Skip to main content

Home/ Dr. Goodyear/ Group items tagged co

Rss Feed Group items tagged

Nathan Goodyear

Inflammatory cause of metabolic syndrome via brain stress and NF-κB - 0 views

  • Mechanistic studies further showed that such metabolic inflammation is related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect under prolonged nutritional excess
  • intracellular stress-inflammation process for metabolic syndrome has been established in the central nervous system (CNS) and particularly in the hypothalamus
  • the CNS and the comprised hypothalamus are known to govern various metabolic activities of the body including appetite control, energy expenditure, carbohydrate and lipid metabolism, and blood pressure homeostasis
  • ...56 more annotations...
  • Reactive oxygen species (ROS) refer to a class of radical or non-radical oxygen-containing molecules that have high oxidative reactivity with lipids, proteins, and nucleic acids
  • a large measure of intracellular ROS comes from the leakage of mitochondrial electron transport chain (ETC)
  • Another major source of intracellular ROS is the intentional generation of superoxides by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
  • there are other ROS-producing enzymes such as cyclooxygenases, lipoxygenases, xanthine oxidase, and cytochrome p450 enzymes, which are involved with specific metabolic processes
  • To counteract the toxic effects of molecular oxidation by ROS, cells are equipped with a battery of antioxidant enzymes such as superoxide dismutases, catalase, peroxiredoxins, sulfiredoxin, and aldehyde dehydrogenases
  • intracellular oxidative stress has been indicated to contribute to metabolic syndrome and related diseases, including T2D [72; 73], CVDs [74-76], neurodegenerative diseases [69; 77-80], and cancers
  • intracellular oxidative stress is highly associated with the development of neurodegenerative diseases [69] and brain aging
  • dietary obesity was found to induce NADPH oxidase-associated oxidative stress in rat brain
  • mitochondrial dysfunction in hypothalamic proopiomelanocortin (POMC) neurons causes central glucose sensing impairment
  • Endoplasmic reticulum (ER) is the cellular organelle responsible for protein synthesis, maturation, and trafficking to secretory pathways
  • unfolded protein response (UPR) machinery
  • ER stress has been associated to obesity, insulin resistance, T2D, CVDs, cancers, and neurodegenerative diseases
  • brain ER stress underlies neurodegenerative diseases
  • under environmental stress such as nutrient deprivation or hypoxia, autophagy is strongly induced to breakdown macromolecules into reusable amino acids and fatty acids for survival
  • intact autophagy function is required for the hypothalamus to properly control metabolic and energy homeostasis, while hypothalamic autophagy defect leads to the development of metabolic syndrome such as obesity and insulin resistance
  • prolonged oxidative stress or ER stress has been shown to impair autophagy function in disease milieu of cancer or aging
  • TLRs are an important class of membrane-bound pattern recognition receptors in classical innate immune defense
  • Most hypothalamic cell types including neurons and glia cells express TLRs
  • overnutrition constitutes an environmental stimulus that can activate TLR pathways to mediate the development of metabolic syndrome related disorders such as obesity, insulin resistance, T2D, and atherosclerotic CVDs
  • Isoforms TLR1, 2, 4, and 6 may be particularly pertinent to pathogenic signaling induced by lipid overnutrition
  • hypothalamic TLR4 and downstream inflammatory signaling are activated in response to central lipid excess via direct intra-brain lipid administration or HFD-feeding
  • overnutrition-induced metabolic derangements such as central leptin resistance, systemic insulin resistance, and weight gain
  • these evidences based on brain TLR signaling further support the notion that CNS is the primary site for overnutrition to cause the development of metabolic syndrome.
  • circulating cytokines can limitedly travel to the hypothalamus through the leaky blood-brain barrier around the mediobasal hypothalamus to activate hypothalamic cytokine receptors
  • significant evidences have been recently documented demonstrating the role of cytokine receptor pathways in the development of metabolic syndrome components
  • entral administration of TNF-α at low doses faithfully replicated the effects of central metabolic inflammation in enhancing eating, decreasing energy expenditure [158;159], and causing obesity-related hypertension
  • Resistin, an adipocyte-derived proinflammatory cytokine, has been found to promote hepatic insulin resistance through its central actions
  • both TLR pathways and cytokine receptor pathways are involved in central inflammatory mechanism of metabolic syndrome and related diseases.
  • In quiescent state, NF-κB resides in the cytoplasm in an inactive form due to inhibitory binding by IκBα protein
  • IKKβ activation via receptor-mediated pathway, leading to IκBα phosphorylation and degradation and subsequent release of NF-κB activity
  • Research in the past decade has found that activation of IKKβ/NF-κB proinflammatory pathway in metabolic tissues is a prominent feature of various metabolic disorders related to overnutrition
  • it happens in metabolic tissues, it is mainly associated with overnutrition-induced metabolic derangements, and most importantly, it is relatively low-grade and chronic
  • this paradigm of IKKβ/NF-κB-mediated metabolic inflammation has been identified in the CNS – particularly the comprised hypothalamus, which primarily accounts for to the development of overnutrition-induced metabolic syndrome and related disorders such as obesity, insulin resistance, T2D, and obesity-related hypertension
  • evidences have pointed to intracellular oxidative stress and mitochondrial dysfunction as upstream events that mediate hypothalamic NF-κB activation in a receptor-independent manner under overnutrition
  • In the context of metabolic syndrome, oxidative stress-related NF-κB activation in metabolic tissues or vascular systems has been implicated in a broad range of metabolic syndrome-related diseases, such as diabetes, atherosclerosis, cardiac infarct, stroke, cancer, and aging
  • intracellular oxidative stress seems to be a likely pathogenic link that bridges overnutrition with NF-κB activation leading to central metabolic dysregulation
  • overnutrition is an environmental inducer for intracellular oxidative stress regardless of tissues involved
  • excessive nutrients, when transported into cells, directly increase mitochondrial oxidative workload, which causes increased production of ROS by mitochondrial ETC
  • oxidative stress has been shown to activate NF-κB pathway in neurons or glial cells in several types of metabolic syndrome-related neural diseases, such as stroke [185], neurodegenerative diseases [186-188], and brain aging
  • central nutrient excess (e.g., glucose or lipids) has been shown to activate NF-κB in the hypothalamus [34-37] to account for overnutrition-induced central metabolic dysregulations
  • overnutrition can present the cell with a metabolic overload that exceeds the physiological adaptive range of UPR, resulting in the development of ER stress and systemic metabolic disorders
  • chronic ER stress in peripheral metabolic tissues such as adipocytes, liver, muscle, and pancreatic cells is a salient feature of overnutrition-related diseases
  • recent literature supports a model that brain ER stress and NF-κB activation reciprocally promote each other in the development of central metabolic dysregulations
  • when intracellular stresses remain unresolved, prolonged autophagy upregulation progresses into autophagy defect
  • autophagy defect can induce NF-κB-mediated inflammation in association with the development of cancer or inflammatory diseases (e.g., Crohn's disease)
  • The connection between autophagy defect and proinflammatory activation of NF-κB pathway can also be inferred in metabolic syndrome, since both autophagy defect [126-133;200] and NF-κB activation [20-33] are implicated in the development of overnutrition-related metabolic diseases
  • Both TLR pathway and cytokine receptor pathways are closely related to IKKβ/NF-κB signaling in the central pathogenesis of metabolic syndrome
  • Overnutrition, especially in the form of HFD feeding, was shown to activate TLR4 signaling and downstream IKKβ/NF-κB pathway
  • TLR4 activation leads to MyD88-dependent NF-κB activation in early phase and MyD88-indepdnent MAPK/JNK pathway in late phase
  • these studies point to NF-κB as an immediate signaling effector for TLR4 activation in central inflammatory response
  • TLR4 activation has been shown to induce intracellular ER stress to indirectly cause metabolic inflammation in the hypothalamus
  • central TLR4-NF-κB pathway may represent one of the early receptor-mediated events in overnutrition-induced central inflammation.
  • cytokines and their receptors are both upstream activating components and downstream transcriptional targets of NF-κB activation
  • central administration of TNF-α at low dose can mimic the effect of obesity-related inflammatory milieu to activate IKKβ/NF-κB proinflammatory pathways, furthering the development of overeating, energy expenditure decrease, and weight gain
  • the physiological effects of IKKβ/NF-κB activation seem to be cell type-dependent, i.e., IKKβ/NF-κB activation in hypothalamic agouti-related protein (AGRP) neurons primarily leads to the development of energy imbalance and obesity [34]; while in hypothalamic POMC neurons, it primarily results in the development of hypertension and glucose intolerance
  • the hypothalamus, is the central regulator of energy and body weight balance [
  •  
    Great article chronicles the biochemistry of "over nutrition" and inflammation through NF-kappaB activation and its impact on the brain.
Nathan Goodyear

Circulating 2-hydroxy and 16-α hydroxy estrone levels and risk of breast canc... - 1 views

  • 2-OH estrogens bind to the estrogen receptor (ER) with affinity equivalent to or greater than estradiol
  • previous prospective studies have not observed any significant associations with either 2-OH or 16α-OH estrone or the ratio of the two metabolites and breast cancer risk overall.
    • Nathan Goodyear
       
      whether that risk is increased or decreased
  • it has been hypothesized that metabolism favoring the 2-OH over the 16α-OH pathway may be inversely associated with breast cancer risk (28).
  • ...24 more annotations...
  • they may act as only weak mitogens (14, 15), or as inhibitors of proliferation
  • No significant associations have been observed between 2-OH estrone and breast cancer risk
  • While 16α-OH estrone binds to the ER with lower affinity than estradiol, it binds covalently (18-20) and once bound, fails to down-regulate the receptor (21). Thus, 16α-OH estrone stimulates cell proliferation in a manner comparable to estradiol in ER+ breast cancer cell lines
  • In this large prospective study of 2-OH and 16α-OH estrone metabolites and breast cancer risk, we did not observe any significant associations overall with either individual metabolite or with the ratio of the two metabolites
  • we observed positive associations with 2-OH estrone and the 2:16α-OH estrone ratio among women with lower BMI and women with ER-/PR-tumors,
  • To date, several epidemiologic studies have examined the association between the 2-OH and 16α-OH estrogen metabolites and breast cancer risk with inconclusive results.
  • circulating estrogen levels have been associated more strongly with ER+/PR+ tumors than with ER-/PR- tumors
  • our results do not support the hypothesis that metabolism favoring the 2-OH estrone pathway is more beneficial to breast cancer risk than that favoring the 16α-OH estrone pathway
  • we observed significant positive associations of both 2-OH estrone and the 2:16α-OH estrone ratio with ER-/PR-tumors
  • Three (30, 32, 33) of four (30-33) studies observed RRs above 1 for the association between 16α-OH estrone and breast cancer risk (range of RRs=1.23-2.47); none of the point estimates was statistically significant though one trend was suggestive
  • based on animal studies, 2-OH estrone and the 2:16α-OH estrone ratio have been hypothesized to be inversely associated with breast cancer risk
  • No significant associations have been observed between 2-OH estrone, 16α-OH estrone, or the 2:16α-OH estrone ratio and breast cancer risk and the direction of the estimates is not consistent across studies.
    • Nathan Goodyear
       
      better worded is no consistent, significant associations.   There are some studies that point to the 16 catecholestrogen and increased cancer risk; limited studies show negative effects of 2 catecholestrogens on cancer risk and prospective studies available pretty much dispel the idea that the 2:16 ratio has an risk predictability.
  • we observed a suggestive inverse association with 16α-OH estrone and a significant positive association with the 2:16α-OH estrone ratio among lean women, suggesting possible associations in a low estrogen environment.
  • 16α-OH estrone increases unscheduled DNA synthesis in mouse mammary cells (27) and hence also may be genotoxic
  • Although 2-OH estrogens are capable of redox cycling, the semiquinones and quinones (i.e., the oxidized forms) form stable DNA adducts that are reversible without DNA destruction
  • In our population of PMH nonusers, we observed no associations with ER+/PR+ tumors, but significant positive associations with 2-OH estrone and the 2:16α-OH estrone ratio among women with ER-/PR- tumors
    • Nathan Goodyear
       
      one of the few studies to find this association between 2 catecholestrogens and the 2:16 ratio and ER-/PR-tumors
  • Animal and in vitro studies have shown that hydroxy estrogens can induce DNA damage either directly, through the formation of quinones and DNA adducts, or indirectly, through redox cycling and the generation of reactive oxygen species
    • Nathan Goodyear
       
      genotoxic via directe DNA adducts and indirectly via ROS; this is in addition to the proliferative effect
  • we observed a significant positive association between the 2:16α-OH estrone ratio and breast cancer risk among lean women
  • No significant associations have been observed with the 2:16α-OH estrone ratio
  • In the Danish study, no associations were observed with either ER+ or ER- tumors among PMH nonusers
  • significant positive associations with 2-OH estrone and the 2:16α-OH estrone ratio were observed among PMH users with ER+, but not ER-, tumors
  • it is possible that the genotoxicity of 2-OH estrone plays a role in hormone receptor negative tumors
  • 4-OH estrogens have a greater estrogenic potential than 2-OH estrogens, given the lower dissociation rate from estrogen receptors compared with estradiol (61), and are potentially more genotoxic since the quinones form unstable adducts, leading to depurination and mutation in vitro and in vivo
  • the balance between the catechol (i.e., 2-OH and 4-OH) and methoxy (i.e., 2-Me and 4-Me) estrogens may impact risk
  •  
    The risks of estrogen metabolism are not clear cut.  Likely never will be due to the complexity of individual metabolism.  This study found no correlation between 2OH-Estrone and 2OH:16alpha-Estrone and breast cancer risk in ER+/PR+ breast cancer.  Translated: no benefit in breast cancer risk in 2OH-Estrone metabolism or increased 2OH:16alpha estrone metabolism.  There was a positive association between 2OH-Estrone and 2:16alpha-Estrone in women with ER-/PR- tumors and low BMI.
  •  
    pakistani sexy girls escort in dubai // russian sexy girsl escort in dubai // sexy girls in dubai // sexy girls escort in dubai //
Nathan Goodyear

Progesterone metabolites regulate induction, growth, and suppression of estrogen- and p... - 0 views

  • in vitro studies had shown that the progesterone metabolites, 5α-dihydroprogesterone (5αP) and 3α-dihydroprogesterone (3αHP), respectively, exhibit procancer and anticancer effects on receptor-negative human breast cell lines
  • Onset and growth of ER/PR-negative human breast cell tumors were significantly stimulated by 5αP and inhibited by 3αHP
  • When both hormones were applied simultaneously, the stimulatory effects of 5αP were abrogated by the inhibitory effects of 3αHP and vice versa
  • ...31 more annotations...
  • Treatment with 3αHP subsequent to 5αP-induced tumor initiation resulted in suppression of further tumorigenesis and regression of existing tumors
  • Tumorigenesis of ER/PR-negative breast cells is significantly enhanced by 5αP and suppressed by 3αHP, the outcome depending on the relative concentrations of these two hormones in the microenvironment in the breast regions
  • The findings show that the production of 5αP greatly exceeds that of 3αHP in ER/PR-negative tumors and that treatment with 3αHP can effectively block tumorigenesis and cause existing tumors to regress
  • hypothesis that a high 3αHP-to-5αP concentration ratio in the microenvironment may foster normalcy in noncancerous breast regions.
  • a large proportion (about 30% to 60%) of breast tumors are ER and/or PR negative
  • about 90% of normal proliferating breast epithelial cells are receptor negative
  • Our previous in vitro studies had shown that breast tissues and cell lines readily convert progesterone to 5α-pregnanes, such as 5αP, and delta-4-pregnenes, such as 3αHP (Figure ​(Figure1),1), and that tumorous breast tissues [15] and tumorigenic breast cell lines [16] produce higher levels of 5αP and lower levels of 3αHP than do normal breast tissues and nontumorigenic cell lines
  • The progesterone metabolism studies suggested that increases in 5αP and decreases in 3αHP production accompany the shift toward breast cell neoplasia and tumorigenicity
  • In vitro studies on five different human breast cell lines showed that cell proliferation and detachment are significantly increased by 5αP and decreased by 3αHP
  • the prevailing theory of hormonal regulation of breast cancer, as well as hormone-based therapies, revolves around estrogen and/or progesterone and ER/PR-positive breast cells and tumors.
  • Not only do these "receptor-negative" breast cancers fail to benefit from current hormonal therapies, but they also generally exhibit more-aggressive biologic behaviors and poorer prognosis than the receptor-positive ones
  • The results of the studies reported here show for the first time that the progesterone metabolites, 5αP and 3αHP, act as hormones that regulate ER/PR-negative breast tumor formation, growth, and regression
  • The onset of the ER/PR-negative human breast cell tumors in mice was considerably accelerated, and the growth significantly stimulated, by just one or two applications of 5αP
  • In contrast, 3αHP retarded onset of tumor formation, suppressed tumor growth, and inhibited or regressed existing 5αP-induced tumors
  • When both hormones were administered simultaneously, the effects of one were abrogated by the effects of the other.
  • The 5αPR and 3αHPR (which are associated with the plasma membranes of both ER/PR-positive [19] and ER/PR-negative [29] cells) are distinct from each other and from known ER, PR, androgen, and corticosteroid receptors, and lack affinity for other steroids, such as progesterone, estrogen, androgens, corticosteroids, and other progesterone metabolites
  • Levels of 5αPR are upregulated by 5αP itself and estradiol, and downregulated by 3αHP in both ER/PR-positive and -negative cells
  • ndications are that 5αP acts via the surface receptor-linked mitogen-activated protein kinase (MAPK; Erk1/2) pathway; 5αP significantly stimulates activation of Erk1/2 [30], increases the Bcl-2/Bax expression ratio [18] and actin depolymerization [31], and decreases expression of actin and adhesion plaque-associated vinculin [31], resulting in decreased apoptosis and increased mitosis and cell detachment
  • 3αHP appears to suppress protein kinase C (PKC), phospholipase C (PLC), Ca2+ mobilization (unpublished observations), and the Bcl-2/Bax expression ratio [18], and increases expression of the cell-cycle inhibitor p21 [18], resulting in increased apoptosis and decreased proliferation and detachment of breast cell lines.
  • serum from mice with tumors had significantly more 5αP than 3αHP
  • the tumors, which on average had about threefold higher concentrations of 5αP than the respective sera, and >10-fold higher 5αP than 3αHP levels
  • Previous in vitro metabolism studies showed that human breast tumor tissues convert significantly more progesterone to 5α-pregnanes like 5αP and less to 4-pregnenes like 3αHP than do paired normal (nontumorous) tissues
  • Similar differences in progesterone metabolism and enzyme gene expressions were observed between tumorigenic and nontumorigenic breast cell lines
  • breast carcinomas are able to synthesize progesterone
  • The current findings, along with the previous in vitro studies, suggest that the relative concentrations of 5αP and 3αHP in the breast microenvironment constitute important autocrine/paracrine determinants not only for tumorigenesis but also for potential regression of tumors and the maintenance of normalcy of ER/PR-negative breast cells/tissues.
  • Evidence presented here shows that a high concentration of 5αP, relative to 3αHP in the microenvironment, promotes initiation and growth of tumors, whereas a higher concentration of 3αHP, relative to 5αP, suppresses tumorigenesis and promotes normalcy
  • 5α-reductase and 5αPR levels are upregulated by 5αP
  • in the 3αHP-treated mice, the elevated 3αHP levels, relative to 5αP, in the microenvironment could have opposed progression to xenograft neoplasia by its inherent anticancer actions and the suppression of 5αP synthesis and 5αPR expression
  • the opposing actions of the progesterone metabolites also appear to exert some control over the estrogen-regulated effects on breast cancer by their ability to modulate ER numbers in ER-positive cells
  • because both ER/PR-negative and ER/PR-positive, as well as normal and tumorigenic human breast cell lines, have been shown to respond to 5αP and 3αHP in vitro, it is suggested that these endogenously produced progesterone metabolites may also play regulatory hormonal roles in ER/PR-positive breast cancers, as well as in the maintenance of normalcy in nontumorous breast tissues.
  • The in vivo data provide further evidence that progesterone metabolites, such as 5αP and 3αHP, deserve to be considered as active hormones in their own right, rather than inactive waste products
  •  
    Progesterone metabolites and breast cancer
Nathan Goodyear

Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxid... - 0 views

  • reducing oxidative stress with powerful antioxidants, is an important strategy for cancer prevention, as it would suppress one of the key early initiating steps where DNA damage and tumor-stroma metabolic-coupling begins. This would prevent cancer cells from acting as metabolic “parasites
  • Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the “reverse Warburg effect.
  • Then, oxidative stress, in cancer-associated fibroblasts, triggers the activation of two main transcription factors, NFκB and HIF-1α, leading to the onset of inflammation, autophagy, mitophagy and aerobic glycolysis in the tumor microenvironment
  • ...38 more annotations...
  • oxidative stress and ROS, produced in cancer-associated fibroblasts, has a “bystander effect” on adjacent cancer cells, leading to DNA damage, genomic instability and aneuploidy, which appears to be driving tumor-stroma co-evolution
  • tumor cells produce and secrete hydrogen peroxide, thereby “fertilizing” the tumor microenvironment and driving the “reverse Warburg effect.”
  • This type of stromal metabolism then produces high-energy nutrients (lactate, ketones and glutamine), as well as recycled chemical building blocks (nucleotides, amino acids, fatty acids), to literally “feed” cancer cells
  • loss of stromal caveolin (Cav-1) is sufficient to drive mitochondrial dysfunction with increased glucose uptake in fibroblasts, mimicking the glycolytic phenotype of cancer-associated fibroblasts.
  • oxidative stress initiated in tumor cells is transferred to cancer-associated fibroblasts.
  • Then, cancer-associated fibroblasts show quantitative reductions in mitochondrial activity and compensatory increases in glucose uptake, as well as high ROS production
  • These findings may explain the prognostic value of a loss of stromal Cav-1 as a marker of a “lethal” tumor microenvironment
  • aerobic glycolysis takes place in cancer-associated fibroblasts, rather than in tumor cells, as previously suspected.
  • our results may also explain the “field effect” in cancer biology,5 as hydrogen peroxide secreted by cancer cells, and the propagation of ROS production, from cancer cells to fibroblasts, would create an increasing “mutagenic field” of ROS production, due to the resulting DNA damage
  • Interruption of this process, by addition of catalase (an enzyme that detoxifies hydrogen peroxide) to the tissue culture media, blocks ROS activity in cancer cells and leads to apoptotic cell death in cancer cells
  • In this new paradigm, cancer cells induce oxidative stress in neighboring cancer-associated fibroblasts
  • cancer-associated fibroblasts have the largest increases in glucose uptake
  • cancer cells secrete hydrogen peroxide, which induces ROS production in cancer-associated fibroblasts
  • Then, oxidative stress in cancer-associated fibroblast leads to decreases in functional mitochondrial activity, and a corresponding increase in glucose uptake, to fuel aerobic glycolysis
  • cancer cells show significant increases in mitochondrial activity, and decreases in glucose uptake
  • fibroblasts and cancer cells in co-culture become metabolically coupled, resulting in the development of a “symbiotic” or “parasitic” relationship.
  • cancer-associated fibroblasts undergo aerobic glycolysis (producing lactate), while cancer cells use oxidative mitochondrial metabolism.
  • We have previously shown that oxidative stress in cancer-associated fibroblasts drives a loss of stromal Cav-1, due to its destruction via autophagy/lysosomal degradation
  • a loss of stromal Cav-1 is sufficient to induce further oxidative stress, DNA damage and autophagy, essentially mimicking pseudo-hypoxia and driving mitochondrial dysfunction
  • loss of stromal Cav-1 is a powerful biomarker for identifying breast cancer patients with early tumor recurrence, lymph-node metastasis, drug-resistance and poor clinical outcome
  • this type of metabolism (aerobic glycolysis and autophagy in the tumor stroma) is characteristic of a lethal tumor micro-environment, as it fuels anabolic growth in cancer cells, via the production of high-energy nutrients (such as lactate, ketones and glutamine) and other chemical building blocks
  • the upstream tumor-initiating event appears to be the secretion of hydrogen peroxide
  • one such enzymatically-active protein anti-oxidant that may be of therapeutic use is catalase, as it detoxifies hydrogen peroxide to water
  • numerous studies show that “catalase therapy” in pre-clinical animal models is indeed sufficient to almost completely block tumor recurrence and metastasis
  • by eliminating oxidative stress in cancer cells and the tumor microenvironment,55 we may be able to effectively cut off the tumor's fuel supply, by blocking stromal autophagy and aerobic glycolysis
  • breast cancer patients show systemic evidence of increased oxidative stress and a decreased anti-oxidant defense, which increases with aging and tumor progression.68–70 Chemotherapy and radiation therapy then promote further oxidative stress.69 Unfortunately, “sub-lethal” doses of oxidative stress during cancer therapy may contribute to tumor recurrence and metastasis, via the activation of myofibroblasts.
  • a loss of stromal Cav-1 is associated with the increased expression of gene profiles associated with normal aging, oxidative stress, DNA damage, HIF1/hypoxia, NFκB/inflammation, glycolysis and mitochondrial dysfunction
  • cancer-associated fibroblasts show the largest increases in glucose uptake, while cancer cells show corresponding decreases in glucose uptake, under identical co-culture conditions
  • Thus, increased PET glucose avidity may actually be a surrogate marker for a loss of stromal Cav-1 in human tumors, allowing the rapid detection of a lethal tumor microenvironment.
  • it appears that astrocytes are actually the cell type responsible for the glucose avidity.
  • In the brain, astrocytes are glycolytic and undergo aerobic glycolysis. Thus, astrocytes take up and metabolically process glucose to lactate.7
  • Then, lactate is secreted via a mono-carboxylate transporter, namely MCT4. As a consequence, neurons use lactate as their preferred energy substrate
  • both astrocytes and cancer-associated fibroblasts express MCT4 (which extrudes lactate) and MCT4 is upregulated by oxidative stress in stromal fibroblasts.34
  • In accordance with the idea that cancer-associated fibroblasts take up the bulk of glucose, PET glucose avidity is also now routinely used to measure the extent of fibrosis in a number of human diseases, including interstitial pulmonary fibrosis, postsurgical scars, keloids, arthritis and a variety of collagen-vascular diseases.
  • PET glucose avidity and elevated serum inflammatory markers both correlate with poor prognosis in breast cancers.
  • PET signal over-estimates the actual anatomical size of the tumor, consistent with the idea that PET glucose avidity is really measuring fibrosis and inflammation in the tumor microenvironment.
  • human breast and lung cancer patients can be positively identified by examining their exhaled breath for the presence of hydrogen peroxide.
  • tumor cell production of hydrogen peroxide drives NFκB-activation in adjacent normal cells in culture6 and during metastasis,103 directly implicating the use of antioxidants, NFκB-inhibitors and anti-inflammatory agents, in the treatment of aggressive human cancers.
  •  
    Good description of the communication between cancer cells and fibroblasts.  This theory is termed the "reverse Warburg effect".
Nathan Goodyear

Hormonal Modulation in Aging Patients with Erectile Dysfunction and Metabolic Syndrome - 0 views

  • Hypogonadism and MetS are strongly associated [12, 13, 16], having even been demonstrated that with the increasing number of MetS parameters there is a proportional raise in the incidence of hypogonadism
  • increasing number of MetS components is inversely associated with T levels
  • the presence of MetS did not prove to be a significant determinant of hypogonadism, as it did not lead to a decline in T levels, in MetS patients with already established hypogonadism, the increasing number of MetS features was associated with further decline in T
  • ...15 more annotations...
  • In the setting of MetS, hypertriglyceridemia and increased WC have been reported as the most important determinants of hypogonadism
  • recent literature consistently associates obesity not only with higher risk of hypogonadism [4, 6, 27] but also with lower T levels
  • Visceral adiposity has been particularly related with reduction of T and SHBG levels (independent of other metabolic disorders)
  • WC was one of the MetS parameters with the greatest influence in T levels decrease, presenting itself as a strong risk factor for hypogonadism development
  • MetS-related T decline was not accompanied by an increase in pituitary LH levels, suggesting impairment in gonadotropin secretion
  • The molecules behind this smoothing compensatory effect of GnRH/LH are still unknown, but estrogens and insulin, as well as leptin, TNF-α, and other adipokines, were proposed candidates
  • fat stores undertake an increase aromatization of androgens, therefore raising estrogen levels [9, 15], which in turn decrease LH secretion
  • our data contradicts the concept that estradiol exerts a negative feedback on hypothalamic GnRH secretion
  • taking into account that high estradiol levels have already been described as the only abnormality in a subset of patients with ED, the hypothesis that the later might not only be caused by androgen deficiency is becoming increasingly evident
  • it has been reported that the chronic exposure to phosphodiesterase type 5 inhibitors (PDE5i), widely used for the treatment of ED, may influence serum estradiol levels
  • thyroid disorders (specially hyperthyroidism) have been related to ED and hypogonadism, and so must be considered in a sexual-dysfunction setting
  • It is clear from the current literature that collecting a more thorough hormonal panel might be a wise approach to further uncover hormonal relations
    • Nathan Goodyear
       
      outstanding point.  This hits to the point that Low T is the effect not the cause.
  • We concluded that in ED patients with hypogonadism and MetS, the attenuated response of HPG axis (normal or low LH levels) might not always be due to an underlying adiposity-dependent estrogen-raising effect.
  • our findings indicate that ED, aging, and estradiol might have a stronger connection than what is currently described in the literature.
  • this study underlines the importance of the collection of a full hormonal panel in ED men
  •  
    low T strongly associated with metabolic syndrome in men.
Nathan Goodyear

Activity and expression of progesterone metabolizing 5α-reductase, 20α-hydrox... - 0 views

  • Exposure of human breast cell lines (MCF-7, MCF-10A, and ZR-75-1) to 5α-pregnanes results in changes associated with neoplasia, including increased proliferation and decreased attachment [1], depolymerization of F-actin [2] and decreases in adhesion plaque-associated vinculin
  • Exposure to 4-pregnenes results, in general, in opposite (anti-cancer-like) effects
  • 5αR1 has been detected in various androgen-independent organs, such as the liver and brain
  • ...10 more annotations...
  • 5αR2 has been found predominantly in androgen-dependent organs, such as epididymis and prostate
  • The 5α-pregnanes:4-pregnenes ratio was about 8-fold higher in tumorous than in nontumorous breast tissue after an 8-hour incubation with [14C]progesterone
  • Studies with breast cell lines, showing that 5α-pregnanes stimulate proliferation and decrease attachment of cells
  • both tissue and breast cell line studies suggest that an elevated level of progesterone 5α-reductase activity may be an indicator of breast tumorigenesis, regardless of presence or absence of ER and/or PR
  • 5αR1 is the main isoform expressed in human breast carcinomas [29] and that 5αR2 may not be associated with risk of breast cancer
  • the differences in 5α-pregnane production between the cells is due primarily to a difference in 5αR1 expression
  • As in the case of 5α-reductase activity, the presence or absence of ER and PR do not appear to be related to 5α-reductase expression.
  • the conversion of progesterone to the cancer promoting 5α-pregnanes is significantly higher in the human tumorigenic breast cell lines
  • lthough both 5αR1 and 5αR2 are expressed by these cells, the elevated 5α-reductase activity appears to be the result of significantly greater expression of 5αR1
  • Changes in progesterone metabolizing enzyme expression (resulting in enzyme activity changes) may be responsible for promoting breast cancer progression due to increased production of tumor-promoting 5α-pregnanes and decreased production of anti-cancer 20α – and 3α-4-pregnenes
  •  
    balance of enzyme production between 5alpha-reductase and 20alpha-hydroxysteroid oxidoreductase and 3alpha(beta)-hydroxysteroid oxidoreductase play role in carcinogenesis and proliferation in the balance of production of progesterone metabolites. The 5alpha pregnenes are pro carcinogenic  and the 4-pregnenes are anti carcinogenic.
Nathan Goodyear

The Epidemiology of Uric Acid and Fructose - 0 views

  • Previous studies have found that high doses of vitamin C supplementation lower serum uric acid via a uricosuric effect
  • fructose consumption coincided with the increasing trend of serum uric acid
  • Fructose is known to induce uric acid production by increasing ATP degradation to AMP, a uric acid precursor (85, 93, 94) and thus, within minutes after fructose infusion, serum uric acid levels rise
  •  
    fructose intake, metabolic dysfunction, and elevated uric acid.
Nathan Goodyear

ENDOGENOUS SEX HORMONES, BLOOD PRESSURE CHANGE, AND RISK OF HYPERTENSION IN POSTMENOPAU... - 0 views

  • Among postmenopausal women, serum T was elevated in hypertensive participants [9, 11, 12], and total T, free T, and DHEA were positively correlated with SBP
  • T and DHEA were attenuated by adjustment for BMI, reflecting either a confounding or a mediating effect of obesity
  • SHBG concentration was inversely associated with risk of hypertension and longitudinal rise of BP over time
  • ...8 more annotations...
  • SHBG has been postulated as a marker for insulin resistance
  • In vitro studies showed that insulin inhibits SHBG production from hepatoma cells
  • In intervention studies, successful weight loss and weight maintenance increased SHBG in men with obesity
  • E2 may also induce insulin resistance and thereafter tend to raise BP.
  • strong association between E2 and measures of insulin resistance in postmenopausal women, independent of adiposity
  • In postmenopausal women that received hormone replacement therapy, estrogen therapy increased mononuclear cell secretion of tumor necrosis factor alpha (TNF-α)
  • estrone levels were positively associated with inflammatory markers in postmenopausal women
  • higher baseline concentrations of endogenous E2, total and bioavailable T, and DHEA and lower concentration of SHBG were associated with a higher incidence of hypertension and a greater increase in BP during follow-up
  •  
    Data from MESA study finds that increasing endogenous Estradiol, Total and free Testosterone, DHEA, and lower SHBG were associated with hypertension in postmenopausal women.
fitspresso

https://www.sightcare-co.com/ - 0 views

  •  
    Sight Care | Official Site sightcare-co.com · by Sight Care Sight Care Only $49/Bottle Limited Time Offer! Sight Care Special Deal + Special 67% Discount Save $600 + 180 Days Money Back Guarantee #1.The Sight Care vision supplement is a dietary supplement for helping you improve your vision and brain health. Sight Care eye supplements are formulated to provide a synergistic blend of vitamins, minerals, antioxidants, and other bioactive compounds that are essential for maintaining healthy vision Regular Price: 147/per bottle Only for: $49/per bottle What Is Sight Care? This powerful vision support supplement is made with a unique blend of natural ingredients and plant extracts that work together synergistically to deliver numerous benefits for your brain and eye health. With Sight Care, you can expect to experience increased energy levels, improved eyesight, and an overall revitalized sense of well-being. Taking care of your vision health is not just about seeing clearly; it's also about maintaining your overall brain health. As we age, our vision deteriorates, and our eyes and brain can experience a decline in function, but there are steps you can take to support your visual and cognitive health. Regular eye exams are crucial for detecting and treating vision problems early on, and making healthy choices such as eating a nutritious diet and exercising regularly can also help. However, with busy schedules, it can be difficult to find the time to devote to a healthy lifestyle. This is where the Sight Care supplement comes in. It's designed to support both vision and brain health with its blend of natural ingredients that have been shown to promote healthy vision and cognitive function You must not compromise your eye health for momentary exhilaration. If you are glued to digital screens day and night, you must take measures to prevent eye diseases like age-related macular degeneration. The SightCare vision supplement has been made using 100% natura
fitspresso

https://www.fitspresso-co.com/ - 0 views

  •  
    FitSpresso™ | Official Site fitspresso-co.com FitSpresso Only $39/Bottle Limited Time Offer! FitSpresso Special Deal + Special 51% Discount Save $660 + 180 Days Money Back Guarantee FitSpresso Herpesyl Five Star A dietary product formulated to assist users in reducing weight can increase other advantages that can support overall health. This product can assist users in getting closer to the desirable body weight. Regular Price: 149/per bottle Only for: $39/per bottle Buy Now What IsFitSpresso? FitSpresso is promoted as a natural supplement that comes in the form of diet pills, and it can aid in rapid and efficient weight loss, similar to many other supplements. The term "natural supplements refers to a nutritional supplement that is made entirely of natural, chemical-free materials. You can utilize these organic ingredients to aid in natural weight loss. It can speed up your body's metabolism and assist with other crucial processes. All parts of our bodies are impacted by weight increase, and not only do we need to deal with the increased weight, but we also need to deal with the numerous problems and illnesses that come along with it. This refers to the risk of developing chronic cardiac conditions, low blood pressure, and, in some circumstances, problems with blood sugar. However, FitSpresso even with its bright and bold claims, can help you efficiently manage your weight and completely avoid these extra uncomfortable problems. FitSpresso is a supplement that comes in the form of a pill, which makes it tasty, simple to swallow, and handy. According to the manufacturer, these diet tablets are GMO-free and toxic-free, making them edible. This is why we have things such as weight loss supplements. Thanks to modern advancements, we can just take a dietary supplement pill to bring about significant weight loss in a completely healthy and natural manner. Not only this, but dietary supplements can also support healthy blood sugar levels and help with
Nathan Goodyear

Sex, Receptors, and Attachment: A Review of Individual Factors Influencing Response to ... - 0 views

  • Estrogen upregulates OT and OT receptor (OTR) production
  • testosterone promotes both OTR binding in the hypothalamus (Johnson et al., 1991) as well as production of AVP (Delville et al., 1996), which has many opponent actions to OT
  • men and women show differences in plasma OT levels
  •  
    Oxytocin and libido.
Nathan Goodyear

Antitumor activity of dichloroacetate on C6 glioma cell: in vitro and in vivo evaluation - 0 views

  • the oral bioavailability of DCA is nearly 100%
  • the oral bioavailability of DCA is almost 100%.
  • DCA can penetrate into the traditional chemotherapy sanctuary sites. Interestingly, it was reported that DCA could penetrate across the BBB,30 exhibiting the potential activity for brain therapy.
  • ...23 more annotations...
  • Clinical studies of DCA have shown reduced lactate levels
  • It has been reported that DCA activates the PDH by inhibition of PDK in a dose-dependent manner, and results in increased delivery of pyruvate into the mitochondria
  • The antitumor activity of DCA on nonsmall cell lung cancer, breast cancer, glioblastomas, and endometrial and prostate cancer cells has been demonstrated
  • It is well known that many chemotherapeutic agents have a low therapeutic index in brain tumors.
  • The most common metabolic hallmark of cancer cells is their propensity to metabolize glucose to lactic acid at a high rate even in the presence of oxygen
  • Pyruvate dehydrogenase kinase (PDK) is a gate-keeping enzyme that regulates the flux of carbohydrates (pyruvate) into the mitochondria
  • In the presence of activated PDK, pyruvate dehydrogenase (PDH), a critical enzyme that converts pyruvate to acetyl-CoA instead of lactate in glycolysis, is inhibited, limiting the entry of pyruvate into the mitochondria.
  • the level of Hsp70 was significantly decreased
  • DCA can penetrate the BBB
  • It has been reported that DCA treatment resulted in an increase in the proportion of tumor cells in the S phase, showing a decrease in proliferation as well as the induction of apoptosis
  • Heat shock proteins (HSPs) are involved in protein folding, aggregation, transport, and/or stabilization by acting as a molecular chaperone, leading to the inhibition of apoptosis by both caspase-dependent and/or independent pathways
  • HSPs are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion, and metastasis
  • Considering the fact that high expression of HSPs is essential for cancer survival, the inhibition of HSPs is an important strategy of anticancer therapy.
  • In addition, after 5 years of continued treatment with oral DCA at a dose of 25 mg/kg, the serum DCA levels are only slightly increased compared with the levels after the first several doses, also showing its safety for oral administration at this dose.
  • DCA can enter the circulation rapidly after oral administration and then generate the stimulation of PDH activity generally within minutes.
  • Our in vivo results in tumor tissues indicated that DCA significantly induced ROS production and decreased MMP in tumor tissues
  • The numbers of microvessels in the DCA treatment groups were significantly decreased, suggesting the potential antiangiogenic effect of DCA
  • Under hypoxic conditions, hypoxia-inducible factor (HIF-1α) is activated and induces angiogenesis
  • In addition, HIF-1α can also induce the expression of PDK,48 which can inhibit the activity of PDH
  • The inhibition effect of DCA on HIF-1α would decrease vascular endothelial growth factor and inhibit angiogenesis
  • the antiangiogenic effect in the 25 mg/kg treatment group was lower than that in 75 mg/kg or 125 mg/kg treatment groups
  • In conclusion, DCA induces the apoptosis of C6 cells through the activation of the mitochondrial pathway, arresting the cell cycle of C6 cells in S phase and down-regulating Hsp70 expression.
  • DCA significantly induced the ROS production and decreased the MMP in tumor tissues. Our in vivo antitumor activity results also indicated that DCA has an antiangiogenic effect
  •  
    DCA as proposed therapy in cancer.
Nathan Goodyear

From the Cover: Pharmacologic doses of ascorbate act as a prooxidant and decrease growt... - 0 views

  • An extensive panel of 43 tumor and 5 normal cell lines were exposed to ascorbate in vitro for ≤2 h to mimic clinical pharmacokinetics
  • effective concentration that decreased survival 50% (EC50) was determined. EC50 was <10 mM for 75% of tumor cells tested, whereas cytotoxicity was not evident in normal cells with >20 mM ascorbate
  • The addition of catalase to the medium ameliorated death of ovarian carcinoma (Ovcar5), pancreatic carcinoma (Pan02), and glioblastoma (9L) cells exposed to 10 mM ascorbate (1 h), indicating cytotoxicity was mediated by H2O2
  • ...8 more annotations...
  • A treatment dose of 4 g ascorbate/kg body weight either once or twice daily did not produce any discernible adverse effects
  • Xenograft experiments showed that parenteral ascorbate as the only treatment significantly decreased both tumor growth and weight by 41–53%
  • Peak plasma concentrations of ascorbate approached 30 mM
  • Pharmacologic concentrations of ascorbate decreased tumor volumes 41–53% in diverse cancer types known for both their aggressive growth and limited treatment options.
  • Our findings showed that pharmacologic ascorbic acid concentrations were cytotoxic to many types of cancer cells in vitro (Fig. 1A) and significantly impeded tumor progression in vivo without toxicity to normal tissues
  • The amelioration of ascorbate cytotoxicity in vitro by the addition of catalase was consistent among sensitive cancer cells (Fig. 1B) and points unambiguously to H2O2 generation in the extracellular medium
  • the current in vivo data support that pharmacologic ascorbate concentrations, which can readily be achieved in humans (Fig. 3E), diminished growth of several aggressive cancer types in mice (Fig. 2) without causing apparent adverse effects.
  • These intratumoral H2O2 concentrations of >125 μM persisted for >3 h after ascorbate administration
  •  
    Tumor xenograft model in mice finds reduction in growth rates of ovarian cancer, pancreatic cancer, and glioblastoma with daily IV vitamin C.
Nathan Goodyear

Deficient Glutathione in the Pathophysiology of Mycotoxin-Related Illness - 0 views

  • Decreased function of the enzymes of glutathione production results in a microenvironment depleted of glutathione on a chronic basis
  • In humans, deficiency of glutathione can lead to chronic conditions [97], including chronic asthma
  •  
    Mycotoxins deplete glutathione production and this depletion of glutathione is a portion go the toxicity/ill effects related to mycotoxins.  This article also points to evidence that glutathione can actually be employed in the treatment of mycotoxin related conditions/illnesses.
felipp windsor

Thank You The Dental Co. - 1 views

I was deeply worried when I noticed that my 9 year-old daughter got some problems with her teeth. I then brought her to a nearby dentist, but I found out that she was not that capable of answering ...

started by felipp windsor on 30 Sep 13 no follow-up yet
Nathan Goodyear

Blastocystis hominis and Endolimax nana Co-Infection Resulting in Chronic Diarrhea in a... - 0 views

  •  
    B hominis and E nana co-infection cause of GI disturbance in immunocompetent male
becomea paramedic

I Passed The Paramedic Recruitment Process on My First Attempt - 1 views

I really wanted to become a paramedic in the UK. That is why I went online and sought out the help of HowToBecomeAParamedic. They gave me useful insider tips, advice and products (which I bought,...

become a paramedic

started by becomea paramedic on 29 Sep 11 no follow-up yet
Nathan Goodyear

Role of Oxidative Stress and the Microenvironment in Breast Cancer Development and Prog... - 0 views

  • oxidative stress leads to HIF-1α accumulation
  • Oxidative stress generated by breast cancer cells activates HIF-1α and NFκB in fibroblasts, leading to autophagy and lysosomal degradation of Cav-1
  • increased levels of hydrogen peroxide in exhaled breath condensate from patients with localized breast malignancy, associated with increased clinical severity
  • ...18 more annotations...
  • Comparing mitochondrial metabolic activity revealed a difference between stroma and epithelial cells
  • Overexpression of NOX4 in normal breast epithelial cells results in cellular senescence, resistance to apoptosis, and tumorigenic transformation, as well as increased aggressiveness of breast cancer cells
  • metalloproteinases (MMP) such as MMP-2, MMP-3, and MMP-9 increase extracellular matrix turnover and are themselves activated by oxidative stress
  • Lowered expression of Cav-1 not only leads to myofibroblast conversion and inflammation but also seems to impact aerobic glycolysis, leading to secretion of high energy metabolites such as pyruvate and lactate that drive mitochondrial oxidative phosphorylation in cancer cells
  • Reverse Warburg Effect
  • secreted transforming growth factor β (TGFβ), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF), fibroblast growth factor 2, and stromal-derived factor 1 (SDF1) are able to activate fibroblasts and increase cancer cell proliferation
  • oxidative stress has an important role in the initiation and preservation of breast cancer progression
  • cancer preventive role of healthy mitochondria
  • the cancer cells produce hydrogen peroxide and by driving the “Reverse Warburg Effect” initiate oxidative stress in fibroblasts. As a result of this process, fibroblasts exhibited reduced mitochondrial activity, increased glucose uptake, ROS, and metabolite production.
  • Oxidative stress results from an imbalance between unstable reactive species lacking one or more unpaired electrons (superoxide anion, hydrogen peroxide, hydroxyl radical, reactive nitrogen species) and antioxidants
  • cancer cells are able to induce drivers of oxidative stress, autophagy and mitophagy: HIF-1α and NFκB in surrounding stroma fibro-blasts
  • Studies show that loss of Cav-1 in adjacent breast cancer stroma fibroblasts can be prevented by treatment with N-acetyl cysteine, quercetin, or metformin
  • However, diets rich in antioxidants have fallen short in sufficiently preventing cancer
  • hydrogen peroxide is one of the main factors that can push fibroblasts and cancer cells into senescence
  • It is widely held that HIF-1α function is dependent upon its location within the tumor microenvironment. It acts as a tumor promoter in CAFs and as a tumor suppressor in cancer cells
  • It was reported that overexpression of recombinant (SOD2) (Trimmer et al., 2011) or injection of SOD, catalase, or their pegylated counterparts can block recurrence and metastasis in mice
  • obstructing oxidative stress in the tumor microenvironment can lead to mitophagy and promote breast cancer shutdown is a promising discovery for the development of future therapeutic interventions.
  • Recent studies show that in the breast cancer microenvironment, oxidative stress causes mitochondrial dysfunction
  •  
    Really fascinating article on tumor signaling. The article points to a complex signaling between cancer cells and stromal fibroblasts that results in myofibroblast transformation that increases the microenvironment favorability of cancer. This article points to oxidative stress as the primary driving force.  
Nathan Goodyear

Exercise-Associated Muscle Cramps - 0 views

  • athletes who develop EAMC often ingest similar amounts of fluid during exercise as do their noncramping counterparts
  • Oral fluid ingestion may be ineffective, and intravenous fluid may provide a faster delivery for athletes suffering from acute EAMC
  • It is interesting that stretching the affected muscle almost immediately relieves EAMC
  • ...9 more annotations...
  • Stretching, the primary treatment for acute EAMC
  • National Athletic Trainers’ Association recommends that athletes prone to muscle cramping add 0.3 to 0.7 g/L of salt to their drinks to stave off muscle cramps
  • Others have recommended adding higher amounts of sodium (about 3.0 to 6.0 g/L) to sports drinks based on the frequency of EAMC
  • intravenous infusion of fluids removes this delay, and it has been used to aid athletes who develop acute EAMC
  • maintaining hydration and adequate electrolyte levels is a good prevention strategy for individuals susceptible to EAMC
  • Fluid volumes of 1.8 L per hour have been well tolerated by tennis athletes who are susceptible to EAMC
  • Monitoring an athlete’s body weight is an easy method of ensuring adequate fluid replacement and individualizes each athlete’s fluid needs
  • the National Athletic Trainers’ Association and the American College of Sports Medicine recommend a volume of fluid that allows for less than a 2% body weight reduction
  • Endurance training may also serve as an effective means of preventing EAMC by expanding plasma volume and the extracellular fluid compartment15 and delaying neuromuscular fatigue
  •  
    Exercise associated muscle cramps or EAMC is not worked out.  The theories include dehydration, mineral/electrolyte deficiencies, and neuromuscular activity.
Nathan Goodyear

Inborn-like errors of metabolism are determinants of breast cancer risk, clinical respo... - 0 views

  • We now recognize that human cancers evolve in an environment of metabolic stress. Rapidly proliferating tumor cells deprived of adequate oxygen, nutrients, hormones and growth factors up-regulate pathways that address these deficiencies to overcome hypoxia (HIF), vascular insufficiency (VEGF), growth factor deprivation (EGFR, HER2) and the loss of hormonal support (ER, PR, AR) all to enhance survival and proliferation
  • RAS, PI3K, TP53 and MYC
  • The results suggest that breast cancer could be preceded by systemic subclinical disturbances in glucose-insulin homeostasis characterized by mild, likely asymptomatic, IEM-like biochemical changes
  • ...16 more annotations...
  • The process would include variable periods of hyperinsulinemia with the consequent systemic MYC activation of glycolysis, glutaminolysis, structural lipidogenesis and further exacerbation of hypoglycemia, the result of MYC's known role as an inhibitor of liver gluconeogenesis
  • The metabolic changes we describe in breast cancer arise in concert with IEM-like changes in oxidative phosphorylation as detected by increased values of the ratio lactate/pyruvate (Supplementary Table 2A, 2B) characteristic of Ox/Phos deficiency [25]. In our study, 76% (70/92) of the European breast cancer patients had lactate/pyruvate ratios values higher than the normal value of 25.8
  • four-fold higher frequency of cancer (including breast) in patients with energy metabolism disorders
  • growing recognition that cancer cells differ from their normal counterparts in their use of nutrients, synthesis of biomolecules and generation of energy
  • glutamine concentrations in the cancer patients were reduced to nearly 1/8 of the levels observed in the normal population
  • blood concentrations of aspartate (p = 1.7e-67, FDR = 8.3e-67) (Figure ​(Figure1E)1E) and glutamate (p = 6.4e-96, FDR = 6.2e-95) (Figure ​(Figure1F)1F) were nearly 10 fold higher than the normal ranges of 0–5 μM/L and 40 μM/L, respectively
  • glutamine consumption associated with parallel increases in glutamate and aspartate (Figure ​(Figure1A1A red arrows) is considered a hallmark of MYC-driven “glutaminolysis”
  • Gln/Glu ratio inversely correlates with i- late stage metabolic syndrome and with ii- increased chance of death
  • changes in glutamine consumption, reflected by the Gln/Glu ratio could provide a metabolic link between breast cancer initiation and diabetes, reflective of a systemic metabolic reprogramming from glucose to glutamine as the preferred source of precursors for biosynthetic reactions and cellular energy
  • lower Gln/Glu ratios inversely correlated with insulin resistance and the risk of diabetes
  • the metabolic dependencies of cancer characterized by excessive glycolysis, glutaminolysis and malignant lipidogenesis, previously considered a consequence of local tumor DNA aberration [23] could, instead, represent a systemic biochemical aberration that predates and very likely promotes tumorigenesis
  • these metabolic disturbances would be expected to remain extant after therapeutic interventions
  • accumulation of very long chain acylcarnitines such as C14:1-OH (p = 0.0, FDR = 0.0), C16 (p = 0.0, FDR = 0.0), C18 (p = 0.0, FDR = 0.0) and C18:1 (p = 1.73e-322, FDR = 1.16-321) and lipids containing VLCFA (lysoPC a C28:0) (p = 1.14-e95, FDR = 1.65e-95) in the blood of breast and colon cancer patients
  • Among the most powerful metabolic equations for MYC-activation is that which links the widely used MYC-driven desaturation marker ratio of SFA/MUFA to the MYC glutaminolysis-associated ratio of (Asp/Gln)
  • liver dysfunction shares many features with both IEM and cancer suggesting a role for hepatic dysfunction in carcinogenesis
  • cancer “conscripts” the human genome to meet its needs under conditions of systemic metabolic stress
  •  
    Breast cancer is a metabolic disease.  Now, where have I heard that cancer is a metabolic disease?
1 - 20 of 149 Next › Last »
Showing 20 items per page