Skip to main content

Home/ Dr. Goodyear/ Group items tagged axis

Rss Feed Group items tagged

Nathan Goodyear

Testosterone and glucose metabolism in men: current concepts and controversies - 0 views

  • Around 50% of ageing, obese men presenting to the diabetes clinic have lowered testosterone levels relative to reference ranges based on healthy young men
  • The absence of high-level evidence in this area is illustrated by the Endocrine Society testosterone therapy in men with androgen deficiency clinical practice guidelines (Bhasin et al. 2010), which are appropriate for, but not specific to men with metabolic disorders. All 32 recommendations made in these guidelines are based on either very low or low quality evidence.
  • A key concept relates to making a distinction between replacement and pharmacological testosterone therapy
  • ...59 more annotations...
  • The presence of symptoms was more closely linked to increasing age than to testosterone levels
  • Findings similar to type 2 diabetes were reported for men with the metabolic syndrome, which were associated with reductions in total testosterone of −2.2 nmol/l (95% CI −2.41 to 1.94) and in free testosterone
  • low testosterone is more predictive of the metabolic syndrome in lean men
  • Cross-sectional studies uniformly show that 30–50% of men with type 2 diabetes have lowered circulating testosterone levels, relative to references based on healthy young men
  • In a recent cross-sectional study of 240 middle-aged men (mean age 54 years) with either type 2 diabetes, type 1 diabetes or without diabetes (Ng Tang Fui et al. 2013b), increasing BMI and age were dominant drivers of low total and free testosterone respectively.
  • both diabetes and the metabolic syndrome are associated with a modest reduction in testosterone, in magnitude comparable with the effect of 10 years of ageing
  • In a cross-sectional study of 490 men with type 2 diabetes, there was a strong independent association of low testosterone with anaemia
  • In men, low testosterone is a marker of poor health, and may improve our ability to predict risk
    • Nathan Goodyear
       
      probably the most important point made in this article
  • low testosterone identifies men with an adverse metabolic phenotype
  • Diabetic men with low testosterone are significantly more likely to be obese or insulin resistant
  • increased inflammation, evidenced by higher CRP levels
  • Bioavailable but not free testosterone was independently predictive of mortality
  • It remains possible that low testosterone is a consequence of insulin resistance, or simply a biomarker, co-existing because of in-common risk factors.
  • In prospective studies, reviewed in detail elsewhere (Grossmann et al. 2010) the inverse association of low testosterone with metabolic syndrome or diabetes is less consistent for free testosterone compared with total testosterone
  • In a study from the Framingham cohort, SHBG but not testosterone was prospectively and independently associated with incident metabolic syndrome
  • low SHBG (Ding et al. 2009) but not testosterone (Haring et al. 2013) with an increased risk of future diabetes
  • In cross-sectional studies of men with (Grossmann et al. 2008) and without (Bonnet et al. 2013) diabetes, SHBG but not testosterone was inversely associated with worse glycaemic control
  • SHBG may have biological actions beyond serving as a carrier protein for and regulator of circulating sex steroids
  • In men with diabetes, free testosterone, if measured by gold standard equilibrium dialysis (Dhindsa et al. 2004), is reduced
    • Nathan Goodyear
       
      expensive, laborious process filled with variables
  • Low free testosterone remains inversely associated with insulin resistance, independent of SHBG (Grossmann et al. 2008). This suggests that the low testosterone–dysglycaemia association is not solely a consequence of low SHBG.
  • Experimental evidence reviewed below suggests that visceral adipose tissue is an important intermediate (rather than a confounder) in the inverse association of testosterone with insulin resistance and metabolic disorders.
  • testosterone promotes the commitment of pluripotent stem cells into the myogenic lineage and inhibits their differentiation into adipocytes
  • testosterone regulates the metabolic functions of mature adipocytes (Xu et al. 1991, Marin et al. 1995) and myocytes (Pitteloud et al. 2005) in ways that reduce insulin resistance.
  • Pre-clinical evidence (reviewed in Rao et al. (2013)) suggests that at the cellular level, testosterone may improve glucose metabolism by modulating the expression of the glucose-transported Glut4 and the insulin receptor, as well as by regulating key enzymes involved in glycolysis.
  • More recently testosterone has been shown to protect murine pancreatic β cells against glucotoxicity-induced apoptosis
  • Interestingly, a reciprocal feedback also appears to exist, given that not only chronic (Cameron et al. 1990, Allan 2013) but also, as shown more recently (Iranmanesh et al. 2012, Caronia et al. 2013), acute hyperglycaemia can lower testosterone levels.
  • There is also evidence that testosterone regulates insulin sensitivity directly and acutely
  • In men with prostate cancer commencing androgen deprivation therapy, both total as well as, although not in all studies (Smith 2004), visceral fat mass increases (Hamilton et al. 2011) within 3 months
  • More prolonged (>12 months) androgen deprivation therapy has been associated with increased risk of diabetes in several large observational registry studies
  • Testosterone has also been shown to reduce the concentration of pro-inflammatory cytokines in some, but not all studies, reviewed recently in Kelly & Jones (2013). It is not know whether this effect is independent of testosterone-induced changes in body composition.
  • the observations discussed in this section suggest that it is the decrease in testosterone that causes insulin resistance and diabetes. One important caveat remains: the strongest evidence that low testosterone is the cause rather than consequence of insulin resistance comes from men with prostate cancer (Grossmann & Zajac 2011a) or biochemical castration, and from mice lacking the androgen receptor.
  • Several large prospective studies have shown that weight gain or development of type 2 diabetes is major drivers of the age-related decline in testosterone levels
  • there is increasing evidence that healthy ageing by itself is generally not associated with marked reductions in testosterone
  • Circulating testosterone, on an average 30%, is lower in obese compared with lean men
  • increased visceral fat is an important component in the association of low testosterone and insulin resistance
  • The vast majority of men with metabolic disorders have functional gonadal axis suppression with modest reductions in testosterone levels
  • obesity is a dominant risk factor
  • men with Klinefelter syndrome have an increased risk of metabolic disorders. Interestingly, greater body fat mass is already present before puberty
  • Only 5% of men with type 2 diabetes have elevated LH levels
  • inhibition of the gonadal axis predominantly takes place in the hypothalamus, especially with more severe obesity
  • Metabolic factors, such as leptin, insulin (via deficiency or resistance) and ghrelin are believed to act at the ventromedial and arcuate nuclei of the hypothalamus to inhibit gonadotropin-releasing hormone (GNRH) secretion from GNRH neurons situated in the preoptic area
  • kisspeptin has emerged as one of the most potent secretagogues of GNRH release
  • hypothesis that obesity-mediated inhibition of kisspeptin signalling contributes to the suppression of the HPT axis, infusion of a bioactive kisspeptin fragment has been recently shown to robustly increase LH pulsatility, LH levels and circulating testosterone in hypotestosteronaemic men with type 2 diabetes
  • A smaller study with a similar experimental design found that acute testosterone withdrawal reduced insulin sensitivity independent of body weight, whereas oestradiol withdrawal had no effects
  • suppression of the diabesity-associated HPT axis is functional, and may hence be reversible
  • Obesity and dysglycaemia and associated comorbidities such as obstructive sleep apnoea (Hoyos et al. 2012b) are important contributors to the suppression of the HPT axis
  • weight gain and development of diabetes accelerate the age-related decline in testosterone
  • Modifiable risk factors such as obesity and co-morbidities are more strongly associated with a decline in circulating testosterone levels than age alone
  • 55% of symptomatic androgen deficiency reverted to a normal testosterone or an asymptomatic state after 8-year follow-up, suggesting that androgen deficiency is not a stable state
  • Weight loss can reactivate the hypothalamic–pituitary–testicular axis
  • Leptin treatment resolves hypogonadism in leptin-deficient men
  • The hypothalamic–pituitary–testicular axis remains responsive to treatment with aromatase inhibitors or selective oestrogen receptor modulators in obese men
  • Kisspeptin treatment increases LH secretion, pulse frequency and circulating testosterone levels in hypotestosteronaemic men with type 2 diabetes
  • change in BMI was associated with the change in testosterone (Corona et al. 2013a,b).
  • weight loss can lead to genuine reactivation of the gonadal axis by reversal of obesity-associated hypothalamic suppression
  • There is pre-clinical and observational evidence that chronic hyperglycaemia can inhibit the HPT axis
  • in men who improved their glycaemic control over time, testosterone levels increased. By contrast, in those men in whom glycaemic control worsened, testosterone decreased
  • testosterone levels should be measured after successful weight loss to identify men with an insufficient rise in their testosterone levels. Such men may have HPT axis pathology unrelated to their obesity, which will require appropriate evaluation and management.
  •  
    Article discusses the expanding evidence of low T and Metabolic syndrome.
Nathan Goodyear

Testosterone and glucose metabolism in men: current concepts and controversies - 0 views

    • Nathan Goodyear
       
      80% of E2 production in men, that will cause low T in men, comes from SQ adiposity.  This leads to increase in visceral adiposity.
  • Only 5% of men with type 2 diabetes have elevated LH levels (Dhindsa et al. 2004, 2011). This is consistent with recent findings that the inhibition of the gonadal axis predominantly takes place in the hypothalamus, especially with more severe obesity
  • Metabolic factors, such as leptin, insulin (via deficiency or resistance) and ghrelin are believed to act at the ventromedial and arcuate nuclei of the hypothalamus to inhibit gonadotropin-releasing hormone (GNRH) secretion
  • ...32 more annotations...
  • kisspeptin has emerged as one of the most potent secretagogues of GNRH release
  • Consistent with the hypothesis that obesity-mediated inhibition of kisspeptin signalling contributes to the suppression of the HPT axis, infusion of a bioactive kisspeptin fragment has been recently shown to robustly increase LH pulsatility, LH levels and circulating testosterone in hypotestosteronaemic men with type 2 diabetes
  • Figure 4
  • Interestingly, a recent 16-week study of experimentally induced hypogonadism in healthy men with graded testosterone add-back either with or without concomitant aromatase inhibitor treatment has in fact suggested that low oestradiol (but not low testosterone) may be responsible for the hypogonadism-associated increase in total body and intra-abdominal fat mass
    • Nathan Goodyear
       
      This does not fit with the research on receptors, specifically estrogen receptors.  These studies that the authors are referencing are looking at "circulating" levels, not tissue levels.
  • A smaller study with a similar experimental design found that acute testosterone withdrawal reduced insulin sensitivity independent of body weight, whereas oestradiol withdrawal had no effects
  • Obesity and dysglycaemia and associated comorbidities such as obstructive sleep apnoea (Hoyos et al. 2012b) are important contributors to the suppression of the HPT axis
  • This is supported by observational studies showing that weight gain and development of diabetes accelerate the age-related decline in testosterone
  • Weight loss can reactivate the hypothalamic–pituitary–testicular axis
  • The hypothalamic–pituitary–testicular axis remains responsive to treatment with aromatase inhibitors or selective oestrogen receptor modulators in obese men
  • Kisspeptin treatment increases LH secretion, pulse frequency and circulating testosterone levels in hypotestosteronaemic men with type 2 diabetes
  • Several observational and randomised studies reviewed in Grossmann (2011) have shown that weight loss, whether by diet or surgery, leads to substantial increases in testosterone, especially in morbidly obese men
  • This suggests that weight loss can lead to genuine reactivation of the gonadal axis by reversal of obesity-associated hypothalamic suppression
  • There is pre-clinical and observational evidence that chronic hyperglycaemia can inhibit the HPT axis
  • in those men in whom glycaemic control worsened, testosterone decreased
  • successful weight loss combined with optimisation of glycaemic control may be sufficient to normalise circulating testosterone levels in the majority of such men
  • weight loss, optimisation of diabetic control and assiduous care of comorbidities should remain the first-line approach.
    • Nathan Goodyear
       
      This obviously goes against marketing-based medicine
  • In part, the discrepant results may be due to the fact men in the Vigen cohort (Vigen et al. 2013) had a higher burden of comorbidities. Given that one (Basaria et al. 2010), but not all (Srinivas-Shankar et al. 2010), RCTs in men with a similarly high burden of comorbidities reported an increase in cardiovascular events in men randomised to testosterone treatment (see section on Testosterone therapy: potential risks below) (Basaria et al. 2010), testosterone should be used with caution in frail men with multiple comorbidities
  • The retrospective, non-randomised and non-blinded design of these studies (Shores et al. 2012, Muraleedharan et al. 2013, Vigen et al. 2013) leaves open the possibility for residual confounding and multiple other sources of bias. These have been elegantly summarised by Wu (2012).
  • Effects of testosterone therapy on body composition were metabolically favourable with modest decreases in fat mass and increases in lean body mass
  • This suggests that testosterone has limited effects on glucose metabolism in relatively healthy men with only mildly reduced testosterone.
  • it is conceivable that testosterone treatment may have more significant effects on glucose metabolism in uncontrolled diabetes, akin to what has generally been shown for conventional anti-diabetic medications.
  • the evidence from controlled studies show that testosterone therapy consistently reduces fat mass and increases lean body mass, but inconsistently decreases insulin resistance.
  • Interestingly, testosterone therapy does not consistently improve glucose metabolism despite a reduction in fat mass and an increase in lean mass
  • the majority of RCTs (recently reviewed in Ng Tang Fui et al. (2013a)) showed that testosterone therapy does not reduce visceral fat
    • Nathan Goodyear
       
      visceral and abdominal adiposity are biologically different and thus the risks associated with the two are different.
    • Nathan Goodyear
       
      yet low T is associated with an increase in visceral adiposity--confusing!
  • testosterone therapy decreases SHBG
  • testosterone is inversely associated with total cholesterol, LDL cholesterol and triglyceride (Tg) levels, but positively associated with HDL cholesterol levels, even if adjusted for confounders
  • Although observational studies show a consistent association of low testosterone with adverse lipid profiles, whether testosterone therapy exerts beneficial effects on lipid profiles is less clear
  • Whereas testosterone-induced decreases in total cholesterol, LDL cholesterol and Lpa are expected to reduce cardiovascular risk, testosterone also decreases the levels of the cardio-protective HDL cholesterol. Therefore, the net effect of testosterone therapy on cardiovascular risk remains uncertain.
  • data have not shown evidence that testosterone causes prostate cancer, or that it makes subclinical prostate cancer grow
  • compared with otherwise healthy young men with organic androgen deficiency, there may be increased risks in older, obese men because of comorbidities and of decreased testosterone clearance
  • recent evidence that fat accumulation may be oestradiol-, rather than testosterone-dependent
Nathan Goodyear

Hypothalamic-Pituitary-Testicular Axis Disruptions in Older Men Are Differentially Link... - 0 views

  • 0.4–2% annual decline
  • the age trend in free T was more substantial (−1.3% per annum)
  • The core hormonal pattern with increasing age is suggestive of incipient primary testicular dysfunction with maintained total T and progressively blunted free T associated with higher LH.
  • ...16 more annotations...
  • Obesity was associated with progressively lower total and free T independent of the simultaneous decrease in SHBG.
  • our data highlight the fact that LH was unchanged or even lower in older men in the face of lower T in obesity, suggesting that there may be a failure at the hypothalamic-pituitary level.
  • a change in BMI from nonobese to obese may be equivalent to a 15 yr fall in T.
  • This pattern supports the hypothesis that different underlying mechanisms influence the functions of the HPT axis: age predominantly affects testicular function, whereas obesity impairs hypothalamic/pituitary function.
  • the effects of aging on testicular function can be moderated by increased LH compensation for many decades
  • obesity impairs hypothalamic/pituitary function independent of age, arguably an adaptive response for which there should be no compensatory mechanism.
  • the concurrent but opposite (and separate) effects of obesity and age on SHBG
  • SHBG was negatively associated with increasing strata of obesity
  • Obesity is associated with insulin resistance (28), and the increased circulating insulin inhibits hepatic SHBG synthesis
  • the SHBG increase with age may be related to relative IGF-I deficiency (27), although this has not been directly proven.
  • Obesity is associated with peripheral and central insulin resistance (30) and proinflammatory cytokine production (TNFα and IL-6) from adipocytes (31) and central nervous system endocannibinoid release (32), all of which are potential candidates for abrogating hypothalamic endocrine and downstream reproductive axis functions.
    • Nathan Goodyear
       
      The HPA axis effect may be the result of inflammation.
  • The relationship between obesity and T can be bidirectional: low T may be the cause rather than consequence of obesity
  • chronic alcohol abuse is known to suppress LH (40), our data showed no significant association among the three hormones or SHBG and alcohol intake.
  • increase in total T in smokers occurs through a primary increase in SHBG with a compensatory rise in LH
  • the effects of obesity (BMI or waist circumference) was by far the most important determinant of variance in total T, whereas age per se was important for SHBG, LH, and free T with comorbidity and smoking being comparatively minor contributors
  • It is noteworthy that these predisposing lifestyle and health factors are modifiable. This implies that the apparent age-related decline in T may constitute a barometer of health and thus be potentially preventable and/or reversible.
  •  
    Age induced decline in Testosterone is more associated with a decline in leydig cell function and thus elevated LH will be associated.  In contrast, obesity is more of a HPA axis disruption and thus LH may be normal to low.  The pulse amplitude is decrease.  No change in pulse frequency is noted.   With obesity, a decline in TT and fT was independent of SHBG. Aging is associated with a greater decrease in fT versus TT.
Nathan Goodyear

Age-associated changes in hypothalamic-pituitary-testicular function in middle-aged and... - 0 views

  •  
    weight gain and obesity are associated with a dysfunctional HPA axis and low testosterone in men.  Reduction in weight will restore HPA axis function.
Nathan Goodyear

The Androgen 5α-Dihydrotestosterone and Its Metabolite 5α-Androstan-3β, 17β-D... - 0 views

  • Sex steroid hormones are primarily responsible for sex difference in adult HPA function; androgens inhibit whereas estrogens enhance HPA axis activation after a stressor
  • the PVN contains relatively high levels of AR (Bingaman et al., 1994; Zhou et al., 1994) and ERβ (Alves et al., 1998; Hrabovszky et al., 1998; Somponpun and Sladek, 2003) but is essentially devoid of ERα
  • the nonaromatizable androgen DHT and the nonselective ER ligand E2 influence HPA reactivity by acting on neurons within or surrounding the PVN
  • ...9 more annotations...
  • inhibitory action of DHT is detectable at both the level of hormone secretion as well as PVN c-fos mRNA expression
  • the inhibition can be mimicked by the DHT metabolite 3β-diol and by the subtype selective ERβ agonist DPN
  • E2 acts to enhance HPA reactivity
  • the ability of the ER antagonist tamoxifen, but not the AR antagonist flutamide, to block the inhibitory actions of DHT, speaks to the intracellular mechanism by which this inhibitory signal might be transduced.
    • Nathan Goodyear
       
      that is because the interaction with the DHT metabolite is not with the AR, but with the ER-beta.
  • the DHT metabolite 3β-diol and the ERβ-subtype-selective agonist DPN suppressed ACTH, corticosterone, and c-fos mRNA responses to restraint stress in a manner similar to DHT
  • metabolism of DHT to 3β-diol and subsequent binding to ERβ can be inhibitory to HPA reactivity, and this is one possible mechanism for the action of DHT.
  • Our data also suggest that E2 enhances the reactivity of the HPA axis to stress by acting on or near neurons of the PVN
  • the actions of E2 appear to be through an ERα-dependent mechanism
  • these studies suggest that ERβ, within the male hypothalamus, acts to inhibit the HPA axis and that the inhibitory effects of DHT may be, at least in part, via its intracellular conversion to 3β-diol and subsequent binding to ERβ
  •  
    DHT metabolites: particularly 3beta-androstanediol inhibit HPA axis through ER-beta.
Nathan Goodyear

Inflammation and cortisol response in coronary artery disease: Annals of Medicine: Vol ... - 0 views

  •  
    Inflammation disrupts HPA axis.  This is no surprise as we Know that inflammation can disrupt Testosterone in men and progesterone production in women.  This study suggests that this HPA axis disruption contributes to CAD.
Nathan Goodyear

Utility of Salivary Cortisol Measurements in Cushing's Syndrome and Adrenal Insufficiency - 1 views

  • It is expected that the use of the measurement of salivary cortisol will become routine in the evaluation of patients with disorders of the HPA axis.
  •  
    Salivary cortisol testing shown to have sensitivity and specificity that exceeds 90%.  Final Quote: "salivary cortisol will become routine in the evaluation of patients with disorders of the HPA axis
Nathan Goodyear

Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. - P... - 0 views

  •  
    Leptin inhibits CRH, thus decreasing the HPA axis.
Nathan Goodyear

Leptin serves body as energy signal | Harvard Gazette - 0 views

  • replacing leptin to physiologically normal levels during fasting fully restored testosterone to baseline, indicating that leptin regulates the hypothalamic-pituitary- gonadal axis that controls the release of testosterone and estrogen
  • Leptin clearly has some effect on the thyroid hormone axis,
  • including thyroid-stimulating hormone and the free-circulating form of thyroid
  •  
    Leptin regulates hypothalamic-pituitary axis; and don't forget thyroid too.
Nathan Goodyear

Acupuncture blocks cold stress-induced increases in the hypothalamus-pituitary-adrenal ... - 0 views

  •  
    acupuncture decreases HPA sympathetic drive.  Acupuncture calms the HPA axis and relieves stress.  Granted this is in a rat model.
Nathan Goodyear

The hypothalamic-pituitary-adrenal axis and sex hormones in chronic stress and obesity:... - 0 views

  •  
    Very nice article on the thoughts currently involving stress, overactivity of the HPA axis and obesity.
Nathan Goodyear

The Aging Male Hypothalamic-Pituitary-Gonadal Axis: pulsatility and feedback - 0 views

  •  
    good review of the male hypothalamic-pituitary-gonadal axis.  Of interest is a good discussion of the pulsatile LH activity.
Nathan Goodyear

Social Support and Salivary Cortisol in Women With Metastatic Breast Cancer - 0 views

  •  
    better cortisol pattern seen in women with good social support.  This is indicative of a better balanced HPA axis and thus immune system balance.  Significant implications in women with metastatic breast cancer.  Cortisol evaluated by saliva
Nathan Goodyear

Lowered testosterone in male obesity: Mechanisms, morbidity and management Tang Fui MN,... - 0 views

  • The number of overweight people is expected to increase from 937 million in 2005 to 1.35 billion in 2030
  • Similarly the number of obese people is projected to increase from 396 million in 2005 to 573 million in 2030
  • By 2030, China alone is predicted to have more overweight men and women than the traditional market economies combined
  • ...37 more annotations...
  • diacylglycerol O-acyltransferase 2 (DGAT2), mechanistically implicated in this differential storage, [10] is regulated by dihydrotestosterone, [11] suggesting a potential role for androgens to influence the genetic predisposition to either the MHO or MONW phenotype.
  • bariatric surgery achieves 10%-30% long-term weight loss in controlled studies
  • The fact that obese men have lower testosterone compared to lean men has been recognized for more than 30 years
  • Reductions in testosterone levels correlate with the severity of obesity and men
  • epidemiological data suggest that the single most powerful predictor of low testosterone is obesity, and that obesity is a major contributor of the age-associated decline in testosterone levels.
  • healthy ageing by itself is uncommonly associated with marked reductions in testosterone levels
  • obesity blunts this LH rise, obesity leads to hypothalamic-pituitary suppression irrespective of age which cannot be compensated for by physiological mechanisms
  • Reductions in total testosterone levels are largely a consequence of reductions in sex hormone binding globulin (SHBG) due to obesity-associated hyperinsulinemia
  • although controversial, measurement of free testosterone levels may provide a more accurate assessment of androgen status than the (usually preferred) measurement of total testosterone in situations where SHBG levels are outside the reference range
  • SHBG increases with age
  • marked obesity however is associated with an unequivocal reduction of free testosterone levels, where LH and follicle stimulating hormone (FSH) levels are usually low or inappropriately normal, suggesting that the dominant suppression occurs at the hypothalamic-pituitary level
  • adipose tissue, especially when in the inflamed, insulin-resistant state, expresses aromatase which converts testosterone to estradiol (E 2 ). Adipose E 2 in turn may feedback negatively to decrease pituitary gonadotropin secretion
  • diabetic obesity is associated with decreases in circulatory E 2
  • In addition to E 2 , increased visceral fat also releases increased amounts of pro-inflammatory cytokines, insulin and leptin; all of which may inhibit the activity of the HPT axis at multiple levels
  • In the prospective Massachusetts Male Aging Study (MMAS), moving from a non-obese to an obese state resulted in a decline of testosterone levels
  • weight loss, whether by diet or surgery, increases testosterone levels proportional to the amount of weight lost
  • fat is androgen-responsive
  • low testosterone may augment the effects of a hypercaloric diet
  • In human male ex vivo adipose tissue, testosterone decreased adipocyte differentiation by 50%.
  • Testosterone enhances catecholamine-induced lipolysis in vitro and reduces lipoprotein lipase activity and triglyceride uptake in human abdominal adipose tissue in vivo
  • in men with prostate cancer receiving 12 months of androgen deprivation therapy, fat mass increased by 3.4 kg and abdominal VAT by 22%, with the majority of these changes established within 6 months
  • severe sex steroid deficiency can increase fat mass rapidly
  • bidirectional relationship between testosterone and obesity
  • increasing body fat suppresses the HPT axis by multiple mechanisms [30] via increased secretion of pro-inflammatory cytokines, insulin resistance and diabetes; [19],[44] while on the other hand low testosterone promotes further accumulation of total and visceral fat mass, thereby exacerbating the gonadotropin inhibition
  • androgens may play a more significant role in VAT than SAT
  • men undergoing androgen depletion for prostate cancer show more marked increases in visceral compared to subcutaneous fat following treatment
    • Nathan Goodyear
       
      Interesting: low T increases VAT, yet T therapy does not reduce VAT, yet T therapy reduces SAT.
  • irisin, derived from muscle, induces brown fat-like properties in rodent white fat
  • androgens can act via the PPARg-pathway [37] which is implicated in the differentiation of precursor fat cells to the energy-consuming phenotype
  • low testosterone may compound the effect of increasing fat mass by making it more difficult for obese men to lose weight via exercise
  • pro-inflammatory cytokines released by adipose tissue may contribute to loss of muscle mass and function, leading to inactivity and further weight gain in a vicious cycle
  • Sarcopenic obesity, a phenotype recapitulated in men receiving ADT for prostate cancer, [55] may not only be associated with functional limitations, but also aggravate the metabolic risks of obesity;
  • observational evidence associating higher endogenous testosterone with reduced loss of muscle mass and crude measures of muscle function in men losing weight
  • genuine reactivation of the HPT axis in obese men requires more substantial weight-loss
  • A number of intervention studies have confirmed that both diet- and surgically-induced weight losses are associated with increased testosterone, with the rise in testosterone generally proportional to the amount of weight lost
  • men, regardless of obesity level, can benefit from the effect of weight loss.
  • inconsistent effect of testosterone on VAT
  •  
    to be read
Nathan Goodyear

Salivary cortisol determined by enzyme immunoassay... [Clin Endocrinol (Oxf). 2005] - P... - 0 views

  •  
    Salivary cortisol determined by enzyme immunoassay is preferable to serum total cortisol for assessment of dynamic hypothalamic--pituitary--adrenal axis activity.
Nathan Goodyear

Salivary cortisol as a biomarker in stress researc... [Psychoneuroendocrinology. 2009] ... - 0 views

  • psychobiological mechanisms, which trigger the hypothalamus-pituitary-adrenal axis (HPAA) can only indirectly be assessed by salivary cortisol measures. The different instances that control HPAA reactivity (hippocampus, hypothalamus, pituitary, adrenals) and their respective modulators, receptors, or binding proteins, may all affect salivary cortisol measures.
  • linear relationship with measures of plasma ACTH and cortisol in blood or urine does not necessarily exist
  •  
    saliva cortisol testing is a better assessment tool for HPA axis function, compared to serum cortisol
Nathan Goodyear

Sex differences in the adult HPA axis and affectiv... [Brain Res. 2014] - PubMed - NCBI - 0 views

  •  
    Animal study finds that Bisphenol A exposure in utero has profound different effects in male offspring versus female offspring.  In the male offspring there appears to be an up regulation of the HPA axis.  The opposite appears true in the female off spring.  Additionally, the receptors are effected differently as well.
Nathan Goodyear

Corticosteroids: way upstream - 0 views

  •  
    Great read on the hypothalmo-pituitary-adrenal axis.  
Nathan Goodyear

Salivary cortisol monitoring: de... [Allergy Asthma Proc. 2012 Jul-Aug] - PubMed - NCBI - 0 views

  •  
    This study found salivary cortisol testing is a better technique for children, in evaluating HPA axis function in children with asthma.
Nathan Goodyear

Activation of the hypothalamo-pituitary-a... [Intensive Care Med. 1999] - PubMed - NCBI - 0 views

  •  
    Septic illnesses found to be associated with suppression of TSH centrally in the HPA axis. The cytokines found to be elevated were IL-1beta, TNF-alpha, and IL-6.
1 - 20 of 101 Next › Last »
Showing 20 items per page