Skip to main content

Home/ Dr. Goodyear/ Group items tagged metabolite

Rss Feed Group items tagged

Nathan Goodyear

Urinary Estrogens and Estrogen Metabolites and Subsequent Risk of Breast Cancer among P... - 0 views

  • both 2- and 4-catechol estrogen metabolites bind to the ER with affinities comparable with estradiol, 4-catechol estrogen metabolites have lower dissociation rates than estradiol and an enhanced ability to upregulate ER-dependent processes
  • 2-catechol estrogen metabolites act as either weak mitogens (39) or weak inhibitors of cell proliferation
  • While 16α-hydroxyestrone binds to the ER with lower affinity than estradiol, it binds covalently (41) and leads to a constitutively activated ER
  • ...15 more annotations...
  • 4-hydroxyestradiol and 16α-hydroxyestrone increasing proliferation and decreasing apoptosis in a manner similar to estradiol; however, these effects were achieved only at concentrations 10-fold higher than estradiol (39). In contrast, 2-hydroxyestradiol did not have substantial proliferative or antiapoptotic effects
  • In our study, the associations with both 2-hydroxyestrone and 16α-hydroxyestrone were nonsignificantly inverse and we did not observe a consistent trend or significant associations between the 2-hydroxyestrone:16α-hydroxyestrone ratio and breast cancer risk
  • Ratios of the 3 hydroxylation pathways were not significantly associated with risk although the 2:16-pathway and 4:16-pathway ratios were suggestively inversely associated
  • a significant inverse association with the ratio of parent estrogens to estrogen metabolites
  • several potentially estrogenic and genotoxic mechanisms
  • Estrogen metabolites also can be genotoxic
  • Catechol estrogens can be oxidized into quinones and induce DNA damage directly through the formation of DNA adducts, or indirectly via redox cycling and generation of reactive oxygen species
  • the oxidized forms of the catechol estrogens differ in their ability to damage DNA through adducts, with oxidized 2-catechols forming stable and reversible DNA adducts and oxidized 4-catechols forming unstable adducts, which lead to depurination and mutations
  • 2- and 4-catechols have been shown to produce reactive oxygen species and induce oxidative DNA damage
  • act independently from the ER
  • 16α-Hydroxyestrone also may be genotoxic
  • While the catechol estrogens have estrogenic and genotoxic potential, the methylated catechol estrogens, which are catechol estrogens with one hydroxyl group methylated, have been hypothesized to lower the risk of breast cancer
  • The suggested mechanisms are indirect, by decreasing circulating levels of catechol estrogens and thereby the opportunity for catechols to exert genotoxic or proliferative effects, or direct, by inhibiting tumor growth and inducing apoptosis
  • the balance between phase I (oxidation) and phase II (methylation) metabolism of estrogen may be important in hormonally related cancer development.
  • Despite the estrogenic and genotoxic potential of many of the estrogen metabolites, we only observed a significantly increased breast cancer risk with one estrogen metabolite, 17-epiestriol, which has particularly strong estrogenic activity and binds to both ERα and ERβ with an affinity comparable with estradiol
  •  
    review of estrogen metabolites and breast cancer risk in premenopausal women.
Nathan Goodyear

Estrogen receptor β and the progression of prostate cancer: role of 5α-andros... - 0 views

  • In the prostate, ERβ is highly expressed in the epithelial compartment, where it is the prevailing isoform
  • In the gland, DHT may be either reversibly 3α- or irreversibly 3β-hydroxylated by the different 3α- and 3β-hydroxysteroid dehydrogenases respectively (Steckelbroeck et al. 2004); these transformations generate two metabolites respectively 3α-diol and 3β-Adiol, which are both unable to bind the AR. Instead, 3β-Adiol displays a high affinity for ERβ (Kuiper et al. 1998, Nilsson et al. 2001), and it has been proposed that this metabolite may play a key role in prostate development
  • ERβ signaling, in contrast to ERα, seems to act as a suppressor of prostate growth, and may be positively involved in breast cancer
  • ...4 more annotations...
  • 3β-Adiol counteracts PC cell proliferation in vitro
  • 3β-Adiol counteracts the biological actions of its androgenic precursors testosterone and DHT
  • functional antagonism of 3β-Adiol appears to be molecularly independent from the activation of the androgenic pathway
  • the action of 3β-Adiol is mediated, at the molecular levels, by the estrogenic pathway.
  •  
    another awesome article dealing with hormone metabolites. Physicians that don't understand metabolites and receptors may be doing more harm than good.   One of the mainstays of the treatment of metastatic prostate disease is androgen deprivation therapy.  This article requires a reassessment of this due to the DHT metabolite 3-beta androstanediol.  This metabolite is produced from DHT production via the enzyme 3beta HSD.  This metabolite binds to ER beta, an estrogen receptor, and inhibits proliferation, migration, promotes adhesion (limits spreading), and stimulates apoptosis.  This is contrast to 3-alpha androstanediol.  Androgen deprivation therapy will decrease 3-beta androstanediol.  This is the likely reason for the increased aggressive prostate cancer found in those men using 5 alpha reductase inhibitors.
Nathan Goodyear

Progesterone metabolites regulate induction, growth, and suppression of estrogen- and p... - 0 views

  • in vitro studies had shown that the progesterone metabolites, 5α-dihydroprogesterone (5αP) and 3α-dihydroprogesterone (3αHP), respectively, exhibit procancer and anticancer effects on receptor-negative human breast cell lines
  • Onset and growth of ER/PR-negative human breast cell tumors were significantly stimulated by 5αP and inhibited by 3αHP
  • When both hormones were applied simultaneously, the stimulatory effects of 5αP were abrogated by the inhibitory effects of 3αHP and vice versa
  • ...31 more annotations...
  • Treatment with 3αHP subsequent to 5αP-induced tumor initiation resulted in suppression of further tumorigenesis and regression of existing tumors
  • Tumorigenesis of ER/PR-negative breast cells is significantly enhanced by 5αP and suppressed by 3αHP, the outcome depending on the relative concentrations of these two hormones in the microenvironment in the breast regions
  • The findings show that the production of 5αP greatly exceeds that of 3αHP in ER/PR-negative tumors and that treatment with 3αHP can effectively block tumorigenesis and cause existing tumors to regress
  • hypothesis that a high 3αHP-to-5αP concentration ratio in the microenvironment may foster normalcy in noncancerous breast regions.
  • a large proportion (about 30% to 60%) of breast tumors are ER and/or PR negative
  • about 90% of normal proliferating breast epithelial cells are receptor negative
  • Our previous in vitro studies had shown that breast tissues and cell lines readily convert progesterone to 5α-pregnanes, such as 5αP, and delta-4-pregnenes, such as 3αHP (Figure ​(Figure1),1), and that tumorous breast tissues [15] and tumorigenic breast cell lines [16] produce higher levels of 5αP and lower levels of 3αHP than do normal breast tissues and nontumorigenic cell lines
  • The progesterone metabolism studies suggested that increases in 5αP and decreases in 3αHP production accompany the shift toward breast cell neoplasia and tumorigenicity
  • In vitro studies on five different human breast cell lines showed that cell proliferation and detachment are significantly increased by 5αP and decreased by 3αHP
  • the prevailing theory of hormonal regulation of breast cancer, as well as hormone-based therapies, revolves around estrogen and/or progesterone and ER/PR-positive breast cells and tumors.
  • Not only do these "receptor-negative" breast cancers fail to benefit from current hormonal therapies, but they also generally exhibit more-aggressive biologic behaviors and poorer prognosis than the receptor-positive ones
  • The results of the studies reported here show for the first time that the progesterone metabolites, 5αP and 3αHP, act as hormones that regulate ER/PR-negative breast tumor formation, growth, and regression
  • The onset of the ER/PR-negative human breast cell tumors in mice was considerably accelerated, and the growth significantly stimulated, by just one or two applications of 5αP
  • In contrast, 3αHP retarded onset of tumor formation, suppressed tumor growth, and inhibited or regressed existing 5αP-induced tumors
  • When both hormones were administered simultaneously, the effects of one were abrogated by the effects of the other.
  • The 5αPR and 3αHPR (which are associated with the plasma membranes of both ER/PR-positive [19] and ER/PR-negative [29] cells) are distinct from each other and from known ER, PR, androgen, and corticosteroid receptors, and lack affinity for other steroids, such as progesterone, estrogen, androgens, corticosteroids, and other progesterone metabolites
  • Levels of 5αPR are upregulated by 5αP itself and estradiol, and downregulated by 3αHP in both ER/PR-positive and -negative cells
  • ndications are that 5αP acts via the surface receptor-linked mitogen-activated protein kinase (MAPK; Erk1/2) pathway; 5αP significantly stimulates activation of Erk1/2 [30], increases the Bcl-2/Bax expression ratio [18] and actin depolymerization [31], and decreases expression of actin and adhesion plaque-associated vinculin [31], resulting in decreased apoptosis and increased mitosis and cell detachment
  • 3αHP appears to suppress protein kinase C (PKC), phospholipase C (PLC), Ca2+ mobilization (unpublished observations), and the Bcl-2/Bax expression ratio [18], and increases expression of the cell-cycle inhibitor p21 [18], resulting in increased apoptosis and decreased proliferation and detachment of breast cell lines.
  • serum from mice with tumors had significantly more 5αP than 3αHP
  • the tumors, which on average had about threefold higher concentrations of 5αP than the respective sera, and >10-fold higher 5αP than 3αHP levels
  • Previous in vitro metabolism studies showed that human breast tumor tissues convert significantly more progesterone to 5α-pregnanes like 5αP and less to 4-pregnenes like 3αHP than do paired normal (nontumorous) tissues
  • Similar differences in progesterone metabolism and enzyme gene expressions were observed between tumorigenic and nontumorigenic breast cell lines
  • breast carcinomas are able to synthesize progesterone
  • The current findings, along with the previous in vitro studies, suggest that the relative concentrations of 5αP and 3αHP in the breast microenvironment constitute important autocrine/paracrine determinants not only for tumorigenesis but also for potential regression of tumors and the maintenance of normalcy of ER/PR-negative breast cells/tissues.
  • Evidence presented here shows that a high concentration of 5αP, relative to 3αHP in the microenvironment, promotes initiation and growth of tumors, whereas a higher concentration of 3αHP, relative to 5αP, suppresses tumorigenesis and promotes normalcy
  • 5α-reductase and 5αPR levels are upregulated by 5αP
  • in the 3αHP-treated mice, the elevated 3αHP levels, relative to 5αP, in the microenvironment could have opposed progression to xenograft neoplasia by its inherent anticancer actions and the suppression of 5αP synthesis and 5αPR expression
  • the opposing actions of the progesterone metabolites also appear to exert some control over the estrogen-regulated effects on breast cancer by their ability to modulate ER numbers in ER-positive cells
  • because both ER/PR-negative and ER/PR-positive, as well as normal and tumorigenic human breast cell lines, have been shown to respond to 5αP and 3αHP in vitro, it is suggested that these endogenously produced progesterone metabolites may also play regulatory hormonal roles in ER/PR-positive breast cancers, as well as in the maintenance of normalcy in nontumorous breast tissues.
  • The in vivo data provide further evidence that progesterone metabolites, such as 5αP and 3αHP, deserve to be considered as active hormones in their own right, rather than inactive waste products
  •  
    Progesterone metabolites and breast cancer
Nathan Goodyear

Progesterone Metabolites Regulate Breast Cell Tumors - 0 views

  •  
    As much fanfare that is given to ER/PR + breast cancer, the large percentage of breast cancers are ER/PR -.  Thus, hormonal therapy doesn't work...at least that is how the story goes. This study finds the metabolites of Progesterone to be equally telling.  Two Progesterone metabolites play significant roles in growth versus inhibition of growth.  The metabolite 5alpha-dihydroprogesterone is procarcingenic in in vitro and in vivo studies and the metabolite 3alpha-dihydroprogesterone inhibits the pro growth effects in the same in vitro and in vivo studies.
Nathan Goodyear

The 4-Pregnene and 5α-Pregnane Progesterone Metabolites Formed in Nontumorous... - 0 views

  • We report here the first evidence that tumorous breast tissue exhibits elevated 5α-reductase activity, which promotes significant increases in 5α-pregnanes, especially 5αP,4 whereas the normal (nontumorous) breast tissue produces more 4-pregnenes, especially 3αHP
  • 3αHP and other 4-pregnenes inhibit, whereas 5αP and other 5α-pregnanes stimulate, breast cell proliferation and detachment
  • it is evident that breast tissue can convert progesterone into two classes of metabolites: the δ-4-pregnenes (which retain the C4–5 double bond), and the 5α-reduced 21-carbon steroids (5α-pregnanes)
  • ...12 more annotations...
  • irreversible action of 5α-reductase
  • in normal (nontumorous) breast tissue, the 4-pregnene metabolites of progesterone greatly exceeded the 5α-pregnanes, whereas in tumorous tissue, 5α-pregnanes exceeded 4-pregnenes.
  • These differences in 5α-pregnane and 4-pregnene amounts were largely attributable to differences in 5αP and 3αHP production in tumorous and nontumorous tissues
  • the metabolic activities were in general similar, regardless of the age and ER state of the patient or whether she was pre- or postmenopausal.
  • These findings suggest greatly elevated 5α-reductase activity in tumorous, as compared with nontumorous, breast tissue.
  • progesterone metabolites that retain the C-4 double bond (i.e., the 4-pregnenes) exert an antiproliferative effect in the three cell lines that were tested, whereas the 5α-pregnanes stimulate breast cell line proliferation.
  • the degree of mitogenicity would be determined by the ratio of 5α-pregnanes:4-pregnenes. Tissues with a high 4-pregnene:5α-pregnane ratio would maintain a higher degree of normalcy, whereas those with a high 5α-pregnane:4-pregnene ratio would tend toward tumorigenicity
  • The observations that progesterone metabolites affect both ER-positive and ER-negative cells as well as tumorigenic (MCF-7) and nontumorigenic (MCF-10A) cells strengthen the argument that these factors may be endocrinologically relevant for all forms of breast cancer.
  • progesterone metabolites as the active endocrine/paracrine/autocrine factors
  • Estrogen-based therapies elicit responses in only one-third of all breast cancer patients, and most of these show relapse.
  • the metabolic activities were in general similar, regardless of the age and ER state of the patient or whether she was pre- or postmenopausal.
    • Nathan Goodyear
       
      Interesting that the effect of progesterone metabolites were found to be independent from ER status, age, and pre/post menopause
  •  
    Different progesterone metabolites shown to have different tumor effects.  Implications are that, just as estrogen metabolism effects cancer risk, so does progesterone metabolism.
Nathan Goodyear

Progesterone metabolites in breast cancer - 1 views

  • P metabolites produced within breast tissues might be independently active hormones functioning as cancer-promoting or -inhibiting regulatory agents
  • these P metabolites function as independent pro-or anti-cancer autocrine/paracrine hormones that regulate cell proliferation, adhesion, apoptosis and cytoskeletal, and other cell status molecules via novel receptors located in the cell membrane and intrinsically linked to cell signaling pathways
  • only a fraction of all breast cancer patients respond to this estrogen-based therapy and the response is only temporary
  • ...30 more annotations...
  • P serves as the precursor for the major steroid hormones (androgens, estrogens, corticosteroids) produced by the gonadal and adrenal cortical tissues.
  • 5α-pregnane, 5β-pregnane, and 4-pregnene metabolites of P
  • These P-metabolizing enzymes included 5α-reductase, 5β-reductase, 3α-hydroxysteroid oxido-reductase (3α-HSO), 3β-HSO, 20α-HSO, 20β-HSO, 6α(β)-, 11β-, 17-, and 21-hydroxylase, and C17–20-lyase
  • Reduction of P to 5α-pregnanes is catalyzed by 5α-reductase and the direct 5α-reduced metabolite of P is 5α-pregnane-3,20-dione (5αP). The 5α-reductase reaction is irreversible
  • The two 4-pregnenes resulting from direct P conversion are 4-pregnen-3α-ol-20-one (3αHP) and 4-pregnen-20α-ol-3-one (20αHP), catalyzed by the actions of 3α-HSO and 20α-HSO respectively
  • the P-metabolizing enzyme activities identified in human breast tissues and cell lines were: 5α-reductase, 3α-HSO, 3β-HSO, 20α-HSO, and 6α-hydroxylase
  • In normal breast tissue, conversion to 4-pregnenes greatly exceeded the conversion to 5α-pregnanes, whereas in tumorous tissue, conversion to 5α-pregnanes greatly exceeded that to 4-pregnenes
  • The results indicated that P 5α-reductase activity is significantly higher, whereas P 3α-HSO and 20α-HSO activities are significantly lower in tumor than in normal tissues
  • he results showed that production of 5α-pregnanes was higher and that of 4-pregnenes was lower in tumorigenic (e.g. MCF-7) than in nontumorigenic (e.g. MCF-10A) cells (Fig. 3c⇑), while differences in ER/P status did not appear to play a role
  • The 5α-pregnane-to-4-pregnene ratios were 7- to 20-fold higher in the tumorigenic than in the nontumorigenic cell lines
  • altered direction in P metabolism, and hence in metabolite ratios, was due to significantly elevated 5α-reductase and depressed 3α- and 20α-HSO activities in breast tumor tissues and tumorigenic cells. It appeared, therefore, that changes in P-metabolizing enzyme activities might be related to the shift toward mammary cell tumorigenicity and neoplasia
  • In vivo, changes in enzyme activity can result from changes in levels of the enzyme due to changes in expression of the mRNA coding for the enzyme, or from changes in the milieu in which the enzyme operates (such as temperature and pH, and concentrations of cofactors, substrates, products, competitors, ions, phospholipids, and other molecules)
  • Overall, the enzyme activity and expression studies strongly suggest that 5α-reductase stimulation and 3α- and 20α-HSO suppression are associated with the transition from normalcy to cancer of the breast
  • The level of expression of 5α-reductase is up-regulated by estradiol and P in the uterus (Minjarez et al. 2001) and by 5α-dihydrotestosterone (DHT) in the prostate
  • 3αHP inhibited whereas 5αP-stimulated proliferation
  • Stimulation in cell numbers was also observed when cells were treated with other 5α-pregnanes, such as 5α-pregnan-3α-ol-20-one, 5α-pregnan-20α-ol-3-one, and 5α-pregnane-3α,20α-diol, whereas other 4-pregnenes such as 20α-HP and 4-pregnene-3α,20α-diol resulted in suppression of cell proliferation
  • Stimulation of cell proliferation with 5αP and inhibition with 3αHP were also observed in all other breast cell lines examined, whether ER/P-negative (MCF-10A, MDA-MB-231) or ER/P-positive (T47D, ZR-75-1) and whether requiring estrogen for tumorigenicity (MCF-7, T47D) or not (MDA-MB-231), or whether they are nontumorigenic (
  • αHP resulted in significant increases in apoptosis and decreases in mitosis, leading to significant decreases in total cell numbers. In contrast, treatment with 5αP resulted in decreases in apoptosis and increases in mitosis.
  • The opposing actions of 5αP and 3αHP on both cell anchorage and proliferation strengthen the hypothesis that the direction of P metabolism in vivo toward higher 5α-pregnane and lower 4-pregnene concentrations could promote breast neoplasia and lead to malignancy.
  • he effects on proliferation and adhesion were not due to P, but due to the 5α-reduced metabolites
  • The studies showed that binding of 5αP or 3αHP occurs in the plasma membrane fractions, but not in the nuclear or cytosolic compartments
  • separate high-specificity, high-affinity, low- capacity receptors for 5αP and 3αHP that are distinct from each other and from the well-studied nuclear/cytosolic P, estrogen, and androgen and corticosteroid receptors
  • The studies thus provided the first demonstration of the existence of specific P metabolite receptors
  • the receptor results suggest that the putative tumorigenic actions of 5αP may be significantly augmented by the estradiol-induced increases in 5αP binding and decreases in 3αHP binding.
  • Estradiol and 5αP resulted in significant dose-dependent increases, whereas 3αHP and 20αHP each resulted in dose-dependent decreases in total ER
  • In combination, estradiol + 5αP or 3αHP + 20αHP resulted in additive increases or decreases respectively in ER numbers.
  • The data suggest that the action of 5αP on breast cancer cells involves modulation of the MAPK signaling pathway
  • current evidence does not appear to support the notion that increased 5α-reductase activity/ expression might significantly alter androgen influences on breast tumor growth.
  • both testosterone and DHT inhibit cell growth more or less to the same extent
  • Note that 5α-reductase reaction is not reversible
  •  
    Fantastic read on the effects of progesterone metabolism on tumor and cancer growth.  Tumorigenesis is not just about the hormone, hormone balance, but about the metabolism of hormones.  This is why premarin is so carcinogenic: it is primarily metabolized by the 4-OH estrone pathway.
Nathan Goodyear

Opposing actions of the progesterone metabolites, 5α-dihydroprogesterone (5αP... - 0 views

  •  
    Progesterone metabolites play key role in breast cancer carcinogenesis or inhibition of carcinogenesis.  The key active progesterone metabolites discussed in this article are 5 alpha pregnene and 3 alpha hydroxyprogesterone.
Nathan Goodyear

Breast Cancer Research | Full text | Progesterone metabolites regulate induction, growt... - 0 views

  •  
    5alpha pregnanes and 4 pregnanes stimulate ER and PR negative breast cancer cells.  Progesterone metabolites stimulate or inhibit cancer potential independent of receptor status.  Though we know that progesterone metabolite balance can increase receptor binding.
Nathan Goodyear

Genotoxic metabolites of estradio... [J Steroid Biochem Mol Biol. 2003] - PubMed - NCBI - 0 views

  •  
    study finds estrogen metabolites are involved in carcinogenesis through the production of toxic metabolites 3,4 quinones.  The presence of Estrogen receptors were associated with increased tumor growth. ER was in fact ER alpha.  What is interesting is that ER beta is not expressed these ERKO animals.  This again points to ER beta's anti proliferative action.
Nathan Goodyear

Progesterone metabolites in breast cancer - 0 views

  • In breast tumor tissue and tumorigenic cell lines, 5α-reductase activity and mRNA expression are significantly higher, whereas 3α- and 20α-HSO activities and mRNA expression are significantly lower than in normal breast tissue and nontumorigenic cells
  • Studies using various breast cell lines have shown that 5αP and 3αHP have opposing actions in terms of cell proliferation and adhesion; 5αP stimulates cell proliferation (through increased mitosis and decreased apoptosis) and cell detachment, whereas 3αHP suppresses cell proliferation (through decreased mitosis and increased apoptosis) and detachment
  • the paracrine/ autocrine functions of 5αP are cancer-promoting and those of 3αHP are cancer-inhibiting
  •  
    Awesome article on progesterone metabolism in breast cancer.  The author, weibe, describes 2 categories of progesterone metabolites in breast tissue: 5alpha-pregnanes and 4-pregnenes.  The author describes 3 primary enzymes that control the balance between these 2 metabolites--5alpha reductase, 3alpha-HSO, and 20alpha-HSO.  The resultant balance of 5alpha-dihydroprogesterone and 3alpha-dihydroprogesterone helps to determine the cancer potential of breast tissue.
Nathan Goodyear

Androgen deprivation promotes intratumoral synthesis of dihydrotestosterone from androg... - 0 views

  • PSA levels in media were increased by 3α-diol
  • Similarly to 3α-diol, 3β-diol also increased PSA levels in media in a concentration-dependent manner
  • intracellular DHT is synthesized from inactive androgen 3α- and 3β-diol via different pathways in prostate cancer cells
  • ...12 more annotations...
    • Nathan Goodyear
       
      error in statement: DHT metabolites are not inactive, they just don't activate AR.
  • 3β-diol can be a precursor of DHT in prostate cancer cells.
  • serum 3α-diol G levels reflect the androgen milieu in localized prostate cancer patients receiving ADT
  • A few studies reported that 3β-diol is a potential ligand of estrogen receptor β (ERβ) and has an antiproliferative effect
  • our results revealed that 3β-diol is potentially a precursor of DHT in prostate cancer cells
  • Bauman et al. showed that 3α-diol is inactive at AR, but induces prostate growth
  • Prostate cancer cells promoted synthesis from the DHT metabolite 3α-diol during the long duration of ADT
    • Nathan Goodyear
       
      the authors highlight the suggestion is that 3alpha-diol's activity is via 3alpha-HSD, but fail to mention that it is known that 3alpha-diol interacts with the ER-alpha in the prostate.
  • verified the synthesis of DHT from 3α- or 3β-diol via different pathways in prostate cancer cells in this study
  • HSD17B6 expression levels in prostate cancer can be useful for the diagnosis of high-risk prostate cancer
  • serum 3α-diol G levels reflect the adrenal androgen milieu in localized prostate cancer patients
  • 3α- and 3β-diol has a much more significant role in intratumoral androgen metabolism during ADT
  •  
    DHT metabolites play an important role of intra-prostate DHT synthesis in those following ADT.  This is a proposed mechanism for the failure rate and aggressive nature of prostate cancer that fails ADT.   3-alpha androstanediol is converted via 3 alpha HSD back to DHT.  In contrast, 3-beta androstanediol cannot.
Nathan Goodyear

Anticancer Testosterone Metabolite 3β-Adiol (July 2012) Townsend Letter for D... - 0 views

  •  
    interesting read on the testosterone metabolite 3beta androstanediol.
Nathan Goodyear

Regulation of estrogen re... [J Steroid Biochem Mol Biol. 2007 Nov-Dec] - PubMed - NCBI - 0 views

  •  
    In vitro study finds that progesterone metabolites effect expression of estrogen receptors.  The progesterone metabolite 5alphaP increased ER alpha expression.  This is important as ER alpha promotes growth and inflammation.
Nathan Goodyear

Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy - 0 views

  • Additional studies have similarly found that prostate tissue levels of DHT in PCa patients treated with ADT therapy before prostatectomy declined by only ∼75% versus declines of ∼95% in serum levels
  • In a recent study in healthy men, treatment for 1 month with a GnRH antagonist to suppress testicular androgen synthesis caused a 94% decline in serum testosterone, but only a 70–80% decline in prostate tissue testosterone and DHT
  • progression to CRPC was associated with increased intratumoral accumulation or synthesis of testosterone.
  • ...9 more annotations...
  • the intraprostatic synthesis of testosterone from adrenal-derived precursors likely accounts for the relatively high testosterone levels in prostate after ADT
  • In addition, AR activity in these cells is likely further enhanced by multiple mechanisms that sensitize AR to low levels of androgens
  • higher affinity ligand DHT (approximately eightfold higher affinity
  • type 2 5α-reductase (SRD5A2) being the major enzyme in prostate
  • reduce DHT to 5α-androstane-3α,17β-diol (3α-androstanediol; Ji et al. 2003, Rizner et al. 2003), which is then glucuronidated to form 3α-androstanediol glucuronide by the enzymes UDP glycosyltransferase 2, B15 (UGT2B15) or UGT2B17
  • DHT in prostate is inactivated by the enzyme AKR1C2, which is also termed 3α-hydroxysteroid dehydrogenase type 3 (3α-HSD type 3
    • Nathan Goodyear
       
      The metabolite 3-alpha androstanediol is NOT inactive as this author states.  This DHT metabolite actually can stimulate  ER alpha receptors in the prostate.
  • AKR1C1, is also expressed in prostate. However, in contrast to AKR1C2, it converts DHT primarily to 5α-androstane-3β,17β-diol (3β-androstanediol; Steckelbroeck et al. 2004), which is a potential endogenous ligand for the estrogen receptor β
  • Significantly, intraprostatic testosterone levels were not substantially reduced relative to controls with normal serum androgen levels, although DHT levels were reduced to 18% of controls
  • testosterone levels in many of the CRPC samples were actually increased relative to control tissues (Montgomery et al. 2008). While DHT levels were less markedly increased, this may have reflected DHT catabolism
  •  
    This article discusses the failure of androgen deprivation therapy and prostate cancer.  This failure is quite common.  The authors point to alpha-DHT as the primary mechanism through AR stimulation.  However, we know that DHT metabolites also stimulate estrogen receptors.
Nathan Goodyear

Potential Prostate Cancer Drug Target: Bioactivation of Androstanediol by Conversion to... - 0 views

  •  
    Article discusses the the conversion of 3-alpha-diol back to DHT and this role in prostate cancer in androgen deprivation therapy.  What we now know is that this metabolite interacts with ER alpha receptor to promote proliferation.  Carcinogenesis appears to be primarily an estrogen driven process and her in prostate cancer, the androgen metabolites are promoting proliferation through estrogen receptors.
Nathan Goodyear

The Androgen 5α-Dihydrotestosterone and Its Metabolite 5α-Androstan-3β, 17β-D... - 0 views

  • Sex steroid hormones are primarily responsible for sex difference in adult HPA function; androgens inhibit whereas estrogens enhance HPA axis activation after a stressor
  • the PVN contains relatively high levels of AR (Bingaman et al., 1994; Zhou et al., 1994) and ERβ (Alves et al., 1998; Hrabovszky et al., 1998; Somponpun and Sladek, 2003) but is essentially devoid of ERα
  • the nonaromatizable androgen DHT and the nonselective ER ligand E2 influence HPA reactivity by acting on neurons within or surrounding the PVN
  • ...9 more annotations...
  • inhibitory action of DHT is detectable at both the level of hormone secretion as well as PVN c-fos mRNA expression
  • the inhibition can be mimicked by the DHT metabolite 3β-diol and by the subtype selective ERβ agonist DPN
  • E2 acts to enhance HPA reactivity
  • the ability of the ER antagonist tamoxifen, but not the AR antagonist flutamide, to block the inhibitory actions of DHT, speaks to the intracellular mechanism by which this inhibitory signal might be transduced.
    • Nathan Goodyear
       
      that is because the interaction with the DHT metabolite is not with the AR, but with the ER-beta.
  • the DHT metabolite 3β-diol and the ERβ-subtype-selective agonist DPN suppressed ACTH, corticosterone, and c-fos mRNA responses to restraint stress in a manner similar to DHT
  • metabolism of DHT to 3β-diol and subsequent binding to ERβ can be inhibitory to HPA reactivity, and this is one possible mechanism for the action of DHT.
  • Our data also suggest that E2 enhances the reactivity of the HPA axis to stress by acting on or near neurons of the PVN
  • the actions of E2 appear to be through an ERα-dependent mechanism
  • these studies suggest that ERβ, within the male hypothalamus, acts to inhibit the HPA axis and that the inhibitory effects of DHT may be, at least in part, via its intracellular conversion to 3β-diol and subsequent binding to ERβ
  •  
    DHT metabolites: particularly 3beta-androstanediol inhibit HPA axis through ER-beta.
Nathan Goodyear

http://joe.endocrinology-journals.org/content/167/2/281.full.pdf - 0 views

  •  
    good discussion of the estrogen metabolites and increased estrogenic activity; including cancer risk.  Particular attention is given to the 4-hydroxyestrone metabolite.
Nathan Goodyear

Circulating 2-hydroxy and 16-α hydroxy estrone levels and risk of breast canc... - 1 views

  • 2-OH estrogens bind to the estrogen receptor (ER) with affinity equivalent to or greater than estradiol
  • previous prospective studies have not observed any significant associations with either 2-OH or 16α-OH estrone or the ratio of the two metabolites and breast cancer risk overall.
    • Nathan Goodyear
       
      whether that risk is increased or decreased
  • it has been hypothesized that metabolism favoring the 2-OH over the 16α-OH pathway may be inversely associated with breast cancer risk (28).
  • ...24 more annotations...
  • they may act as only weak mitogens (14, 15), or as inhibitors of proliferation
  • No significant associations have been observed between 2-OH estrone and breast cancer risk
  • While 16α-OH estrone binds to the ER with lower affinity than estradiol, it binds covalently (18-20) and once bound, fails to down-regulate the receptor (21). Thus, 16α-OH estrone stimulates cell proliferation in a manner comparable to estradiol in ER+ breast cancer cell lines
  • In this large prospective study of 2-OH and 16α-OH estrone metabolites and breast cancer risk, we did not observe any significant associations overall with either individual metabolite or with the ratio of the two metabolites
  • we observed positive associations with 2-OH estrone and the 2:16α-OH estrone ratio among women with lower BMI and women with ER-/PR-tumors,
  • To date, several epidemiologic studies have examined the association between the 2-OH and 16α-OH estrogen metabolites and breast cancer risk with inconclusive results.
  • circulating estrogen levels have been associated more strongly with ER+/PR+ tumors than with ER-/PR- tumors
  • our results do not support the hypothesis that metabolism favoring the 2-OH estrone pathway is more beneficial to breast cancer risk than that favoring the 16α-OH estrone pathway
  • we observed significant positive associations of both 2-OH estrone and the 2:16α-OH estrone ratio with ER-/PR-tumors
  • Three (30, 32, 33) of four (30-33) studies observed RRs above 1 for the association between 16α-OH estrone and breast cancer risk (range of RRs=1.23-2.47); none of the point estimates was statistically significant though one trend was suggestive
  • based on animal studies, 2-OH estrone and the 2:16α-OH estrone ratio have been hypothesized to be inversely associated with breast cancer risk
  • No significant associations have been observed between 2-OH estrone, 16α-OH estrone, or the 2:16α-OH estrone ratio and breast cancer risk and the direction of the estimates is not consistent across studies.
    • Nathan Goodyear
       
      better worded is no consistent, significant associations.   There are some studies that point to the 16 catecholestrogen and increased cancer risk; limited studies show negative effects of 2 catecholestrogens on cancer risk and prospective studies available pretty much dispel the idea that the 2:16 ratio has an risk predictability.
  • we observed a suggestive inverse association with 16α-OH estrone and a significant positive association with the 2:16α-OH estrone ratio among lean women, suggesting possible associations in a low estrogen environment.
  • 16α-OH estrone increases unscheduled DNA synthesis in mouse mammary cells (27) and hence also may be genotoxic
  • Although 2-OH estrogens are capable of redox cycling, the semiquinones and quinones (i.e., the oxidized forms) form stable DNA adducts that are reversible without DNA destruction
  • In our population of PMH nonusers, we observed no associations with ER+/PR+ tumors, but significant positive associations with 2-OH estrone and the 2:16α-OH estrone ratio among women with ER-/PR- tumors
    • Nathan Goodyear
       
      one of the few studies to find this association between 2 catecholestrogens and the 2:16 ratio and ER-/PR-tumors
  • Animal and in vitro studies have shown that hydroxy estrogens can induce DNA damage either directly, through the formation of quinones and DNA adducts, or indirectly, through redox cycling and the generation of reactive oxygen species
    • Nathan Goodyear
       
      genotoxic via directe DNA adducts and indirectly via ROS; this is in addition to the proliferative effect
  • we observed a significant positive association between the 2:16α-OH estrone ratio and breast cancer risk among lean women
  • No significant associations have been observed with the 2:16α-OH estrone ratio
  • In the Danish study, no associations were observed with either ER+ or ER- tumors among PMH nonusers
  • significant positive associations with 2-OH estrone and the 2:16α-OH estrone ratio were observed among PMH users with ER+, but not ER-, tumors
  • it is possible that the genotoxicity of 2-OH estrone plays a role in hormone receptor negative tumors
  • 4-OH estrogens have a greater estrogenic potential than 2-OH estrogens, given the lower dissociation rate from estrogen receptors compared with estradiol (61), and are potentially more genotoxic since the quinones form unstable adducts, leading to depurination and mutation in vitro and in vivo
  • the balance between the catechol (i.e., 2-OH and 4-OH) and methoxy (i.e., 2-Me and 4-Me) estrogens may impact risk
  •  
    The risks of estrogen metabolism are not clear cut.  Likely never will be due to the complexity of individual metabolism.  This study found no correlation between 2OH-Estrone and 2OH:16alpha-Estrone and breast cancer risk in ER+/PR+ breast cancer.  Translated: no benefit in breast cancer risk in 2OH-Estrone metabolism or increased 2OH:16alpha estrone metabolism.  There was a positive association between 2OH-Estrone and 2:16alpha-Estrone in women with ER-/PR- tumors and low BMI.
  •  
    pakistani sexy girls escort in dubai // russian sexy girsl escort in dubai // sexy girls in dubai // sexy girls escort in dubai //
Nathan Goodyear

The 4-Pregnene and 5α-Pregnane Progesterone Metabolites Formed in Nontumorous... - 0 views

  •  
    Good discussion of the different effects of progesterone metabolites in breast cancer cell lines (in vitro).  This article focused on the biochemical balance of 5alpha pregnane: 3alpha HP.  The increase in this ration promoted proliferation and metastasis, where a decreased ratio did the opposite
Nathan Goodyear

The Androgen 5α-Dihydrotestosterone and Its Metabolite 5α-Androstan-3β, 17β-D... - 0 views

  •  
    Full article of previously posted abstract.  DHT metabolite 3beta-diol inhibits HPA stress response via ER beta.  
1 - 20 of 207 Next › Last »
Showing 20 items per page