Skip to main content

Home/ Dr. Goodyear/ Group items matching "IL-2" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
Nathan Goodyear

Adjuvant histamine in cancer immunotherapy, Seminars in Cancer Biology | 10.1006/scbi.2000.0305 | DeepDyve - 0 views

  •  
    histamine dihydrochloride augments IL-2 stimulation of NK and blocks the monocyte/macrophage inhibition of IL-2 stimulation of NK cells.
Nathan Goodyear

Histamine: A Novel Approach to Cancer Immunotherapy: Cancer Investigation: Vol 18, No 4 - 0 views

  •  
    histamin augments NK activation with IL-2 therapy. Histamine blocks the monocyte/macrophate inhibition of IL-2 induced NK activity.
Nathan Goodyear

Exposure to Bisphenol A Prenatally or in Adulthood Promotes TH2 Cytokine Production Associated with Reduction of CD4+CD25+ Regulatory T Cells - 0 views

  • BPA promotes the development of TH2 cells in adulthood and both TH1 and TH2 cells in prenatal stages by reducing the number of regulatory T cells.
  • Bisphenol A (BPA), an estrogenic endocrine-disrupting chemical (EDC
  • BPA is one of the most widespread EDCs.
  • ...12 more annotations...
  • BPA antagonizes the actions of thyroid hormone
  • Prenatal exposure to BPA has been shown to alter a variety of reproductive endocrine parameters, such as testosterone and luteinizing hormone levels
  • arly onset of sexual maturation of female mice
  • imbalanced T-helper (TH)1/TH2 immune responses have been demonstrated on exposure to BPA
  • indicating that BPA exerted its effects by reducing the number of Treg cells.
  • Exposure to BPA by subcutaneous injection in adulthood significantly promoted antigen-stimulated production of IL-4, IL-10, and IL-13 in TH2-skewed
  • BPA can leak from the placenta and accumulate in the fetus
  • We showed that prenatal exposure to BPA increased the production of a TH1 cytokine, IFN-γ, and a TH2 cytokine, IL-4, after the offspring developed, suggesting that prenatal exposure to BPA can induce persistent immunologic effects lasting into adulthood.
  • These results are consistent with a previous report that fetal exposure to BPA augmented TH1 and TH2 immune responses
  • our results clearly demonstrate that the production of TH2 cytokines is promoted by BPA in adult mice and in offspring during developmental exposure.
  • The decrease of Treg cells would predispose to immune dysfunction in aged individuals, explaining their higher risk of immune-mediated diseases, cancer, and infections.
  • BPA might cause these diseases. Thus, avoiding exposure to or promoting the excretion of BPA and other EDCs would help in preventing diseases and adverse health effects.
  •  
    BPA as endocrine disruptor and as immune disruptor
Nathan Goodyear

Effect of high-dose intravenous vitamin C on inflammation in cancer patients - 0 views

  •  
    In this small study, IV vitamin C up to 50 grams shown to reduce inflammation in cancer patients. The inflammatory cytokines reduced were: IL-1alpha, crp, IL-2, IL-8, and TNF-alpha.
Nathan Goodyear

The psychoneuroendocrine-immunotherapy of cancer: Historical evolution and clinical results - 0 views

  • It is known that immune system-induced destruction of cancer cells is mainly mediated by T cytotoxic lymphocytes (CD8+) and NK cells (CD16+), respectively, through an antigen-specific and an antigen nonspecific cytotoxicity
  • NK cells are mainly stimulated by IL-2 released by T helper-1 (TH1) lymphocytes (CD4+) while T cytotoxic lymphocytes (CD8+) are namely under a stimulatory control released by IL-12 produced by the dendritic cells
  • On the other hand, the anticancer immunity is inhibited by the activation of the macrophage system through the production of suppressive cytokines, such as IL-6 and T regulatory (T reg) lymphocytes (CD4+CD25+), which counteract the anticancer immunity by producing immunosuppressive cytokines inhibiting the secretion of both IL-2 and IL-12, including TGF-beta and IL-10, or by a direct cell-cell contact
  •  
    to be read review of melatonin in cancer treatment.
Nathan Goodyear

The Role of Vitamin C in Human Immunity and Its Treatment Potential Against COVID-19: A Review Article - PMC - 0 views

  • vitamins A, B, C, E, B6, B12, folate, zinc, iron, copper, and selenium
  • White blood cells, including neutrophils and monocytes, accumulate concentrations of vitamin C up to 100 times greater than that of plasma
  • Vitamin C is a crucial component of both the innate (nonspecific) and adaptive (specific) portions of the immune system
  • ...52 more annotations...
  • play a role during the initial chemotactic response of neutrophils shortly after infection
  • following vitamin C supplementation, a 20% increase in neutrophil chemotactic activity was observed
  • also contributes to the phagocytosis and killing of microbes by neutrophils
  • low levels of vitamin C occurring in high-stress situations
  • maturation, proliferation, and viability of T cells have all been shown to be upregulated by the presence of normal physiologic concentrations of vitamin C
  • Vitamin C has been shown to directly affect the number of Igs released from B cells
  • vitamin C among healthy young adult males showed a significant increase in serum levels of IgA, IgG, and IgM
  • effects of high-dose vitamin C on cytokine levels in cancer patients, finding decreased amounts of the cytokines Interleukin-1 alpha (IL-1 alpha), IL-2, IL-8, and tumor necrosis factor-alpha (TNF-alpha) after high-dose vitamin C infusion
  • when vitamin C was supplemented with vitamin E in healthy adults, it increased the production of cytokines IL-1 beta and TNF-alpha
  • vitamin C acts to modulate the levels of cytokines to prevent them from fluctuating in either direction
  • vitamin C also acts as an important antioxidant to the cells of the immune system.
  • human leukocytes, neutrophils, in particular, possess the ability to transport the oxidized form of vitamin C across its membrane to use as a defense mechanism against ROS produced during an immune response
  • Vitamin C also can recover other endogenous antioxidants in the body such as vitamin E and glutathione, returning them to their active state
  • vitamin C can decrease the activation of NF-kB
  • can reduce harmful nitrogen-based compounds such as N-nitrosamines and nitrosamides, both of which are carcinogenic 
  • subjects taking oral vitamin C supplementation saw a 60% to 90% reduction in oxidative stress compared to a placebo control
  • subjects infused with vitamin C alone had a 516% increase in glutathione levels compared to subjects not provided the 500 mg daily supplementation
  • hydroxylating proline and lysine
  • mature and stabilize the tissue of a healing wound
  • healing
  • oral surgery
  • improved soft tissue regeneration
  • vitamin C increases the mRNA levels of type I and type III collagen in the human dermis
  • Studies have demonstrated that those with low levels of vitamin C are at a significantly higher risk of respiratory infection compared to those with normal levels
  • viral cold duration was reduced by about 8% in adults and 13.5% in children using prophylactic daily doses of 200 mg of oral vitamin C
  • prophylactically supplementing vitamin C decreases the risk of infection with respiratory viruses such as the common cold
  • combined with probiotics, oral vitamin C supplementation showed a 33% decrease in the incidence of respiratory tract infections in preschool-age children [
  • high-dose oral supplementation of vitamin C managed to prevent or reduce symptoms if taken before or just after the onset of cold- or flu-like symptoms
  • improvements in oxygen saturation and decreased IL-6 levels (a marker of inflammation) in the treatment group compared to the control group
  • 8 g doses of oral vitamin C
  • there is a negative correlation between age and serum levels of vitamin C
  • Patients with COVID-19 will likely also experience depletion in serum levels of vitamin C as a direct result of the upregulation of the immune system to combat the infection
  • Colunga et al. suggested that oral vitamin C can be combined with oral Quercetin, an antiviral flavonoid, to improve Quercetin’s ability to block viral membrane fusion of SARS-CoV-2
  • high doses of 1-2 g/day of oral vitamin C could prevent other upper respiratory infections
  • It appears vitamin C supplementation by itself does not provide a striking benefit in preventing COVID-19 infection for those without a deficiency
    • Nathan Goodyear
       
      Flawed statement. What is normal? Vitamin D. Many variables effect levels and dose, including the two compartment kinetics and absorption.
  • Hiedra et al. were able to show decreases in inflammatory biomarkers, such as D-dimer and ferritin
  • some evidence to support that prophylactic use of vitamin C helps reduce the severity of respiratory infection symptoms once a subject has already been infected
  • oral vitamin C in combination with zinc provided the largest amount of antibody titers 42 days
  • linear relationship between days of vitamin C therapy and survival duration
  • other studies were unable to find any definitive improvement concerning therapy with vitamin C
    • Nathan Goodyear
       
      Either these studies are designed to fail or the authors are lacking some basic understanding of pharmacokinetics and pharmacodynamics with vitamin C.
  • Fowler et al. aimed to see if a high-dose vitamin C infusion would benefit patients affected by ARDS, but they were unable to conclude that vitamin C infusion, compared to a placebo, could decrease vascular inflammation and damage in ARDS
    • Nathan Goodyear
       
      At what dose, duration, frequency???
  • in a sample of 67 COVID-19-positive ICU patients, 82% of them displayed plasma vitamin C levels below 0.4 mg/dL
    • Nathan Goodyear
       
      They are kind of make the point from my earlier note.
  • continuous vitamin C infusion at a rate of 60 mg/kg/day for four days decreased the need for mechanical ventilation and vasopressor use but had no significant effect on overall mortality
    • Nathan Goodyear
       
      Again, designed to fail or ignorance designed the study which failed
  • Carr et al. suggested that high-dose IV vitamin C is most effective when treating sepsis as septic patients receiving the normal daily recommendations through diet still showed decreased vitamin C levels
  • High-dose IV vitamin C treatment has also been shown by Kakodkar et al. to decrease syndecan-1, an endothelial glycocalyx that contributes to mortality in septic patients
  • combined with hydrocortisone and thiamine, septic patients treated with 1.5 g of IV vitamin C every six hours showed a distinct decrease in their SOFA scores and none of the patients treated developed organ failure
  • combined with hydrocortisone and thiamine, septic patients treated with 1.5 g of IV vitamin C every six hours showed a distinct decrease in their SOFA scores and none of the patients treated developed organ failure
  • reduced overall mortality
  • reduced overall mortality
  • propose the use for high-dose vitamin C to aid in the treatment of septic shock-induced hypotension
  • treatment of severe sepsis using a high dose (up to 200 mg/kg/day) of IV vitamin C was explored in phase I, a double-blind, randomized, placebo-controlled trial by Fowler et al. [75]. Their findings included a reduction in SOFA scores and decreased vascular injury compared to a placebo control group, all while showing minimal adverse side effects
    • Nathan Goodyear
       
      High dose here is laughable. Again, duration and frequency also.
  • Maintaining a daily intake of 75 and 100 mg for men and women, respectively, as recommended by the U.S. Institute of Medicine
    • Nathan Goodyear
       
      This recommendation is FRANK IGNORANCE
Nathan Goodyear

SARS-CoV-2 spike protein interacts with and activates TLR41 | Cell Research - 0 views

  •  
    "The induction of IL1B by trimeric spike proteins from SARS-CoV-2 or SARS-CoV was comparable to LPS treatment. Moreover, IL1B was induced by SARS-CoV-2, HCoV-229E and MHV-A59 via TLR4"
Nathan Goodyear

Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation - 0 views

  • More than half of cancer patients are treated with IR at some point during their treatment
  • fractionation schedule is the delivery of 1.8–2.0 Gy per day, five days per week
  • Nuclear DNA is the primary target of IR; it causes DNA damage (genotoxic stress) by direct DNA ionization
  • ...121 more annotations...
  • IR also indirectly induces DNA damage by stimulating reactive oxygen species (ROS) production
  • IR is known to induce EMT in vitro
  • p53 is activated in response to IR-induced DNA damage
  • IR paradoxically also promotes tumour recurrence and metastasis
  • DNA double-strand breaks (DSBs)
  • cancer cells undergoing EMT acquire invasive and metastatic properties
  • changes in the tumour microenvironment (TME)
  • IR seems to induce EMT and CSC phenotypes by regulating cellular metabolism
  • EMT, stemness, and oncogenic metabolism are known to be associated with resistance to radiotherapy and chemotherapy
  • Hanahan and Weinberg proposed ten hallmarks of cancer that alter cell physiology to enhance malignant growth: 1) sustained proliferation, 2) evasion of growth suppression, 3) cell death resistance, 4) replicative immortality, 5) evasion of immune destruction, 6) tumour-promoting inflammation, 7) activation of invasion and metastasis, 8) induction of angiogenesis, 9) genome instability, and 10) alteration of metabolism
  • EMT is a developmental process that plays critical roles in embryogenesis, wound healing, and organ fibrosis
  • IR is known to induce stemness and metabolic alterations in cancer cells
  • transforming growth factor-β [TGF-β], epidermal growth factor [EGF]) and their associated signalling proteins (Wnt, Notch, Hedgehog, nuclear-factor kappa B [NF-κB], extracellular signal-regulated kinase [ERK], and phosphatidylinositol 3-kinase [PI3K]/Akt
  • activate EMT-inducing transcription factors, including Snail/Slug, ZEB1/δEF1, ZEB2/SIP1, Twist1/2, and E12/E47
  • Loss of E-cadherin is considered a hallmark of EMT
  • IR has been shown to induce EMT to enhance the motility and invasiveness of several cancer cells, including those of breast, lung, and liver cancer, and glioma cells
  • IR may increase metastasis in both the primary tumour site and in normal tissues under some circumstance
  • sublethal doses of IR have been shown to enhance the migratory and invasive behaviours of glioma cells
  • ROS are known to play an important role in IR-induced EMT
  • High levels of ROS trigger cell death by causing irreversible damage to cellular components such as proteins, nucleic acids, and lipids, whereas low levels of ROS have been shown to promote tumour progression—including tumour growth, invasion, and metastasis
  • hypoxia-inducible factor-1 (HIF-1) is involved in IR-induced EMT
  • Treatment with the N-acetylcysteine (NAC), a general ROS scavenger, prevents IR-induced EMT, adhesive affinity, and invasion of breast cancer cells
    • Nathan Goodyear
       
      NAC for all patients receiving radiation therapy
  • Snail has been shown to play a crucial role in IR-induced EMT, migration, and invasion
  • IR activates the p38 MAPK pathway, which contributes to the induction of Snail expression to promote EMT and invasion
  • NF-κB signalling that promotes cell migration
  • ROS promote EMT to allow cancer cells to avoid hostile environments
  • HIF-1 is a heterodimer composed of an oxygen-sensitive α subunit and a constitutively expressed β subunit.
  • Under normoxia, HIF-1α is rapidly degraded, whereas hypoxia induces stabilisation and accumulation of HIF-1α
  • levels of HIF-1α mRNA are enhanced by activation of the PI3K/Akt/mammalian target of rapamycin (mTOR)
  • IR is known to increase stabilisation and nuclear accumulation of HIF-1α, since hypoxia is a major condition for HIF-1 activation
  • IR induces vascular damage that causes hypoxia
  • ROS is implicated in IR-induced HIF-1 activation
  • IR causes the reoxygenation of hypoxic cancer cells to increase ROS production, which leads to the stabilisation and nuclear accumulation of HIF-1
  • IR increases glucose availability under reoxygenated conditions that promote HIF-1α translation by activating the Akt/mTOR pathway
  • The stabilised HIF-1α then translocates to the nucleus, dimerizes with HIF-1β, and increases gene expression— including the expression of essential EMT regulators such as Snail—to induce EMT, migration, and invasion
  • TGF-β signalling has been shown to play a crucial role in IR-induced EMT
  • AP-1 transcription factor is involved in IR-induced TGF-β1 expression
  • Wnt/β-catenin signalling is also implicated in IR-induced EMT
  • Notch signalling is known to be involved in IR-induced EMT
  • IR also increases Notch-1 expression [99]. Notch-1 is known to induce EMT by upregulating Snail
  • PAI-1 signalling is also implicated in IR-induced Akt activation that increases Snail levels to induce EMT
  • EGFR activation is known to be associated with IR-induced EMT, cell migration, and invasion by activating two downstream pathways: PI3K/Akt and Raf/MEK/ERK
  • ROS and RNS are also implicated in IR-induced EGFR activation
  • IR has also been shown to activate Hedgehog (Hh) signalling to induce EMT
  • IR has been shown to induce Akt activation through several signalling pathways (EGFR, C-X-C chemokine receptor type 4 [CXCR4]/C-X-C motif chemokine 12 [CXCL12], plasminogen activator inhibitor 1 [PAI-1]) and upstream regulators (Bmi1, PTEN) that promote EMT and invasion
  • CSCs possess a capacity for self-renewal, and they can persistently proliferate to initiate tumours upon serial transplantation, thus enabling them to maintain the whole tumour
  • Conventional cancer treatments kill most cancer cells, but CSCs survive due to their resistance to therapy, eventually leading to tumour relapse and metastasis
  • identification of CSCs, three types of markers are utilised: cell surface molecules, transcription factors, and signalling pathway molecules
  • CSCs express distinct and specific surface markers; commonly used ones are CD24, CD34, CD38, CD44, CD90, CD133, and ALDH
  • Transcription factors, including Oct4, Sox2, Nanog, c-Myc, and Klf4,
  • signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, platelet-derived growth factor receptor (PDGFR), and JAK/STAT
  • microRNAs (miRNAs), including let-7, miR-22, miR-34a, miR-128, the miR-200 family, and miR-451
  • Non-CSCs can be reprogrammed to become CSCs by epigenetic and genetic changes
  • EMT-inducing transcription factors, such as Snail, ZEB1, and Twist1, are known to confer CSC properties
  • Signalling pathways involved in EMT, including those of TGF-β, Wnt, and Notch, have been shown to play important roles in inducing the CSC phenotype
  • TGF-β1 not only increases EMT markers (Slug, Twist1, β-catenin, N-cadherin), but also upregulates CSC markers (Oct4, Sox2, Nanog, Klf4) in breast and lung cancer cells
  • some CSC subpopulations arise independently of EMT
  • IR has been shown to induce the CSC phenotype in many cancers, including breast, lung, and prostate cancers, as well as melanoma
  • Genotoxic stress due to IR or chemotherapy promotes a CSC-like phenotype by increasing ROS production
  • IR has been shown to induce reprogramming of differentiated cancer cells into CSCs
  • In prostate cancer patients, radiotherapy increases the CD44+ cell population that exhibit CSC properties
  • IR also induces the re-expression of stem cell regulators, such as Sox2, Oct4, Nanog, and Klf4, to promote stemness in cancer cells
  • EMT-inducing transcription factors and signalling pathways, including Snail, STAT3, Notch signalling, the PI3K/Akt pathway, and the MAPK cascade, have been shown to play important roles in IR-induced CSC properties
  • STAT3 directly binds to the Snail promoter and increases Snail transcription, which induces the EMT and CSC phenotypes, in cisplatin-selected resistant cells
  • Other oncogenic metabolic pathways, including glutamine metabolism, the pentose phosphate pathway (PPP), and synthesis of fatty acids and cholesterol, are also enhanced in many cancers
  • metabolic reprogramming
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • metabolic reprogramming
  • tumour cells exhibit high mitochondrial metabolism as well as aerobic glycolysis
  • occurring within the same tumour
  • CSCs can be highly glycolytic-dependent or oxidative phosphorylation (OXPHOS)-dependen
  • mitochondrial function is crucial for maintaining CSC functionality
  • cancer cells depend on mitochondrial metabolism and increase mitochondrial production of ROS that cause pseudo-hypoxia
  • HIF-1 then enhances glycolysis
  • CAFs have defective mitochondria that lead to the cells exhibiting the Warburg effect; the cells take up glucose, and then secrete lactate to 'feed' adjacent cancer cells
  • lactate transporter, monocarboxylate transporter (MCT)
  • nutrient microenvironment
  • Epithelial cancer cells express MCT1, while CAFs express MCT4. MCT4-positive, hypoxic CAFs secrete lactate by aerobic glycolysis, and MCT1-expressing epithelial cancer cells then uptake and use that lactate as a substrate for the tricarboxylic acid (TCA) cycle
  • MCT4-positive cancer cells depend on glycolysis and then efflux lactate, while MCT1-positive cells uptake lactate and rely on OXPHOS
  • metabolic heterogeneity induces a lactate shuttle between hypoxic/glycolytic cells and oxidative/aerobic tumour cells
  • bulk tumour cells exhibit a glycolytic phenotype, with increased conversion of glucose to lactate (and enhanced lactate efflux through MCT4), CSC subsets depend on oxidative phosphorylation; most of the glucose entering the cells is converted to pyruvate to fuel the TCA cycle and the electron transport chain (ETC), thereby increasing mitochondrial ROS production
  • the major fraction of glucose is directed into the pentose phosphate pathway, to produce redox power through the generation of NADPH and ROS scavengers
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • regulatory molecules involved in EMT and CSCs, including Snail, Dlx-2, HIF-1, STAT3, TGF-β, Wnt, and Akt, are implicated in the metabolic reprogramming of cancer cells
  • HIF-1 induces the expression of glycolytic enzymes, including the glucose transporter GLUT, hexokinase, lactate dehydrogenase (LDH), and MCT, resulting in the glycolytic switch
  • HIF-1 represses the expression of pyruvate dehydrogenase kinase (PDK), which inhibits pyruvate dehydrogenase (PDH), thereby inhibiting mitochondrial activity
  • STAT3 has been implicated in EMT-induced metabolic changes as well
  • TGF-β and Wnt play important roles in the metabolic alteration of cancer cells
  • Akt is also implicated in the glycolytic switch and in promoting cancer cell invasiveness
  • EMT, invasion, metastasis, and stemness
  • pyruvate kinase M2 (PKM2), LDH, and pyruvate carboxylase (PC), are implicated in the induction of the EMT and CSC phenotypes
  • decreased activity of PKM2 is known to promote an overall shift in metabolism to aerobic glycolysis
  • LDH catalyses the bidirectional conversion of lactate to pyruvate
  • High levels of LDHA are positively correlated with the expression of EMT and CSC markers
  • IR has been shown to induce metabolic changes in cancer cells
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR also elevates MCT1 expression that exports lactate into the extracellular environment, leading to acidification of the tumour microenvironment
  • IR increases intracellular glucose, glucose 6-phosphate, fructose, and products of pyruvate (lactate and alanine), suggesting a role for IR in the upregulation of cytosolic aerobic glycolysis
  • Lactate can activate latent TGF-
  • lactate stimulates cell migration and enhances secretion of hyaluronan from CAF that promote tumour metastasis
  • promote tumour survival, growth, invasion, and metastasis; enhance the stiffness of the ECM; contribute to angiogenesis; and induce inflammation by releasing several growth factors and cytokines (TGF-β, VEGF, hepatocyte growth factor [HGF], PDGF, and stromal cell-derived factor 1 [SDF1]), as well as MMP
  • tumours recruit the host tissue’s blood vessel network to perform four mechanisms: angiogenesis (formation of new vessels), vasculogenesis (de novo formation of blood vessels from endothelial precursor cells), co-option, and modification of existing vessels within tissues.
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • intrinsic immunogenicity or induce tolerance
  • cancer immunoediting’
  • three phases: 1) elimination, 2) equilibrium, and 3) escape.
  • The third phase, tumour escape, is mediated by antigen loss, immunosuppressive cells (TAM, MDSCs, and regulatory T cells), and immunosuppressive cytokines (TGF-β and IL-10).
  • IR can elicit various changes in the TME, such as CAF activity-mediated ECM remodelling and fibrosis, cycling hypoxia, and an inflammatory response
  • IR activates CAFs to promote the release of growth factors and ECM modulators, including TGF-β and MMP
  • TGF-β directly influences tumour cells and CAFs, promotes tumour immune escape, and activates HIF-1 signalling
    • Nathan Goodyear
       
      And now the receipts
  • MMPs degrade ECM that facilitates angiogenesis, tumour cell invasion, and metastasis
    • Nathan Goodyear
       
      Receipts and mechanisms
  • IR also promotes MMP-2/9 activation in cancer cells to promote EMT, invasion, and metastasis
  • IR-induced Snail increases MMP-2 expression to promote EMT
  • Radiotherapy has the paradoxical side-effect of increasing tumour aggressiveness
  • IR promotes ROS production in cancer cells, which may induce the activation of oncogenes and the inactivation of tumour suppressors, which further promote oncogenic metabolism
  • Metabolic alterations
  • oncogenic metabolism
  • elicit various changes in the TME
  • Although IR activates an antitumour immune response, this signalling is frequently suppressed by tumour escape mechanisms
  •  
    Important review article.
Nathan Goodyear

Toxicity of the spike protein of COVID-19 is a redox shift phenomenon: A novel therapeutic approach - ScienceDirect - 0 views

  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • ...88 more annotations...
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • most diseases display a form of anabolism due to mitochondrial impairment
  • most diseases display a form of anabolism due to mitochondrial impairment
  • most diseases display a form of anabolism due to mitochondrial impairment
  • infection by Covid-19 follows a similar pattern
  • chronic inflammation
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • infection by Covid-19 follows a similar pattern
  • unrelenting anabolism leads to the cytokine storm,
  • unrelenting anabolism leads to the cytokine storm,
  • unrelenting anabolism leads to the cytokine storm,
  • chronic inflammation
  • chronic inflammation
  • infection by Covid-19 follows a similar pattern
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • direct consequence of redox iMeBalance, itself a consequence of decreased energy yield by the mitochondria
  • direct consequence of redox iMeBalance, itself a consequence of decreased energy yield by the mitochondria
  • mitochondrial dysfunction and increased levels of lactate, which are important characteristics of metabolic shift and Warburg effect in many diseases
  • mitochondrial dysfunction and increased levels of lactate, which are important characteristics of metabolic shift and Warburg effect in many diseases
  • increased lactate dehydrogenase activity (LDH) was observed in COVID-19 patients
  • increased lactate dehydrogenase activity (LDH) was observed in COVID-19 patients
  • almost every disease presents an increased anabolism
  • almost every disease presents an increased anabolism
  • cell division is the most sophisticated way to release entropy
  • cell division is the most sophisticated way to release entropy
    • Nathan Goodyear
       
      Wow
    • Nathan Goodyear
       
      Wow
  • transition from catabolism to anabolism is driven by a redox shift
  • transition from catabolism to anabolism is driven by a redox shift
  • viral spike protein binds to ACE2 receptor of the host cell [22,23].
  • redox signaling plays an important role in regulating immune function and inflammation, and disruptions in this signaling can lead to excessive cytokine production and immune system activation
  • Aging is associated with a poor control of the redox balance
  • thiol/disulfide homeostasis
  • reduced extracellular environment in the elderly and the increased susceptibility to Covid-19 infection
  • reduced extracellular environment in the elderly and the increased susceptibility to Covid-19 infection
  • Redox signaling tightly modulates the inflammatory response and oxidative stress has been reported in acute Covid-19
  • People at high risk are the elderly, patients suffering from metabolic syndrome such as obesity, or those suffering from chronic diseases such as cancer or inflammation
  • COVID-19 patients with severe disease have higher levels of oxidative stress markers and lower antioxidant levels
  • oxidative stress can activate the NLRP3 inflammasome, which is a protein complex that plays a key role in the cytokine storm
  • inflammation leads to the formation of ROS and RNS, while redox iMeBalance results in cellular damage, which in turn triggers an inflammatory response
  • persistently elevated mtROS triggers endothelial dysfunction and inflammation, which results in a vicious loop involving ROS, inflammation, and mitochondrial dysfunction
  • Damaged mitochondria releasing ROS induce inflammation via the NLRP3 inflammasome
  • Damaged mitochondria releasing ROS induce inflammation via the NLRP3 inflammasome
  • reduced environment during the cytokine storm
  • IL-2 is highly up-regulated in Covid-19 patients [37], and IL-2 is known to significantly stimulate the generation of NO in patients
  • Nitric acid is also the key mediator of IL-2-induced hypotension and vascular leak syndrome
  • mitochondrial dysfunction has been linked to the pathogenesis of Covid-19
  • mitochondrial dysfunction triggered by SARS-CoV-2 leads to damage to the mitochondria
  • mitochondrial dysfunction triggered by SARS-CoV-2 leads to damage to the mitochondria
  • As catabolism is decreased, entropy is released through anabolism
  • Elevated levels of lactate, a characteristic of the Warburg effect, were also reported in the high-risk Covid-19
  • elevated levels of ventricular lactic acid consistent with oxidative stress
  • A decrease of ΔΨm is implicated in several inflammation-related diseases
  • decrease in ΔΨm in leucocytes from Covid-19 patients
  • vaccinated with RNA or DNA vaccines triggering the synthesis of the viral spike protein in human cells
  • viral reactivation in varicella-zoster virus [55] or hepatitis [56], coagulopathy and resulting stroke and myocarditis following both DNA-based vaccines [57] and RNA-based vaccines
  • Covid-19, mitochondrial impairment
  • characteristic of the Warburg effect is present in almost every disease and appears to be a central feature in most of the hallmarks of cancer
  • inflammation, mitochondrial dysfunction and increased lactate concentrations in the extracellular fluid
  • In Covid-19, like any inflammation, there is a metabolic rewiring where cells rely on glycolysis
  • As the mitochondria are impaired, the infected cell cannot catabolize efficiently. It will release lactic acid in the blood stream
    • Nathan Goodyear
       
      Mitochondrial impairment
  • Striking similarities are seen between cancer, Alzheimer's disease and Covid-19, all related to the Warburg effect
  • Cancer, inflammation, Alzheimer's, and Parkinson's diseases share a common peculiarity, the inability of the cell to export entropy outside the body in the harmless form of heat
    • Nathan Goodyear
       
      Entropy: lack of order or predictability; gradual decline into disorder.
  • MEB relieves the Warburg effect [87], improves memory [77], is active in the treatment of depressive episodes [79,80] and reduces the importance of ischemic strokes
  • MEB relieves the Warburg effect [87], improves memory [77], is active in the treatment of depressive episodes [79,80] and reduces the importance of ischemic strokes
  • MEB has been shown to inhibit SARS-Cov-2 replication in vitro
  • MEB has been shown to inhibit SARS-Cov-2 replication in vitro
  • It has been shown that Covid-19-patients treated with MEB, have a significant reduction in hospital stay duration and mortality
  • MeB is an acceptor-donor molecule
  • MeB + can take a pair of electrons (of H atoms) and MeBH can release this pair easily, so that MeB is partially recycled like a catalyst
  • MeB acts as an electron bridge between a donor (FADH2, FMNH, NADH) and an acceptor (complex IV of ETC or oxygen itself)
  • As a coenzyme of pyruvate dehydrogenase (PDH), alpha-lipoic acid (ALA) initiates the formation of acetyl-CoA to feed the TCA cycle
  • ALA enhances the catabolism of carbon. cycle and therefore may reduce the Warburg effect and consequently, lactate production
  • Methylene Blue plays a similar role after the TCA cycle, by carrying electrons to complex IV of the electron transport chain
  • Drugs such as lipoic acid and MeB, which target the metabolism, decrease the redox shift by increasing catabolism
Nathan Goodyear

Immune Modulation in Multiple Sclerosis Patients Treated with the Pregnancy Hormone Estriol - 0 views

  • A beneficial effect of pregnancy on clinical symptoms has been observed in MS and other Th1-mediated autoimmune diseases, including rheumatoid arthritis (RA), psoriasis, uveitis, and thyroiditis
  • In general, Th1 lymphocytes secrete proinflammatory cytokines (e.g., IL-2, IL-12, IFN-γ, and TNF-α) that promote cellular immunity, while Th2 lymphocytes produce anti-inflammatory cytokines (e.g., IL-4, IL-5, IL-6, and IL-10) that promote humoral immunity
  • Th2 cytokines are associated with the down-regulation of Th1 cytokines and may confer protection from Th1-mediated autoimmune diseases
  • ...1 more annotation...
  • During pregnancy, there is a shift from Th1 to Th2 that occurs both locally, at the fetal maternal interface, (23, 24, 25), and systemically
  •  
    MS is in part a Th1 autoimmune disease.  Estriol therapy induces a shift to Th2 through increase in Th10.  Estriol also decreases TNF-alpha cytokine production.
Nathan Goodyear

Inflammatory Cytokines and the Risk to Develop Type 2 Diabetes - 0 views

  •  
    elevated  inflammatory markers, IL-1B, IL-6, and TNF-alpha, found to be associated with the development of type II Diabetes.
Nathan Goodyear

The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. - PubMed - NCBI - 0 views

  • testosterone induced reductions in TNFalpha (-3.1 +/- 8.3 vs. 1.3 +/- 5.2 pg/ml; P = 0.01) and IL-1beta (-0.14 +/- 0.32 vs. 0.18 +/- 0.55 pg/ml; P = 0.08) and an increase in IL-10 (0.33 +/- 1.8 vs. -1.1 +/- 3.0 pg/ml; P = 0.01); the reductions of TNFalpha and IL-1beta were positively correlated
  •  
    Testosterone reduced TNF-alpha and IL-1 beta in men.
Nathan Goodyear

Gender and sex hormones in multiple sclerosis pathology and therapy - 0 views

  • It is now well recognized that the disease manifestation is reduced in pregnant women with relapsing-remitting MS
  • This occurs particularly during the third trimester when levels of estrogens (estradiol and estriol) and progesterone (see Table 2) are elevated up to about 20 times
  • This seems well correlated with a decrease in active white matter lesions detected by MRI
  • ...12 more annotations...
  • This clinical improvement is however followed by temporary rebound exacerbations at post-partum, when the hormone levels decline
  • a shift from Th1 to Th2 immune response, expansion of suppressive regulatory T lymphocytes and decrease in the number of circulating CD16+ natural killer (NK)-cells
  • Th1 lymphocytes secrete proinflammatory cytokines (e.g. IL-2, IFNgamma, lymphotoxin) while Th2 cells secrete anti-inflammatory cytokines (e.g. IL-4, IL-5, IL-10), which favor humoral-mediated responses
  • Th2 cytokines are associated with down-regulation of Th1 cytokines and this Th2 shift is believed to provide protection from allograft rejection during pregnancy as well as from Th1-mediated autoimmune disease
  • it is worth noting that the levels of other hormones with anti-inflammatory activity (1,25-dihydroxy-vitamin D3, norepinephrine, cortisol) also increase by 2 to 4 times during late pregnancy
  • 1,25-dihydroxy vitamin D3 induces regulatory T-cell function important for development of self-tolerance
  • breast-feeding does not alter the relapse rate in women with MS
  • Leptin is a pleiotropic hormone produced primarily by adipocytes but also by T lymphocytes and neurons
  • Several lines of evidence indicate that leptin contributes to EAE/MS pathogenesis, influencing its onset and clinical severity, by acting as a proinflammatory cytokine which promotes regulatory T cell (Treg) anergy and hyporesponsiveness, resulting in increased Th1 (TNFalpha, INFgamma) and reduced Th2 (IL-4) cytokine production
  • circulating leptin levels are increased in relapsing-remitting MS patients (men and women analyzed together) while the CD4+CD25+Treg population decreases
  • As the leptin plasma concentrations are proportional to the amount of fat tissue, obese/overweight individuals produce higher levels of leptin
  • Nielsen et al found that estradiol and progesterone exert neuroprotection against glutamate neurotoxicity, while MPA antagonizes the neuroprotective effect of estradiol and exacerbated neuron death induced by glutamate excitotoxicity
  •  
    very good review of the differences in MS and hormones between the sexes.
Nathan Goodyear

Histamine and Interleukin-2 in Acute Myelogenous Leukemia: Leukemia & Lymphoma: Vol 27, No 5-6 - 0 views

  •  
    IL-2 + histamine to prolong remission time in AML.
Nathan Goodyear

A phase II trial of trastuzumab in combination with low-dose interleukin-2 (IL-2) in patients (PTS) with metastatic breast cancer (MBC) who have previously failed trastuzumab | SpringerLink - 0 views

  •  
    phase II study of herceptin and IL-2 found no benefit of NK cell expansion
Nathan Goodyear

Testosterone: a metabolic hormone in health and disease - 0 views

  • E2 and the inflammatory adipocytokines tumour necrosis factor α (TNFα) and interleukin 6 (IL6) inhibit hypothalamic production of GNRH and subsequent release of LH and FSH from the pituitary
  • Leptin, an adipose-derived hormone with a well-known role in regulation of body weight and food intake, also induces LH release under normal conditions via stimulation of hypothalamic GNRH neurons
  • In human obesity, whereby adipocytes are producing elevated amounts of leptin, the hypothalamic–pituitary axis becomes leptin resistant
  • ...39 more annotations...
  • there is evidence from animal studies that leptin resistance, inflammation and oestrogens inhibit neuronal release of kisspeptin
  • Beyond hypothalamic action, leptin also directly inhibits the stimulatory action of gonadotrophins on the Leydig cells of the testis to decrease testosterone production; therefore, elevated leptin levels in obesity may further diminish androgen status
  • increasing insulin resistance assessed by glucose tolerence test and hypoglycemic clamp was shown to be associated with a decrease in Leydig cell testosterone secretion in men
  • ADT for the treatment of prostatic carcinoma in some large epidemiological studies has been shown to be associated with an increased risk of developing MetS and T2DM
  • Non-diabetic men undergoing androgen ablation show increased occurrence of new-onset diabetes and demonstrate elevated insulin levels and worsening glycaemic control
  • Prostate cancer patients with pre-existing T2DM show a further deterioration of insulin resistance and worsening of diabetic control following ADT
  • The response to testosterone replacement of insulin sensitivity is in part dependent on the androgen receptor (AR)
  • Low levels of testosterone have been associated with an atherogenic lipoprotein profile, characterised by high LDL and triglyceride levels
  • a positive correlation between serum testosterone and HDL has been reported in both healthy and diabetic men
  • up to 70% of the body's insulin sensitivity is accounted for by muscle
  • Testosterone deficiency is associated with a decrease in lean body mass
  • relative muscle mass is inversely associated with insulin resistance and pre-diabetes
  • GLUT4 and IRS1 were up-regulated in cultured adipocytes and skeletal muscle cells following testosterone treatment at low dose and short-time incubations
  • local conversion of testosterone to DHT and activation of AR may be important for glucose uptake
  • inverse correlation between testosterone levels and adverse mitochondrial function
  • orchidectomy of male Wistar rats and associated testosterone deficiency induced increased absorption of glucose from the intestine
  • (Kelley & Mandarino 2000). Frederiksen et al. (2012a) recently demonstrated that testosterone may influence components of metabolic flexibility as 6 months of transdermal testosterone treatment in aging men with low–normal bioavailable testosterone levels increased lipid oxidation and decreased glucose oxidation during the fasting state.
  • Decreased lipid oxidation coupled with diet-induced chronic FA elevation is linked to increased accumulation of myocellular lipid, in particular diacylglycerol and/or ceramide in myocytes
  • In the Chang human adult liver cell line, insulin receptor mRNA expression was significantly increased following exposure to testosterone
  • Testosterone deprivation via castration of male rats led to decreased expression of Glut4 in liver tissue, as well as adipose and muscle
  • oestrogen was found to increase the expression of insulin receptors in insulin-resistant HepG2 human liver cell line
  • FFA decrease hepatic insulin binding and extraction, increase hepatic gluconeogenesis and increase hepatic insulin resistance.
  • Only one, albeit large-scale, population-based cross-sectional study reports an association between low serum testosterone concentrations and hepatic steatosis in men (Völzke et al. 2010)
  • This suggests that testosterone may confer some of its beneficial effects on hepatic lipid metabolism via conversion to E2 and subsequent activation of ERα.
  • hypogonadal men exhibiting a reduced lean body mass and an increased fat mass, abdominal or central obesity
  • visceral adipose tissue was inversely correlated with bioavailable testosterone
  • there was no change in visceral fat mass in aged men with low testosterone levels following 6 months of transdermal TRT, yet subcutaneous fat mass was significantly reduced in both the thigh and the abdominal areas when analysed by MRI (Frederiksen et al. 2012b)
  • ADT of prostate cancer patients increased both visceral and subcutaneous abdominal fat in a 12-month prospective observational study (Hamilton et al. 2011)
  • Catecholamines are the major lipolysis regulating hormones in man and regulate adipocyte lipolysis through activation of adenylate cyclase to produce cAMP
  • deficiency of androgen action decreases lipolysis and is primarily responsible for the induction of obesity (Yanase et al. 2008)
  • may be some regional differences in the action of testosterone on subcutaneous and visceral adipose function
  • proinflammatory adipocytokines IL1, IL6 and TNFα are increased in obesity with a downstream effect that stimulates liver production of CRP
  • observational evidence suggests that IL1β, IL6, TNFα and CRP are inversely associated with serum testosterone levels in patients
  • TRT has been reported to significantly reduce these proinflammatory mediators
  • This suggests a role for AR in the metabolic actions of testosterone on fat accumulation and adipose tissue inflammatory response
  • testosterone treatment may have beneficial effects on preventing the pathogenesis of obesity by inhibiting adipogenesis, decreasing triglyceride uptake and storage, increasing lipolysis, influencing lipoprotein content and function and may directly reduce fat mass and increase muscle mass
  • Early interventional studies suggest that TRT in hypogonadal men with T2DM and/or MetS has beneficial effects on lipids, adiposity and parameters of insulin sensitivity and glucose control
  • Evidence that whole-body insulin sensitivity is reduced in testosterone deficiency and increases with testosterone replacement supports a key role of this hormone in glucose and lipid metabolism
  • Impaired insulin sensitivity in these three tissues is characterised by defects in insulin-stimulated glucose transport activity, in particular into skeletal muscle, impaired insulin-mediated inhibition of hepatic glucose production and stimulation of glycogen synthesis in liver, and a reduced ability of insulin to inhibit lipolysis in adipose tissue
  •  
    Great review of the Hypogonadal-obesity-adipocytokine hypothesis.
Nathan Goodyear

Cortisol Exerts Bi-Phasic Regulation of Inflammation in Humans - 0 views

  • GCs induce increased cellular expression of receptors for several pro-inflammatory cytokines including interleukin (IL)-1 (Spriggs et al. 1990), IL-2 (Wiegers et al. 1995), IL-4 (Paterson et al. 1994), IL-6 (Snyers et al. 1990), and IFN-g (Strickland et al. 1986), as well as GM-CSF
  • GCs have also been shown to stimulate effector cell functions including phagocytosis by monocytes (van der Goes et al. 2000), effector cell proliferative responses (Spriggs et al. 1990), macrophage activation (Sorrells and Sapolsky 2010), and a delay of neutrophil apoptosis
  • a concentration- and time-dependent range of GC effects that are both pro- and anti-inflammatory
  • ...13 more annotations...
  • basal (diurnal) concentrations of cortisol do not exert an anti-inflammatory effect on several pro-and anti-inflammatory mediators of the human immune inflammatory response
  • withdrawal of cortisol activity in vivo did not lead to increased inflammatory responsiveness of immune effector cells
  • maximal suppression of inflammation was achieved by a stress-associated, but still physiologic, cortisol concentration. There was no greater anti-inflammatory effect at higher cortisol concentrations (Yeager et al. 2005) although IL-10 concentrations continued to increase with increasing cortisol concentrations as we and others have shown
  • acutely, physiological cortisol concentrations are anti-inflammatory and, as proposed, act to limit over expression of an inflammatory response that could lead to tissue damage
  • Acutely, cortisol has anti-inflammatory effects following a systemic inflammatory stimulus (Figure 4). However, a cortisol concentration that acts acutely to suppress systemic inflammation also has a delayed effect of augmenting the inflammatory response to subsequent, delayed stimulu
  • 1) GCs can exert pro-inflammatory effects on key inflammatory processes and, 2) GC regulation of inflammation can vary from anti- to a pro-inflammatory in a time-dependent manner
  • The immediate in vivo effect of both stress-induced and pharmacological GC concentrations is to suppress concurrent inflammation and protect the organism from an excessive or prolonged inflammatory response
  • GCs alone, in the absence of an inflammatory stimulus, up-regulate monocyte mRNA and/or receptors for several molecules that participate in pro-inflammatory signaling, as noted above and in the studies presented here.
  • In humans, as shown here, if in vivo GC concentrations are elevated concurrent with an inflammatory stimulus, anti-inflammatory effects are observed
  • In sharp contrast, with a time delay of 12 or more hours between an increased GC concentration and the onset of an inflammatory stimulus, enhancing effects on inflammation are observed. These effects have been shown to persist in humans for up to 6 days
  • GC-induced enhancement of inflammatory responses is maximal at an intermediate concentration, in our studies at a concentration that approximates that observed in vivo following a major systemic inflammatory stimulus
  • In addition to enhanced responses to LPS, recently identified pro-inflammatory effects of GCs also show enhanced localization of effector cells at inflammatory sites
  • we hypothesize that pre-exposure to stress-associated cortisol concentrations “prime” effector cells of the monocyte/macrophage lineage for an augmented pro-inflammatory response by; a) inducing preparative changes in key regulators of LPS signal transduction, and b) enhancing localization of inflammatory effector cells at potential sites of injury
  •  
    very interesting read on the effects of inflammation on cortisol and visa versa.
Nathan Goodyear

Efficacy of the concomitant administration of the pineal hormone melatonin in cancer immunotherapy with low-dose IL-2 in patients with advanced sol... - PubMed - NCBI - 0 views

  •  
    melatonin found to enhance the IL-2 anti-tumor activity in preliminary study.
Nathan Goodyear

Abrogation of the Negative Influence of Opioids on IL-2 Immunotherapy of Renal Cell Cancer by Melatonin - Abstract - European Urology 2000, Vol. 38, No. 1 - Karger Publishers - 0 views

  •  
    only abstract available here to general public.  Opiates suprress the immune system.  This is an important point in the fight against cancer. Cancer is, in part, the result of signficant immune imbalance.  In this study of patients with Renal Cell Cancer, melatonin + IL-2 was found to counter this immunosuppressive effect of morphine to increase partial response and to increase the 3 year survival.
Nathan Goodyear

Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4 | Blood Journal - 1 views

  •  
    low dose IL-2 induces increase NK cell activity.
‹ Previous 21 - 40 of 116 Next › Last »
Showing 20 items per page