMed - NCBI - 0 views

  •  
    insulin resistance promotes increased processing of proinsulin to insulin
Nathan Goodyear

Plasma Adiponectin in Nonalcoholic Fatty Liver Is Related to Hepatic Insulin Resistance and Hepatic Fat Content, Not to Liver Disease Severity - 0 views

  •  
    in those with nonalcoholic fatty liver disease, low adiponectin is associated with the insulin resistance, not the NAFLD.  But of course, insulin resistance leads to NAFLD
Nathan Goodyear

Uncoupling between insulin and rele... [Metab Syndr Relat Disord. 2010] - PubMed - NCBI - 0 views

  •  
    Obese women with PCOS found to have uncoupled insulin and d-chiro-inositol secretion thus worsening insulin resistance
Nathan Goodyear

Insulin increases CSF Abeta42 levels in normal old... [Neurology. 2003] - PubMed - NCBI - 0 views

  •  
    elevated insulin, found in insulin resistance, associated with disordered Beta-amyloid metabolism.
Nathan Goodyear

JAMA Network | Archives of Neurology | Insulin Resistance in Cognitive ImpairmentThe InCHIANTI Study - 0 views

  •  
    insulin resistance shown to play a role in cognitive impairment.  Rising insulin resistance is not just associated with obesity, but also brain dysfunction similar to that in strokes.  This indicates a vascular component in the cognitive function.  The same rise in obesity will likely result in a rise in neurodegenerative disorders.
Nathan Goodyear

Effect of treatment of overt hypothyroidism on insulin resistance - 0 views

  •  
    Thyroid treatment in those with hypothyroidism and insulin resistance provided no benefit to the insulin resistance.  But, Total cholesterol did improve. 
Nathan Goodyear

Metabolic influences on neuroendocrine regulation of reproduction - 0 views

  • Energy storage occurs mainly at the level of white adipose tissue, where adipocytes secrete the anorexigenic adipokine leptin
  • humans and laboratory animals with leptin or insulin deficiency or resistance and/or increased ghrelin levels exhibit delayed or absent puberty and frequently display hypogonadotropic hypogonadism, which prevents fertility
  • Ghrelin suppresses pulsatile gonadotropin-releasing hormone (GnRH) release [14,15], thus serving as a signal to suppress reproduction in times of famine
  • ...4 more annotations...
  • GnRH neurons have been shown to express insulin receptor mRNA and protein [27] and are activated by insulin
  • AgRP and NPY have the opposite (orexigenic) effect, inducing food intake.
  • Neuropeptides derived from POMC/CART neurons exert a potent anorectic action, thus decreasing food intake and body weight
  • Kisspeptins (encoded by KISS1) have been identified in the last decade as the most potent secretagogues of GnRH release.
  •  
    Good, although brief, discussion of the interaction between metabolism and hormones.  Kisspeptin is a GNRH secreatagogue "upstream".   Insulin, Leptin, and Gherlin can inhibit GNRH through resistance and low levels.  Probably a U shaped graph of optimal activity.
Nathan Goodyear

Testosterone deficiency syndrome and cardiovascular health: An assessment of beliefs, knowledge and practice patterns of general practitioners and cardiologists in Victoria, BC - 0 views

  • The vast majority (88%) did not screen cardiac patients for TDS.
  • Testosterone deficiency has a prevalence of 7% in the general population, rising to 20% in elderly males
  • Males with CAD have lower testosterone levels than those with normal coronary angiograms of the same age,5 suggesting that the prevalence of testosterone deficiency is much higher in the CAD population
  • ...14 more annotations...
  • Men with hypertension, another established risk factor for CAD, have lower testosterone compared to normotensive men
  • Recent meta-analyses showed that testosterone levels are generally lower among patients with metabolic syndrome, regardless of the various definitions of metabolic syndrome that are used
  • Testosterone (total and bioavailable) and sex-hormone binding globulin (SHBG) are inversely associated with the prevalence of metabolic syndrome in men between the ages of 40 and 80, and this association persists across racial and ethnic backgrounds
  • ower levels of testosterone and SHBG predict a higher incidence of metabolic syndrome.
  • Low testosterone levels have been related to increased insulin resistance and cardiovascular mortality,12 even in the absence of overt type 2 diabetes mellitus.
  • testosterone levels (total and bioavailable) in middle-aged men are inversely correlated with insulin resistance
  • The Massachusetts Male Aging Study (MMAS) demonstrated that low levels of testosterone and SHBG are independent risk factors for the development of type 2 diabetes,
  • Andropausal men (age 58 ± 7 years) have a higher maximal carotid artery intima-media thickness
  • There is an inverse linear correlation between body mass index (BMI) and wait-to-hip ratio with testosterone and insulin-like growth factor-1 levels.
  • Testosterone supplementation for 1 year in hypogonadal men has been shown to cause a significant improvement in body weight, BMI, waist size, lipid profile, and C-reactive protein levels
  • TRT for 3 months in hypogonadal men with type 2 diabetes significantly improved fasting insulin sensitivity, fasting blood glucose and glycated hemoglobin.
  • Testosterone replacement can improve angina symptoms and delay the onset of cardiac ischemia, likely through a coronary vasodilator mechanism
  • ADT is associated with an increased risk of cardiovascular events, including myocardial infarction and cardiovascular mortality.
  • ADT significantly increases fat mass, decreases lean body mass,29,30 increases fasting plasma insulin and decreases insulin sensitivity31 and increases serum cholesterol and triglyceride levels
  •  
    Startling study on the knowledge of Testosterone and cardiovascular disease in general practitioners and cardiologists in Canada.  Eight-eight percent did not screen patients with cardiovascular disease for low Testosterone.  A whopping 67% of physicians did not know that low T was a risk factor for cardiovascular disease, yet 62% believed Testosterone would increase exercise tolerance. The lack of knowledge displayed by physicians today is staggering and is an indictment of the governing bodies.  This was a survey conducted in Canada so there are obvious limitations to the strength/conclusion of this study.
Nathan Goodyear

Inflammatory cause of metabolic syndrome via brain stress and NF-κB - 0 views

  • Mechanistic studies further showed that such metabolic inflammation is related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect under prolonged nutritional excess
  • intracellular stress-inflammation process for metabolic syndrome has been established in the central nervous system (CNS) and particularly in the hypothalamus
  • the CNS and the comprised hypothalamus are known to govern various metabolic activities of the body including appetite control, energy expenditure, carbohydrate and lipid metabolism, and blood pressure homeostasis
  • ...56 more annotations...
  • Reactive oxygen species (ROS) refer to a class of radical or non-radical oxygen-containing molecules that have high oxidative reactivity with lipids, proteins, and nucleic acids
  • a large measure of intracellular ROS comes from the leakage of mitochondrial electron transport chain (ETC)
  • Another major source of intracellular ROS is the intentional generation of superoxides by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
  • there are other ROS-producing enzymes such as cyclooxygenases, lipoxygenases, xanthine oxidase, and cytochrome p450 enzymes, which are involved with specific metabolic processes
  • To counteract the toxic effects of molecular oxidation by ROS, cells are equipped with a battery of antioxidant enzymes such as superoxide dismutases, catalase, peroxiredoxins, sulfiredoxin, and aldehyde dehydrogenases
  • intracellular oxidative stress has been indicated to contribute to metabolic syndrome and related diseases, including T2D [72; 73], CVDs [74-76], neurodegenerative diseases [69; 77-80], and cancers
  • intracellular oxidative stress is highly associated with the development of neurodegenerative diseases [69] and brain aging
  • dietary obesity was found to induce NADPH oxidase-associated oxidative stress in rat brain
  • mitochondrial dysfunction in hypothalamic proopiomelanocortin (POMC) neurons causes central glucose sensing impairment
  • Endoplasmic reticulum (ER) is the cellular organelle responsible for protein synthesis, maturation, and trafficking to secretory pathways
  • unfolded protein response (UPR) machinery
  • ER stress has been associated to obesity, insulin resistance, T2D, CVDs, cancers, and neurodegenerative diseases
  • brain ER stress underlies neurodegenerative diseases
  • under environmental stress such as nutrient deprivation or hypoxia, autophagy is strongly induced to breakdown macromolecules into reusable amino acids and fatty acids for survival
  • intact autophagy function is required for the hypothalamus to properly control metabolic and energy homeostasis, while hypothalamic autophagy defect leads to the development of metabolic syndrome such as obesity and insulin resistance
  • prolonged oxidative stress or ER stress has been shown to impair autophagy function in disease milieu of cancer or aging
  • TLRs are an important class of membrane-bound pattern recognition receptors in classical innate immune defense
  • Most hypothalamic cell types including neurons and glia cells express TLRs
  • overnutrition constitutes an environmental stimulus that can activate TLR pathways to mediate the development of metabolic syndrome related disorders such as obesity, insulin resistance, T2D, and atherosclerotic CVDs
  • Isoforms TLR1, 2, 4, and 6 may be particularly pertinent to pathogenic signaling induced by lipid overnutrition
  • hypothalamic TLR4 and downstream inflammatory signaling are activated in response to central lipid excess via direct intra-brain lipid administration or HFD-feeding
  • overnutrition-induced metabolic derangements such as central leptin resistance, systemic insulin resistance, and weight gain
  • these evidences based on brain TLR signaling further support the notion that CNS is the primary site for overnutrition to cause the development of metabolic syndrome.
  • circulating cytokines can limitedly travel to the hypothalamus through the leaky blood-brain barrier around the mediobasal hypothalamus to activate hypothalamic cytokine receptors
  • significant evidences have been recently documented demonstrating the role of cytokine receptor pathways in the development of metabolic syndrome components
  • entral administration of TNF-α at low doses faithfully replicated the effects of central metabolic inflammation in enhancing eating, decreasing energy expenditure [158;159], and causing obesity-related hypertension
  • Resistin, an adipocyte-derived proinflammatory cytokine, has been found to promote hepatic insulin resistance through its central actions
  • both TLR pathways and cytokine receptor pathways are involved in central inflammatory mechanism of metabolic syndrome and related diseases.
  • In quiescent state, NF-κB resides in the cytoplasm in an inactive form due to inhibitory binding by IκBα protein
  • IKKβ activation via receptor-mediated pathway, leading to IκBα phosphorylation and degradation and subsequent release of NF-κB activity
  • Research in the past decade has found that activation of IKKβ/NF-κB proinflammatory pathway in metabolic tissues is a prominent feature of various metabolic disorders related to overnutrition
  • it happens in metabolic tissues, it is mainly associated with overnutrition-induced metabolic derangements, and most importantly, it is relatively low-grade and chronic
  • this paradigm of IKKβ/NF-κB-mediated metabolic inflammation has been identified in the CNS – particularly the comprised hypothalamus, which primarily accounts for to the development of overnutrition-induced metabolic syndrome and related disorders such as obesity, insulin resistance, T2D, and obesity-related hypertension
  • evidences have pointed to intracellular oxidative stress and mitochondrial dysfunction as upstream events that mediate hypothalamic NF-κB activation in a receptor-independent manner under overnutrition
  • In the context of metabolic syndrome, oxidative stress-related NF-κB activation in metabolic tissues or vascular systems has been implicated in a broad range of metabolic syndrome-related diseases, such as diabetes, atherosclerosis, cardiac infarct, stroke, cancer, and aging
  • intracellular oxidative stress seems to be a likely pathogenic link that bridges overnutrition with NF-κB activation leading to central metabolic dysregulation
  • overnutrition is an environmental inducer for intracellular oxidative stress regardless of tissues involved
  • excessive nutrients, when transported into cells, directly increase mitochondrial oxidative workload, which causes increased production of ROS by mitochondrial ETC
  • oxidative stress has been shown to activate NF-κB pathway in neurons or glial cells in several types of metabolic syndrome-related neural diseases, such as stroke [185], neurodegenerative diseases [186-188], and brain aging
  • central nutrient excess (e.g., glucose or lipids) has been shown to activate NF-κB in the hypothalamus [34-37] to account for overnutrition-induced central metabolic dysregulations
  • overnutrition can present the cell with a metabolic overload that exceeds the physiological adaptive range of UPR, resulting in the development of ER stress and systemic metabolic disorders
  • chronic ER stress in peripheral metabolic tissues such as adipocytes, liver, muscle, and pancreatic cells is a salient feature of overnutrition-related diseases
  • recent literature supports a model that brain ER stress and NF-κB activation reciprocally promote each other in the development of central metabolic dysregulations
  • when intracellular stresses remain unresolved, prolonged autophagy upregulation progresses into autophagy defect
  • autophagy defect can induce NF-κB-mediated inflammation in association with the development of cancer or inflammatory diseases (e.g., Crohn's disease)
  • The connection between autophagy defect and proinflammatory activation of NF-κB pathway can also be inferred in metabolic syndrome, since both autophagy defect [126-133;200] and NF-κB activation [20-33] are implicated in the development of overnutrition-related metabolic diseases
  • Both TLR pathway and cytokine receptor pathways are closely related to IKKβ/NF-κB signaling in the central pathogenesis of metabolic syndrome
  • Overnutrition, especially in the form of HFD feeding, was shown to activate TLR4 signaling and downstream IKKβ/NF-κB pathway
  • TLR4 activation leads to MyD88-dependent NF-κB activation in early phase and MyD88-indepdnent MAPK/JNK pathway in late phase
  • these studies point to NF-κB as an immediate signaling effector for TLR4 activation in central inflammatory response
  • TLR4 activation has been shown to induce intracellular ER stress to indirectly cause metabolic inflammation in the hypothalamus
  • central TLR4-NF-κB pathway may represent one of the early receptor-mediated events in overnutrition-induced central inflammation.
  • cytokines and their receptors are both upstream activating components and downstream transcriptional targets of NF-κB activation
  • central administration of TNF-α at low dose can mimic the effect of obesity-related inflammatory milieu to activate IKKβ/NF-κB proinflammatory pathways, furthering the development of overeating, energy expenditure decrease, and weight gain
  • the physiological effects of IKKβ/NF-κB activation seem to be cell type-dependent, i.e., IKKβ/NF-κB activation in hypothalamic agouti-related protein (AGRP) neurons primarily leads to the development of energy imbalance and obesity [34]; while in hypothalamic POMC neurons, it primarily results in the development of hypertension and glucose intolerance
  • the hypothalamus, is the central regulator of energy and body weight balance [
  •  
    Great article chronicles the biochemistry of "over nutrition" and inflammation through NF-kappaB activation and its impact on the brain.
Nathan Goodyear

Insulin and Sympathoexcitation: It Is Not All in Your Head - 0 views

  •  
    Insulin has a stimulatory effect on the sympathetic system resulting in elevated B/P.  There is a movement by some to put every diabetic on Insulin early.  This is seriously flawed and will only contribute to further complications.
Nathan Goodyear

Testosterone and the Cardiovascular System: A Comprehensive Review of the Clinical Literature - 0 views

  • Low endogenous bioavailable testosterone levels have been shown to be associated with higher rates of all‐cause and cardiovascular‐related mortality.39,41,46–47 Patients suffering from CAD,13–18 CHF,137 T2DM,25–26 and obesity27–28
  • have all been shown to have lower levels of endogenous testosterone compared with those in healthy controls. In addition, the severity of CAD15,17,29–30 and CHF137 correlates with the degree of testosterone deficiency
  • In patients with CHF, testosterone replacement therapy has been shown to significantly improve exercise tolerance while having no effect on LVEF
  • ...66 more annotations...
  • testosterone therapy causes a shift in the skeletal muscle of CHF patients toward a higher concentration of type I muscle fibers
  • Testosterone replacement therapy has also been shown to improve the homeostatic model of insulin resistance and hemoglobin A1c in diabetics26,68–69 and to lower the BMI in obese patients.
  • Lower levels of endogenous testosterone have been associated with longer duration of the QTc interval
  • testosterone replacement has been shown to shorten the QTc interval
  • negative correlation has been demonstrated between endogenous testosterone levels and IMT of the carotid arteries, abdominal aorta, and thoracic aorta
  • These findings suggest that men with lower levels of endogenous testosterone may be at a higher risk of developing atherosclerosis.
  • Current guidelines from the Endocrine Society make no recommendations on whether patients with heart disease should be screened for hypogonadism and do not recommend supplementing patients with heart disease to improve survival.
  • The Massachusetts Male Aging Study also projects ≈481 000 new cases of hypogonadism annually in US men within the same age group
  • since 1993 prescriptions for testosterone, regardless of the formulation, have increased nearly 500%
  • Testosterone levels are lower in patients with chronic illnesses such as end‐stage renal disease, human immunodeficiency virus, chronic obstructive pulmonary disease, type 2 diabetes mellitus (T2DM), obesity, and several genetic conditions such as Klinefelter syndrome
  • A growing body of evidence suggests that men with lower levels of endogenous testosterone are more prone to develop CAD during their lifetimes
  • There are 2 major potential confounding factors that the older studies generally failed to account for. These factors are the subfraction of testosterone used to perform the analysis and the method used to account for subclinical CAD.
  • The biologically inactive form of testosterone is tightly bound to SHBG and is therefore unable to bind to androgen receptors
  • The biologically inactive fraction of testosterone comprises nearly 68% of the total testosterone in human serum
  • The biologically active subfraction of testosterone, also referred to as bioavailable testosterone, is either loosely bound to albumin or circulates freely in the blood, the latter referred to as free testosterone
  • It is estimated that ≈30% of total serum testosterone is bound to albumin, whereas the remaining 1% to 3% circulates as free testosterone
  • it can be argued that using the biologically active form of testosterone to evaluate the association with CAD will produce the most reliable results
  • English et al14 found statistically significant lower levels of bioavailable testosterone, free testosterone, and free androgen index in patients with catheterization‐proven CAD compared with controls with normal coronary arteries
  • patients with catheterization‐proven CAD had statistically significant lower levels of bioavailable testosterone
  • In conclusion, existing evidence suggests that men with CAD have lower levels of endogenous testosterone,13–18 and more specifically lower levels of bioavailable testosterone
  • low testosterone levels are associated with risk factors for CAD such as T2DM25–26 and obesity
  • In a meta‐analysis of these 7 population‐based studies, Araujo et al41 showed a trend toward increased cardiovascular mortality associated with lower levels of total testosterone, but statistical significance was not achieved (RR, 1.25
  • the authors showed that a decrease of 2.1 standard deviations in levels of total testosterone was associated with a 25% increase in the risk of cardiovascular mortality
  • the relative risk of all‐cause mortality in men with lower levels of total testosterone was calculated to be 1.35
  • higher risk of cardiovascular mortality is associated with lower levels of bioavailable testosterone
  • Existing evidence seems to suggest that lower levels of endogenous testosterone are associated with higher rates of all‐cause mortality and cardiovascular mortality
  • studies have shown that lower levels of endogenous bioavailable testosterone are associated with higher rates of all‐cause and cardiovascular mortality
  • It may be possible that using bioavailable testosterone to perform mortality analysis will yield more accurate results because it prevents the biologically inactive subfraction of testosterone from playing a potential confounding role in the analysis
  • The earliest published material on this matter dates to the late 1930s
  • the concept that testosterone replacement therapy improves angina has yet to be proven wrong
  • In more recent studies, 3 randomized, placebo‐controlled trials demonstrated that administration of testosterone improves myocardial ischemia in men with CAD
  • The improvement in myocardial ischemia was shown to occur in response to both acute and chronic testosterone therapy and seemed to be independent of whether an intravenous or transdermal formulation of testosterone was used.
  • testosterone had no effect on endothelial nitric oxide activity
  • There is growing evidence from in vivo animal models and in vitro models that testosterone induces coronary vasodilation by modulating the activity of ion channels, such as potassium and calcium channels, on the surface of vascular smooth muscle cells
  • Experimental studies suggest that the most likely mechanism of action for testosterone on vascular smooth muscle cells is via modulation of action of non‐ATP‐sensitive potassium ion channels, calcium‐activated potassium ion channels, voltage‐sensitive potassium ion channels, and finally L‐type calcium ion channels
  • Corona et al confirmed those results by demonstrating that not only total testosterone levels are lower among diabetics, but also the levels of free testosterone and SHBG are lower in diabetic patients
  • Laaksonen et al65 followed 702 Finnish men for 11 years and demonstrated that men in the lowest quartile of total testosterone, free testosterone, and SHBG were more likely to develop T2DM and metabolic syndrome.
  • Vikan et al followed 1454 Swedish men for 11 years and discovered that men in the highest quartile of total testosterone were significantly less likely to develop T2DM
  • authors demonstrated a statistically significant increase in the incidence of T2DM in subjects receiving gonadotropin‐releasing hormone antagonist therapy. In addition, a significant increase in the rate of myocardial infarction, stroke, sudden cardiac death, and development of cardiovascular disease was noted in patients receiving antiandrogen therapy.67
  • Several authors have demonstrated that the administration of testosterone in diabetic men improves the homeostatic model of insulin resistance, hemoglobin A1c, and fasting plasma glucose
  • Existing evidence strongly suggests that the levels of total and free testosterone are lower among diabetic patients compared with those in nondiabetics
  • insulin seems to be acting as a stimulant for the hypothalamus to secret gonadotropin‐releasing hormone, which consequently results in increased testosterone production. It can be argued that decreased stimulation of the hypothalamus in diabetics secondary to insulin deficiency could result in hypogonadotropic hypogonadism
  • BMI has been shown to be inversely associated with testosterone levels
  • This interaction may be a result of the promotion of lipolysis in abdominal adipose tissue by testosterone, which may in turn cause reduced abdominal adiposity. On the other hand, given that adipose tissue has a higher concentration of the enzyme aromatase, it could be that increased adipose tissue results in more testosterone being converted to estrogen, thereby causing hypogonadism. Third, increased abdominal obesity may cause reduced testosterone secretion by negatively affecting the hypothalamus‐pituitary‐testicular axis. Finally, testosterone may be the key factor in activating the enzyme 11‐hydroxysteroid dehydrogenase in adipose tissue, which transforms glucocorticoids into their inactive form.
  • increasing age may alter the association between testosterone and CRP. Another possible explanation for the association between testosterone level and CRP is central obesity and waist circumference
  • Bai et al have provided convincing evidence that testosterone might be able to shorten the QTc interval by augmenting the activity of slowly activating delayed rectifier potassium channels while simultaneously slowing the activity of L‐type calcium channels
  • consistent evidence that supplemental testosterone shortens the QTc interval.
  • Intima‐media thickness (IMT) of the carotid artery is considered a marker for preclinical atherosclerosis
  • Studies have shown that levels of endogenous testosterone are inversely associated with IMT of the carotid artery,126–128,32,129–130 as well as both the thoracic134 and the abdominal aorta
  • 1 study has demonstrated that lower levels of free testosterone are associated with accelerated progression of carotid artery IMT
  • another study has reported that decreased levels of total and bioavailable testosterone are associated with progression of atherosclerosis in the abdominal aorta
  • These findings suggest that normal physiologic testosterone levels may help to protect men from the development of atherosclerosis
  • Czesla et al successfully demonstrated that the muscle specimens that were exposed to metenolone had a significant shift in their composition toward type I muscle fibers
  • Type I muscle fibers, also known as slow‐twitch or oxidative fibers, are associated with enhanced strength and physical capability
  • It has been shown that those with advanced CHF have a higher percentage of type II muscle fibers, based on muscle biopsy
  • Studies have shown that men with CHF suffer from reduced levels of total and free testosterone.137 It has also been shown that reduced testosterone levels in men with CHF portends a poor prognosis and is associated with increased CHF mortality.138 Reduced testosterone has also been shown to correlate negatively with exercise capacity in CHF patients.
  • Testosterone replacement therapy has been shown to significantly improve exercise capacity, without affecting LVEF
  • the results of the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not cause an increase in the rate of adverse cardiovascular events
  • Data from 3 meta‐analyses seem to contradict the commonly held belief that testosterone administration may increase the risk of developing prostate cancer
  • One meta‐analysis reported an increase in all prostate‐related adverse events with testosterone administration.146 However, when each prostate‐related event, including prostate cancer and a rise in PSA, was analyzed separately, no differences were observed between the testosterone group and the placebo group
  • the existing data from the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not increase the risk of adverse cardiovascular events
  • the authors correctly point out the weaknesses of their study which include retrospective study design and lack of randomization, small sample size at extremes of follow‐up, lack of outcome validation by chart review and poor generalizability of the results given that only male veterans with CAD were included in this study
    • Nathan Goodyear
       
      The authors here present Total Testosterone as a "confounding" value
    • Nathan Goodyear
       
      This would be HSD-II
  • the studies that failed to find an association between testosterone and CRP used an older population group
  • low testosterone may influence the severity of CAD by adversely affecting the mediators of the inflammatory response such as high‐sensitivity C‐reactive protein, interleukin‐6, and tumor necrosis factor–α
  •  
    Good review of Testosterone and CHD.  Low T is associated with increased all cause mortality and cardiovascular mortality, CAD, CHF, type II diabetes, obesity, increased IMT,  increased severity of CAD and CHF.  Testosterone replacement in men with low T has been shown to improve exercise tolerance in CHF, improve insulin resistance, improve HgbA1c and lower BMI in the obese.
Nathan Goodyear

Therapy in the Early Stage: Incretins - 0 views

  • Increased resistance to insulin action in the skeletal muscle and liver associated with enhanced hepatic glucose output and impaired insulin secretion due to a progressive decline of β-cell function are long-recognized core defects
  • in addition, other mechanisms/organs are involved, augmenting the pathological pathways: adipocytes (altered fat metabolism due to insulin resistance), gastrointestinal tract (incretin deficiency and/or resistance), pancreatic α-cells (hyperglucagonemia and increased hepatic sensitivity to glucagon), kidneys (enhanced glucose reabsorption), and central nervous system (insulin resistance)
  • β-cell failure
    • Nathan Goodyear
       
      and studies have shown that a reduction in insulin function will decrease LH production and thus lead to a decrease in Testosterone production in men.
  • ...2 more annotations...
  • Incretins are gut-derived hormones, members of the glucagon superfamily, released in response to nutrient ingestion (mainly glucose and fat)
  • They exert a wide range of effects, including stimulation of pancreatic insulin secretion in a glucose-dependent manner and play an important role in the local gastrointestinal and whole-body physiology
  •  
    good discussion on incretins and their role in glucose homeostasis. 
Nathan Goodyear

A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance - 0 views

  •  
    Rat study found that High fat and high branch chain amino acid intake long-term leads to insulin resistance.  This occurred through phosphorylation of insulin signaling downstream and differed between lean versus obese individuals.  
Nathan Goodyear

Progestins increase insulin receptor content and i... [Cancer Res. 1990] - PubMed result - 0 views

  •  
    Progestins increase insulin receptor content and insulin stimulation of growth in human breast carcinoma cells.
Nathan Goodyear

Insulin resistance and Alzheimer's disease. [BMB Rep. 2009] - PubMed result - 0 views

  • there are dual mechanisms of brain insulin resistance leading to AD-type neurodegeneration: one mediated by endogenous, CNS factors; and the other, peripheral insulin resistance with excess cytotoxic ceramide production.
  •  
    Insulin resistance has dual mechanism of contribution to Alzheimer's disease
Nathan Goodyear

Metabolic syndrome and insulin resistance in Divis... [Med Sci Sports Exerc. 2009] - PubMed result - 0 views

  • Linemen are at significant risk for metabolic syndrome and insulin resistance compared with other positions. This may be predictive of future health problems in Division 1 collegiate football players, especially linemen
  • There is a strong association between obesity and both metabolic syndrome and insulin resistance in Division 1 collegiate football players
  •  
    college football lineman at increased risk of obesity, insulin resistance, and future health problems
Nathan Goodyear

D-chiro-inositol glycans in insulin signaling and ... [Mol Med. 2010 Nov-Dec] - PubMed result - 0 views

  • The metabolism of DCI is associated with insulin sensitivity and resistance, supporting the concept that second messengers have a role in responses to and resistance to insulin.
  •  
    D-chiro-inositol is a secondary messenger in the insulin signaling pathway
« First ‹ Previous 41 - 60 of 566 Next › Last »
Showing 20 items per page