Skip to main content

Home/ Dr. Goodyear/ Group items tagged natural killer

Rss Feed Group items tagged

Nathan Goodyear

Natural Killer Cells in Pregnancy and Recurrent Pregnancy Loss: Endocrine and Immunolog... - 0 views

  • NK cells have been the cells most extensively studied, primarily because they constitute the predominant leukocyte population present in the endometrium at the time of implantation and in early pregnancy
  • parental chromosomal abnormalities, uterine anatomic anomalies, endometrial infections, endocrine etiologies (luteal phase defect, thyroid dysfunction, uncontrolled diabetes mellitus), antiphospholipid syndrome, inherited thrombophilias, and alloimmune causes
  • estrogen
  • ...28 more annotations...
  • progesterone
  • prolactin
  • In summary, in vivo animal experiments have shown an inhibitory role of estrogen on peripheral NK cell lytic activity, which is partly due to suppression of NK cell output by the bone marrow and partly due to suppression of individual NK cell cytotoxicity. However, in vitro studies so far have failed to show conclusively a direct effect of estrogen on NK cells.
  • At the progesterone concentrations believed to be present in the uterus [up to 10−5 m at the maternal-fetal interface (35)], studies consistently show inhibition of lymphocyte proliferation (33) and inhibition of NK cytolytic activity in vitro
  • The exact role of prolactin in NK cell regulation is unknown.
  • The overall effects of estrogen on NK cells are likely multifactorial, therefore, and depend on the type of cell affected as well as the kind of ER expressed by that cell.
  • It is known that progesterone can directly affect T cell differentiation in vitro, suppressing development of the Th1 pathway and enhancing differentiation along the Th2 pathway (44)
  • Th1 cells predominantly produce interferon-γ (IFN-γ), IL-2, and TNF-β and are involved in cell-mediated immunity. Th2 cells produce IL-4, IL-5, IL-6, IL-10, and IL-13 and stimulate humoral immunity
  • Furthermore, in response to progesterone, γδ T cells produce progesterone-induced blocking factor (PIBF) (54
  • A defining characteristic of NK cells is their ability to lyse target cells without prior sensitization and without restriction by HLA antigens.
  • NK cell function is mainly regulated by IL-2 and IFN-γ
  • IL-2 causes both NK cell proliferation and enhanced cytotoxicity. IFN-γ augments NK cytolytic activity, but does not cause NK proliferation. The two cytokines act synergistically to augment NK cytotoxicity (6).
  • The largest leukocyte population in the endometrium consists of NK cells named large granulated lymphocytes
  • there is a significant increase in the number of uNK cells throughout the secretory phase, which peaks in early pregnancy when uNK cells comprise about 75% of uterine leukocytes (62)
  • Second, uNK cell phenotype changes during the normal menstrual cycle and early pregnancy (68)
  • general proinflammatory effect of estrogen, causing an influx of macrophages and neutrophils, which is antagonized by progesterone through its receptor (70, 71).
  • The mechanism of such a progesterone-induced local immunosuppression is unclear.
  • progesterone plays an important role in proliferation and differentiation of uNK cells (32).
  • Through promotion of a uterine Th2 environment, progesterone could indirectly affect uNK cell function
  • The mechanism of this increase in uNK cell numbers has been addressed in both human and mouse models, and is likely the result of: 1) recruitment of peripheral NK cells to the uterus, and 2) proliferation of existing uNK cells
  • prolactin system plays an important role in implantation and the maintenance of pregnancy
  • the exact pathways of hormonal regulation of NK cells remain to be delineated.
  • The exact function of uNK cells has not yet been unequivocally determined
  • uNK cells express a different cytokine profile, compared with resting peripheral NK cells. mRNAs for granulocyte CSF, M-CSF, GM-CSF, TNF-α, IFN-γ, TGF-β, and leukemia inhibitory factor (LIF) have been found in decidual CD56+ cells
  • Their increased numbers in early pregnancy, their hormonal dependence, and their close proximity to the infiltrating trophoblast all suggest that they play an important role in the regulation of the maternal immune response to the fetal allograft and the control of trophoblast growth and invasion during human pregnancy
  • role of uNK cell-derived cytokines on trophoblast growth and differentiation (114, 115, 116, 117).
  • Th1 immunity to trophoblast is associated with RPL, whereas Th2 immunity is associated with a successful pregnancy
  • RPL is associated with Th1 immunity, for which NK cells are partly responsible.
  •  
    dysregulated immune system plays role in recurrent miscarriage.  Specifically, this article discusses natural killer cells (NK).
Nathan Goodyear

Duration of intralipid's suppressive eff... [Am J Reprod Immunol. 2008] - PubMed - NCBI - 0 views

  •  
    Intralipid therapy effect in treating natural killer cell overactivity in those women that have immune mediated recurrent pregnancy loss.
Nathan Goodyear

Symposium 3: Vitamin D and immune function: from pregnancy to adolescence - 0 views

  •  
    Good article on the immunomodulation effect of vitamin D.  The importance of vitamin D goes back to pregnancy.   Vitamin D deficiencies during pregnancy inhibit appropriate invariant Natrual killer cells, which play important regulatory effect in autoimmune disease.  Even with restoration of vitamin D levels with replacement, the full positive effects of vitamin D are not seen due to limited iNKT potential.
Nathan Goodyear

Clinical implication of natural killer c... [Am J Reprod Immunol. 2008] - PubMed - NCBI - 0 views

  •  
    increased NK activity plays role in infertility. No surprise that the immune system interacts with the endocrine system.
Nathan Goodyear

Uterine and circulating natural killer cell... [J Reprod Immunol. 2011] - PubMed - NCBI - 0 views

  •  
    women with RPL and preeclampsia carry same immunologic NK abnormalities.  Loss of immune tolerance, elevated maternal NK, shown to play role in both.
Nathan Goodyear

Angiogenic Factors and Natural Killer (NK) Cells in the Pathogenesis of Preeclampsia - 0 views

  •  
    Abnormal NK cell activity in the placenta plays a likely role in the development of preeclampsia. This proposes an immunologic role in the development of preeclampsia.  This process is similar to the literatures link between maternal NK and RPL.
Nathan Goodyear

The role of decidual natural killer ce... [J Obstet Gynaecol Can. 2008] - PubMed - NCBI - 0 views

  •  
    same NK link to RPL, linked to preeclampsia.  NK cells play important role in the development of the spiral arteries in the placenta. It has long been thought, that the placenta was the likely culprit in the development of preeclampsia
Nathan Goodyear

CD56bright natural killer (NK) cells: an important NK cell subset - 0 views

  •  
    Good review of CD16/56 cell subpopulation of NK cells.
Nathan Goodyear

VEGF receptor inhibitors block the ability of metronomically dosed cyclophosphamide to ... - 0 views

  •  
    CPA administered on an intermittent, every 6-day metronomic schedule stimulates tumor recruitment of macrophages, natural killer (NK) cells, and dendritic cells with regression of large established tumors, as seen in several implanted glioma models; also of note, VEGF inhibition inhibited this effect.
Nathan Goodyear

A novel mechanism of lung cancer inhibition by methionine enkephalin through remodeling... - 0 views

  •  
    MENK increased the infiltration of M1-type macrophages, natural killer cells, CD8+ T cells, CD4+ T cells, and dendritic cells into the TME, and decreased the proportion of myeloid inhibitory cells and M2-type macrophages. Plays particular role in preventing immune escape and immune dysfunction paramount to cancer metastasis
Nathan Goodyear

The impact of the microbiome in cancer: Targeting metabolism of cancer cells and host -... - 0 views

  •  
    Studies have found that high-salt diet can enhance the function of natural killer (NK) cells by enriching the abundance of Bifidobacterium, thus inhibiting tumor growth (63). High dietary fiber can enrich A. muciniphila, activate innate immunity, reshape the tumor microenvironment, and exert the function of inhibiting tumor (64). Notably, Wargo et al. have confirmed that high-dietary fiber diet can enhance anti-tumor immunity and increase the infiltration of tumor-killing T cells, while commercial probiotics treatment alone does not enhance the efficacy of immunotherapy. This study suggests that probiotics intervention is strain-specific and should be put in a specific dietary environment to make sense, to some extent (65).
Nathan Goodyear

How is the Immune System Suppressed by Cancer - 1 views

  • nitric oxide (NO) released by tumor cells
  • Excellent work by Prof de Groot of Essen, indicated by adding exogenous xanthine oxidase ( XO) in hepatoma cells, hydrogen peroxide was produced to destroy the hepatoma cells
  • NO from eNOS in cancer cells can travel through membranes and over long distances in the body
  • ...43 more annotations...
  • NO also is co linked to VEGF which in turn increases the antiapoptotic gene bcl-2
  • The other important influence of NO is in its inhibition of the proapoptoic caspases cascade. This in turn protects the cells from intracellular preprogrammed death.
  • nitric oxide in immune suppression in relation to oxygen radicals is its inhibitory effect on the binding of leukocytes (PMN) at the endothelial surface
  • Inhibition of inducible Nitric Oxide Synthase (iNOS)
  • NO from the tumor cells actually suppresses the iNOS, and in addition it reduces oxygen radicals to stop the formation of peroxynitrite in these cells. But NO is not the only inhibitor of iNOS in cancer.
  • Spermine and spermidine, from the rate limiting enzyme for DNA synthases, ODC, also inhibit iNOS
  • tolerance in the immune system that decreases the immune response to antigens on the tumors
  • Freund’s adjuvant
  • increase in kinases in these cells which phosphorylate serine, and tyrosine
  • responsible for activation of many growth factors and enzymes
  • phosphorylated amino acids suppress iNOS activity
  • Hexokinase II
  • Prostaglandin E2, released from tumor cells is also an inhibitor of iNOS, as well as suppressing the immune system
  • Th-1 subset of T-cells. These cells are responsible for anti-viral and anti-cancer activities, via their cytokine production including Interleukin-2, (IL-2), and Interleukin-12 which stimulates T-killer cell replication and further activation and release of tumor fighting cytokines.
    • Nathan Goodyear
       
      Th1 cells stimulate NK and other tumor fighting macrophages via IL-2 and IL-12; In contrast, Th2, which is stimulated in allergies and parasitic infections, produce IL-4 and IL-10.  IL-4 and IL-10 inhibit TH-1 activation and the histamine released from mast cell degranulation upregulates T suppressor cells to further immune suppression.
  • Th-2 subset of lymphocytes, on the other hand are activated in allergies and parasitic infections to release Interleukin-4 and Interleukin-10
  • These have respectively inhibitory effects on iNOS and lymphocyte Th-1 activation
  • Mast cells contain histamine which when released increases the T suppressor cells, to lower the immune system and also acts directly on many tumor Histamine receptors to stimulate tumor growth
  • Tumor cells release IL-10, and this is thought to be one of the important areas of Th-1 suppression in cancer patients
  • IL-10 is also increased in cancer causing viral diseases such as HIV, HBV, HCV, and EBV
  • IL-10 is also a central regulator of cyclooxygenase-2 expression and prostaglandin production in tumor cells stimulating their angiogenesis and NO production
  • nitric oxide in tumor cells even prevents the activation of caspases responsible for apoptosis
    • Nathan Goodyear
       
      NO produced by cancer cells inhibits proapoptotic pathways such as the caspases.
  • early stages of carcinogenesis, which we call tumor promotion, one needs a strong immune system, and fewer oxygen radicals to prevent mutations but still enough to destroy the tumor cells should they develop
  • later stages of cancer development, the oxygen radicals are decreased around the tumors and in the tumor cells themselves, and the entire cancer fighting Th-1 cell replication and movement are suppressed. The results are a decrease in direct toxicity and apoptosis, which is prevented by NO, a suppression of the macrophage and leukocyte toxicity and finally, a suppression of the T-cell induced tumor toxicity
  • cGMP is increased by NO
  • NO in cancer is its ability to increase platelet-tumor cell aggregates, which enhances metastases
  • the greater the malignancies and the greater the metastatic potential of these tumors
  • The greater the NO production in many types of tumors,
  • gynecological
  • elevated lactic acid which neutralizes the toxicity and activity of Lymphocyte immune response and mobility
  • The lactic acid is also feeding fungi around tumors and that leads to elevated histamine which increases T-suppressor cells.  Histamine alone stimulates many tumor cells.
    • Nathan Goodyear
       
      The warburg effect in cancer cells results in the increase in local lactic acid production which suppresses lymphocyte activity and toxicity as well as stimulates histamine production with further stimulates tumor cell growth.
  • T-regulatory cells (formerly,T suppressor cells) down regulate the activity of Natural killer cells
  • last but not least, the Lactic acid from tumor cells and acidic diets shifts the lymphocyte activity to reduce its efficacy against cancer cells and pathogens in addition to altering the bacteria of the intestinal tract.
  • intestinal tract bacteria in cancer cells release sterols that suppress the immune system and down regulate anticancer activity from lymphocytes.
  • In addition to the lactic acid, adenosine is also released from tumors. Through IL-10, adenosine and other molecules secreted by regulatory T cells, the CD8+ cells can be inactivated to an anergic state
  • Adenosine up regulates the PD1 receptor in T-1 Lymphocytes and inhibits their activity
  • Adenosine is a purine nucleoside found within the interstitial fluid of solid tumors at concentrations that are able to inhibit cell-mediated immune responses to tumor cells
  • Adenosine appears to up-regulate the PD1 receptor in T-1 Lymphocytes and inhibits the immune system further
  • Mast cells with their release of histamine lower the immune system and also stimulate tumor growth and activate the metalloproteinases involved in angiogenesis and metastases
  • COX 2 inhibitors or all trans-retinoic acid
  • Cimetidine, an antihistamine has been actually shown to increase in apoptosis in MDSC via a separate mechanism than the antihistamine effect
    • Nathan Goodyear
       
      cimetidine is an H2 blocker
  • interleukin-8 (IL-8), a chemokine related to invasion and angiogenesis
  • In vitro analyses revealed a striking induction of IL-8 expression in CAFs and LFs by tumor necrosis factor-alpha (TNF-alpha)
  • these data raise the possibility that the majority of CAFs in CLM originate from resident LFs. TNF-alpha-induced up-regulation of IL-8 via nuclear factor-kappaB in CAFs is an inflammatory pathway, potentially permissive for cancer invasion that may represent a novel therapeutic target
  •  
    Great review of the immunosuppression in cancer driven by the likes of NO.
Nathan Goodyear

Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside - 0 views

  • MAF precursor activity has also been lost or reduced after Gc-globulin treatment in some cancer cell lines
  • This appears to result from the deglycosylated ɑ-N-acetylgalactosaminidase (nagalase) secreted from cancerous cells
  • Nagalase has been detected in many cancer patients, but not in healthy individuals
  • ...31 more annotations...
  • Studies have shown that the production of nagalase has a mutual relationship with Gc-MAF level and immunosuppression
  • It has been demonstrated that serum levels of nagalase are good prognosticators of some types of cancer
  • The nagalase level in serum correlates with tumor burden and it has been shown that Gc-MAF therapy progresses, nagalase activity decreases
  • It has been shown that Gc-MAF can inhibit the angiogenesis induced by pro-inflammatory prostaglandin E1
  • The effect of Gc-MAF on chemotaxis or activation of tumoricidal macrophages is likely the main mechanism against angiogenesis.
  • Administration of Gc-MAF stimulates immune-cell progenitors for extensive mitogenesis, activates macrophages and produces antibodies. “This indicates that Gc-MAF is a powerful adjuvant for immunization.”
  • Cancer cell lines do not develop into tumor genes in mouse models after Gc-MAF-primed immunization (29-31) and the effect of Gc-MAF has been approved for macrophage stimulation for angiogenesis, proliferation, migration and metastatic inhibition on tumors induced by MCF-7 human breast cancer cell line
  • The protocol included: "a high dose of second-generation Gc-MAF (0.5 ml) administered twice a week intramuscularly for a total of 21 injections.”
  • Yamamoto et al. showed that the administration of Gc-MAF to 16 patients with prostate cancer led to improvements in all patients without recurrence
  • Inui et al. reported that a 74-year-old man diagnosed with prostate cancer with multiple bone metastases was in complete remission nine months after initiation of GcMAF therapy simultaneously with hyper T/NK cell, high-dose vitamin C and alpha lipoic acid therapy
  • It has also been approved for non-neoplastic diseases such as autism (41), multiple sclerosis (42, 43), chronic fatigue syndrome (CFS) (40), juvenile osteoporosis (44) and systemic lupus erythematous (45).
  • Gc-MAF has been verified for use in colon, thyroid (38), lung (39), liver, thymus (36), pancreatic (40), bladder and ovarian cancer and tongue squamous carcinoma
  • Prostate, breast, colon, liver, stomach, lung (including mesothelioma), kidney, bladder, uterus, ovarian, head/neck and brain cancers, fibrosarcomas and melanomas are the types of cancer tested thus far
  • weekly administration of 100 ng Gc-MAF to cancer at different stages and types showed curative effects at different follow-up times
  • this treatment has been suggested for non-anemic patients
  • Studies have shown that weekly administration of 100 ng Gc-MAF to cancer patients had curative effects on a variety of cancers
  • Because the half-life of the activated macrophages is approximately one week, it must be administered weekly
  • In vivo weekly intramuscular administration of Gc-MAF (100 ng) for 16-22 weeks was used to treat patients with breast cancer
  • individuals harboring different VDR genotypes had different responses to Gc-MAF and that some genotypes were more responsive than others
  • Administration of Gc-MAF for cancer patients exclusively activates macrophages as an important cell in adaptive immunity
  • Gc-MAF supports humoral immunity by producing, developing and releasing large quantities of antibodies against cancer. Clinical evidence from a human model of breast cancer patients supports this hypothesis
  • There is also evidence that confirms the tumoricidal role of Gc-MAF via Fc-receptor mediation
  • It is likely that the best therapeutic responses will be observed when the nutritional and inflammatory aspects are taken together with stimulation of the immune system
  • it should be noted that no harmful side effects of Gc-MAF treatment have been reported, even when it was successfully administered to autistic children
  • The natural activation mechanism of macrophages by Gc-MAF is so natural and it should not have any side effects on humans or animal models even in cell culture
  • Besides the Gc-MAF efficacy on macrophage activity, it can be a potential anti-angiogenic agent (28) and an inhibitor of the migration of cancerous cells in the absence of macrophages (47).
  • Activating or modifying natural killer cells, dendritic cells, DC, CTL, INF and IL-2 have all been recommended for cancer immunotherapy
  • It has been reported that nagalase cannot deglycosylate Gc-MAF as it has specificity for Gc globulin alone
  • inflammation-derived macrophage activation with the participation of B and T lymphocytes is the main mechanism
  • macrophages highly-activated by the addition of Gc-MAF can show tumoricidal activity
  • Previous clinical investigations have confirmed the efficacy of Gc-MAF. In addition to activating existing macrophages, Gc-MAF is a potent mitogenic factor that can stimulate the myeloid progenitor cells to increase systemic macrophage cell counts by 40-fold in four days
  •  
    great review on Gc-MAF in cancer.  An increase in nagalase blocks Gc-protein to Gc-MAF activity leaving the host immune system compromised.
Nathan Goodyear

Regulatory NK-Cell Functions in Inflammation and Autoimmunity - 0 views

  •  
    good review on NK cell role in inflammation and autoimmune disease
Nathan Goodyear

NK cells in autoimmunity: a two-edg'd weapon o... [Autoimmun Rev. 2008] - PubMed - NCBI - 0 views

  •  
    NK cells play role in autoimmune disease.
Nathan Goodyear

Gender and sex hormones in multiple sclerosis pathology and therapy - 0 views

  • It is now well recognized that the disease manifestation is reduced in pregnant women with relapsing-remitting MS
  • This occurs particularly during the third trimester when levels of estrogens (estradiol and estriol) and progesterone (see Table 2) are elevated up to about 20 times
  • This seems well correlated with a decrease in active white matter lesions detected by MRI
  • ...12 more annotations...
  • This clinical improvement is however followed by temporary rebound exacerbations at post-partum, when the hormone levels decline
  • a shift from Th1 to Th2 immune response, expansion of suppressive regulatory T lymphocytes and decrease in the number of circulating CD16+ natural killer (NK)-cells
  • Th1 lymphocytes secrete proinflammatory cytokines (e.g. IL-2, IFNgamma, lymphotoxin) while Th2 cells secrete anti-inflammatory cytokines (e.g. IL-4, IL-5, IL-10), which favor humoral-mediated responses
  • Th2 cytokines are associated with down-regulation of Th1 cytokines and this Th2 shift is believed to provide protection from allograft rejection during pregnancy as well as from Th1-mediated autoimmune disease
  • it is worth noting that the levels of other hormones with anti-inflammatory activity (1,25-dihydroxy-vitamin D3, norepinephrine, cortisol) also increase by 2 to 4 times during late pregnancy
  • 1,25-dihydroxy vitamin D3 induces regulatory T-cell function important for development of self-tolerance
  • breast-feeding does not alter the relapse rate in women with MS
  • Leptin is a pleiotropic hormone produced primarily by adipocytes but also by T lymphocytes and neurons
  • Several lines of evidence indicate that leptin contributes to EAE/MS pathogenesis, influencing its onset and clinical severity, by acting as a proinflammatory cytokine which promotes regulatory T cell (Treg) anergy and hyporesponsiveness, resulting in increased Th1 (TNFalpha, INFgamma) and reduced Th2 (IL-4) cytokine production
  • circulating leptin levels are increased in relapsing-remitting MS patients (men and women analyzed together) while the CD4+CD25+Treg population decreases
  • As the leptin plasma concentrations are proportional to the amount of fat tissue, obese/overweight individuals produce higher levels of leptin
  • Nielsen et al found that estradiol and progesterone exert neuroprotection against glutamate neurotoxicity, while MPA antagonizes the neuroprotective effect of estradiol and exacerbated neuron death induced by glutamate excitotoxicity
  •  
    very good review of the differences in MS and hormones between the sexes.
Nathan Goodyear

Natural Killer Cell Counts Are Not Different between Patients with Post-Lyme Disease Sy... - 0 views

  •  
    small study finds no difference in CD57 levels in people with post lyme and "normal" people
1 - 20 of 52 Next › Last »
Showing 20 items per page