Skip to main content

Home/ Dr. Goodyear/ Group items tagged processing

Rss Feed Group items tagged

Nathan Goodyear

Inflammatory cause of metabolic syndrome via brain stress and NF-κB - 0 views

  • Mechanistic studies further showed that such metabolic inflammation is related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect under prolonged nutritional excess
  • intracellular stress-inflammation process for metabolic syndrome has been established in the central nervous system (CNS) and particularly in the hypothalamus
  • the CNS and the comprised hypothalamus are known to govern various metabolic activities of the body including appetite control, energy expenditure, carbohydrate and lipid metabolism, and blood pressure homeostasis
  • ...56 more annotations...
  • Reactive oxygen species (ROS) refer to a class of radical or non-radical oxygen-containing molecules that have high oxidative reactivity with lipids, proteins, and nucleic acids
  • a large measure of intracellular ROS comes from the leakage of mitochondrial electron transport chain (ETC)
  • Another major source of intracellular ROS is the intentional generation of superoxides by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
  • there are other ROS-producing enzymes such as cyclooxygenases, lipoxygenases, xanthine oxidase, and cytochrome p450 enzymes, which are involved with specific metabolic processes
  • To counteract the toxic effects of molecular oxidation by ROS, cells are equipped with a battery of antioxidant enzymes such as superoxide dismutases, catalase, peroxiredoxins, sulfiredoxin, and aldehyde dehydrogenases
  • intracellular oxidative stress has been indicated to contribute to metabolic syndrome and related diseases, including T2D [72; 73], CVDs [74-76], neurodegenerative diseases [69; 77-80], and cancers
  • intracellular oxidative stress is highly associated with the development of neurodegenerative diseases [69] and brain aging
  • dietary obesity was found to induce NADPH oxidase-associated oxidative stress in rat brain
  • mitochondrial dysfunction in hypothalamic proopiomelanocortin (POMC) neurons causes central glucose sensing impairment
  • Endoplasmic reticulum (ER) is the cellular organelle responsible for protein synthesis, maturation, and trafficking to secretory pathways
  • unfolded protein response (UPR) machinery
  • ER stress has been associated to obesity, insulin resistance, T2D, CVDs, cancers, and neurodegenerative diseases
  • brain ER stress underlies neurodegenerative diseases
  • under environmental stress such as nutrient deprivation or hypoxia, autophagy is strongly induced to breakdown macromolecules into reusable amino acids and fatty acids for survival
  • intact autophagy function is required for the hypothalamus to properly control metabolic and energy homeostasis, while hypothalamic autophagy defect leads to the development of metabolic syndrome such as obesity and insulin resistance
  • prolonged oxidative stress or ER stress has been shown to impair autophagy function in disease milieu of cancer or aging
  • TLRs are an important class of membrane-bound pattern recognition receptors in classical innate immune defense
  • Most hypothalamic cell types including neurons and glia cells express TLRs
  • overnutrition constitutes an environmental stimulus that can activate TLR pathways to mediate the development of metabolic syndrome related disorders such as obesity, insulin resistance, T2D, and atherosclerotic CVDs
  • Isoforms TLR1, 2, 4, and 6 may be particularly pertinent to pathogenic signaling induced by lipid overnutrition
  • hypothalamic TLR4 and downstream inflammatory signaling are activated in response to central lipid excess via direct intra-brain lipid administration or HFD-feeding
  • overnutrition-induced metabolic derangements such as central leptin resistance, systemic insulin resistance, and weight gain
  • these evidences based on brain TLR signaling further support the notion that CNS is the primary site for overnutrition to cause the development of metabolic syndrome.
  • circulating cytokines can limitedly travel to the hypothalamus through the leaky blood-brain barrier around the mediobasal hypothalamus to activate hypothalamic cytokine receptors
  • significant evidences have been recently documented demonstrating the role of cytokine receptor pathways in the development of metabolic syndrome components
  • entral administration of TNF-α at low doses faithfully replicated the effects of central metabolic inflammation in enhancing eating, decreasing energy expenditure [158;159], and causing obesity-related hypertension
  • Resistin, an adipocyte-derived proinflammatory cytokine, has been found to promote hepatic insulin resistance through its central actions
  • both TLR pathways and cytokine receptor pathways are involved in central inflammatory mechanism of metabolic syndrome and related diseases.
  • In quiescent state, NF-κB resides in the cytoplasm in an inactive form due to inhibitory binding by IκBα protein
  • IKKβ activation via receptor-mediated pathway, leading to IκBα phosphorylation and degradation and subsequent release of NF-κB activity
  • Research in the past decade has found that activation of IKKβ/NF-κB proinflammatory pathway in metabolic tissues is a prominent feature of various metabolic disorders related to overnutrition
  • it happens in metabolic tissues, it is mainly associated with overnutrition-induced metabolic derangements, and most importantly, it is relatively low-grade and chronic
  • this paradigm of IKKβ/NF-κB-mediated metabolic inflammation has been identified in the CNS – particularly the comprised hypothalamus, which primarily accounts for to the development of overnutrition-induced metabolic syndrome and related disorders such as obesity, insulin resistance, T2D, and obesity-related hypertension
  • evidences have pointed to intracellular oxidative stress and mitochondrial dysfunction as upstream events that mediate hypothalamic NF-κB activation in a receptor-independent manner under overnutrition
  • In the context of metabolic syndrome, oxidative stress-related NF-κB activation in metabolic tissues or vascular systems has been implicated in a broad range of metabolic syndrome-related diseases, such as diabetes, atherosclerosis, cardiac infarct, stroke, cancer, and aging
  • intracellular oxidative stress seems to be a likely pathogenic link that bridges overnutrition with NF-κB activation leading to central metabolic dysregulation
  • overnutrition is an environmental inducer for intracellular oxidative stress regardless of tissues involved
  • excessive nutrients, when transported into cells, directly increase mitochondrial oxidative workload, which causes increased production of ROS by mitochondrial ETC
  • oxidative stress has been shown to activate NF-κB pathway in neurons or glial cells in several types of metabolic syndrome-related neural diseases, such as stroke [185], neurodegenerative diseases [186-188], and brain aging
  • central nutrient excess (e.g., glucose or lipids) has been shown to activate NF-κB in the hypothalamus [34-37] to account for overnutrition-induced central metabolic dysregulations
  • overnutrition can present the cell with a metabolic overload that exceeds the physiological adaptive range of UPR, resulting in the development of ER stress and systemic metabolic disorders
  • chronic ER stress in peripheral metabolic tissues such as adipocytes, liver, muscle, and pancreatic cells is a salient feature of overnutrition-related diseases
  • recent literature supports a model that brain ER stress and NF-κB activation reciprocally promote each other in the development of central metabolic dysregulations
  • when intracellular stresses remain unresolved, prolonged autophagy upregulation progresses into autophagy defect
  • autophagy defect can induce NF-κB-mediated inflammation in association with the development of cancer or inflammatory diseases (e.g., Crohn's disease)
  • The connection between autophagy defect and proinflammatory activation of NF-κB pathway can also be inferred in metabolic syndrome, since both autophagy defect [126-133;200] and NF-κB activation [20-33] are implicated in the development of overnutrition-related metabolic diseases
  • Both TLR pathway and cytokine receptor pathways are closely related to IKKβ/NF-κB signaling in the central pathogenesis of metabolic syndrome
  • Overnutrition, especially in the form of HFD feeding, was shown to activate TLR4 signaling and downstream IKKβ/NF-κB pathway
  • TLR4 activation leads to MyD88-dependent NF-κB activation in early phase and MyD88-indepdnent MAPK/JNK pathway in late phase
  • these studies point to NF-κB as an immediate signaling effector for TLR4 activation in central inflammatory response
  • TLR4 activation has been shown to induce intracellular ER stress to indirectly cause metabolic inflammation in the hypothalamus
  • central TLR4-NF-κB pathway may represent one of the early receptor-mediated events in overnutrition-induced central inflammation.
  • cytokines and their receptors are both upstream activating components and downstream transcriptional targets of NF-κB activation
  • central administration of TNF-α at low dose can mimic the effect of obesity-related inflammatory milieu to activate IKKβ/NF-κB proinflammatory pathways, furthering the development of overeating, energy expenditure decrease, and weight gain
  • the physiological effects of IKKβ/NF-κB activation seem to be cell type-dependent, i.e., IKKβ/NF-κB activation in hypothalamic agouti-related protein (AGRP) neurons primarily leads to the development of energy imbalance and obesity [34]; while in hypothalamic POMC neurons, it primarily results in the development of hypertension and glucose intolerance
  • the hypothalamus, is the central regulator of energy and body weight balance [
  •  
    Great article chronicles the biochemistry of "over nutrition" and inflammation through NF-kappaB activation and its impact on the brain.
Nathan Goodyear

Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling - 0 views

  •  
    Low vitamin D levels or the receptors for vitamin D appear to result in an increase in Th17 cells.  An increase in Th17 cells will lead to an imbalance with Treg cells and this imbalance is associated with Lupus and other autoimmune processes.  Vitamin D inhibits Th17 cell activation.
Nathan Goodyear

Altered Deoxyribonuclease Activity in Cancer Cells and its Role in Non Toxic Adjuvant C... - 0 views

  •  
    Combination of IV vitamin C and K3 in ratio of 100:1 shown to provide mechanism to induce cancer cell death through a process called autoschizis.
Nathan Goodyear

A Critical evaluation of salivary testosterone as a... [Steroids. 2014] - PubMed - NCBI - 0 views

  •  
    Since when did one medium of evaluation become the only standard.  Since serum T has been the historical standard, that is the only window of evaluation??  This study points to higher free Testosterone levels in saliva versus serum. Has anyone ever thought that we are merely looking through different windows of the same process.  Each window here, serum and saliva, are merely giving us different information on hormones.  That doesn't make one right or wrong, it just requires interpretation.  Science is about being objective! Saliva is the best means to evaluate intracellular hormone levels.  These levels should be different than serum.  Why should anyone think that the total levels would correlate with that delivered to a cell.  Think.
Willow O'Donnell

Buy And Sell Your Medical Equipment And Always Stay Supplied - slideshare - 0 views

  •  
    An infusion pump quickens that process; by allowing you to use a digital keyboard to select the dosage of the infusion which is to be administered to a patient over time. After you have selected the correct dose, the infusion pump is going to automatically supply the patient with the appropriate medication.
Nathan Goodyear

Colonization-Induced Host-Gut Microbial Metabolic Interaction - 0 views

  • he gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems.
  • Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization
  • The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis
  • ...11 more annotations...
  • modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites
  • Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated
  • The gut microbiota (GM) exhibits a relatively low level of diversity compared to those of most soil ecosystems and in humans it is comprised of usually no more than nine phyla of microorganisms, of which only two are dominant: the Firmicutes and the Bacteroidetes
  • colonization of a germfree gut was rapid and remarkably stable, establishing within only a week after first exposure
  • a study conducted on germfree rats by Nicholls et al. showed that 3 weeks were necessary to obtain a stabilization and “normalization”
  • the microbiota status affects the systemic metabolism of the host, modulating the metabolic fingerprint of topographically remote organs such as the liver and the kidney
  • Gut colonization induces a rapid weight gain associated with stimulation of hepatic glycogenesis and triglyceride synthesis
  • Gut colonization alters bile acid metabolite profiles via modulation of hepatic Cyp8b1 expression
  • Bile acids are well-known contributors to glucose and lipid metabolism in the liver
  • GM is known to alter bile metabolism
  • GM is also known to exert a strong influence on the metabolism of xenobiotics
  •  
    The effects of gut microbiome are not confined to the gut.  They alter bile acid metabolism and thus lipid/glucose metabolism.  They alter CYP450 activity.  They effect metabolism.  They effect the metabolism, and thus effects, of other drugs. 
Nathan Goodyear

Mast cell involvement in interstitial cystitis: a review of human and experimental evid... - 0 views

  •  
    Interstitial Cystitis is a histamine mediated inflammatory process.
regeneration1

Zeolite Heavy Metal Detoxifier - 0 views

  •  
    Zeolite is a volcanic mineral with a selective molecular trap able to carry harmful toxic substances out of the body via normal excretion processes without interacting with body tissue. This lack of interaction reduces the chance of unwanted side effects.
Nathan Goodyear

Obesity - Abstract of article: Microbiota and SCFA in Lean and Overweight Healthy Subjects - 0 views

  •  
    the balance of your gut and how they process dietary carbohydrates and amino acids
Nathan Goodyear

Diabetic neuropathic pain: a role for testosterone metabolites - 0 views

  •  
    Great article.  Really shows the depth of the androgens and androgen metabolites in diabetes and diabetic complications.  In this study, DHT and its metabolis 3-alpha androstanediol were shown to reduce inflammation and pain associated with diabetic neuropathy.  Significant reduction in inflammation signaling (IL-1beta, TNF-alpha) was seen as was potential neurodegenerative processes (glutamate release and astrocyte immunoreactivity).
Willow O'Donnell

Refurbished B. Braun Vista Basic Infusion IV Pump | willowmed | imgfave - 0 views

  •  
    Refurbished B. Braun Vista Basic Infusion IV Pump * Needle-free sets protect both the patient and the clinician * Helpful prompts walk the user through the programming process * Oversized display and ergonomic handle makes transport easy * Adjustable occlusion settings help protect patients from vein injuries.
Willow O'Donnell

Refurbished B. Braun Vista Basic Infusion Buy IV pumps - 0 views

  •  
    Refurbished B. Braun Vista Basic Infusion IV Pump * Needle-free sets protect both the patient and the clinician * Helpful prompts walk the user through the programming process * Oversized display and ergonomic handle makes transport easy * Adjustable occlusion settings help protect patients from vein injuries * Refurbished * 1-Year Warranty
Nathan Goodyear

Fructose: A Key Factor in the Development of Metabolic Syndrome and Hypertension - 0 views

  • HFCS consists of fructose and glucose mixed in a variety of concentrations, but most commonly as 55% fructose and 45% glucose
  • In the United States, HFCS and sucrose are the major sources of fructose in the diet, and HFCS is a major ingredient in soft drinks, pastries, desserts, and various processed foods
  • fructose and glucose are metabolized in completely different ways and utilize different GLUT transporters
  • ...9 more annotations...
  • In the liver, fructose bypasses the two highly regulated steps of glycolysis, catalyzed by glucokinase/hexokinase and phosphofructokinase both of which are inhibited by increasing concentrations of their byproducts. Instead, fructose enters the pathway at a level that is not regulated and is metabolized to fructose-1-phosphate primarily by fructokinase or ketohexokinase
  • Fructokinase has no negative feedback system, and ATP is used for the phosphorylation process. As a result, continued fructose metabolism results in intracellular phosphate depletion, activation of AMP deaminase, and uric acid generation which is harmful at the cellular level
  • Uric acid, a byproduct of fructose degradation,
  • Uric acid inhibits endothelial NO both in vivo and in vitro, [15] and directly induces adipocyte dysfunction
  • Serum uric acid increases rapidly after ingestion of fructose, resulting in increases as high as 2 mg/dL within 1 hour
  • Uncontrolled fructose metabolism leads to postprandial hypertriglyceridemia, which increases visceral adipose deposition. Visceral adiposity contributes to hepatic triglyceride accumulation, protein kinase C activation, and hepatic insulin resistance by increasing the portal delivery of free fatty acids to the liver
  • Several reviews have concluded that intake of both fructose and HFCS by children and adults was associated with an increased risk of obesity and metabolic syndrome
  • Sucrose is a disaccharide that is comprised of fructose and glucose
  • Figure 2
  •  
    great read and review of the role of fructose in metabolic syndrome.
Willow O'Donnell

Buy Refurbished B. Braun Vista Basic Infusion IV Pump - 0 views

  •  
    Refurbished B. Braun Vista Basic Infusion IV Pump * Needle-free sets protect both the patient and the clinician * Helpful prompts walk the user through the programming process * Oversized display and ergonomic handle makes transport easy * Adjustable occlusion settings help protect patients from vein injuries * Refurbished * 1-Year Warranty
Willow O'Donnell

Refurbished B. Braun Vista Basic Infusion IV Pump - ShopStyle - 0 views

  •  
    Refurbished B. Braun Vista Basic Infusion IV Pump * Needle-free sets protect both the patient and the clinician * Helpful prompts walk the user through the programming process * Oversized display and ergonomic handle makes transport easy * Adjustable occlusion settings help protect patients from vein injuries.
Willow O'Donnell

Have The Optimal Precision In Administering Medication - 0 views

  •  
    You could do this by deciding to purchase infusion pumps, which would replace the manual process of supplying someone with the much necessary supplements.
Nathan Goodyear

Mitochondrial Fission Induces Glycolytic Reprogramming in Cancer-Associated Myofibrobla... - 0 views

  • L-lactate functions as an onco-metabolite, stimulating mitochondrial biogenesis and OXPHOS in adjacent cancer cells, directly providing energy for tumor growth
  • Oxidative stress in stromal fibroblasts then induces their metabolic conversion into cancer-associated fibroblasts. Such oxidative stress drives the onset of autophagy, mitophagy, and aerobic glycolysis in fibroblasts, resulting in the local production of high-energy mitochondrial fuels (such as L-lactate, ketone bodies, and glutamine). These recycled nutrients are then transferred to cancer cells, where they are efficiently burned via oxidative mitochondrial metabolism (OXPHOS)
  • stromal L-lactate serves as a high-energy mitochondrial “fuel” for cancer cells. We have termed this new model of cancer metabolism “Two-Compartment Tumor Metabolism”, where two opposing metabolic compartments co-exist, side-by-side, with stromal glycolysis fueling OXPHOS in cancer cells
  • ...10 more annotations...
  • Two-Compartment Tumor Metabolism
  • Reverse Warburg Effect”, is that catabolic fibroblasts should promote tumor growth, without any increases in angiogenesis
  • when cancer cells use L-lactate as a mitochondrial fuel source, this metabolic phenotype is a predictor of lethal cancer metabolism
  • tumor microenvironment is intimately involved in tumor development and progression
  • mitochondrial dysregulation is likely the “root cause” of several human disease(s), and especially epithelial cancers
  • Both in vitro and in vivo studies have now provided convincing evidence that “activated” stromal fibroblasts, a.k.a., myofibroblasts, may play a critical role in initiating tumor recurrence, via paracrine interactions with adjacent tumor epithelial cells
  • A new hypothesis is that cancer is not a cell autonomous disease, but rather a disease of the tumor microenvironment
  • cancer cells behave as metabolic parasites, by inducing oxidative stress in adjacent normal fibroblasts
  • recent experimental evidence indicates that cancer-associated fibroblasts have a catabolic phenotype, and undergo autophagy and mitophagy, resulting in the onset of glycolytic metabolism, driving L-lactate production, and its release into the tumor microenvironment
  • oncogenic mutations in cancer cells lead to ROS production and the “secretion” of hydrogen peroxide species
  •  
    A good discussion of what is proposed the Reverse Warburg effect.  A process by which the local environment dictates tumor progression.  The cancer cells release ROS primarily in the form of H2O2 and this leads to Cancer Associated Fibroblasts (CAFs) in the stroma.  The altered stromal environment increases ROS further and promotes ocogenic metabolites through the classic Warburg effect.  This high lactate production from the CAFs then is used by the cancer cells via classic oxidative phosphorylation.  Complex, beautiful and still an the understanding is a work in progress.   This study/article points to the importance of oxidative stress in some cancer development through CAFs.
Nathan Goodyear

Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxid... - 0 views

  • reducing oxidative stress with powerful antioxidants, is an important strategy for cancer prevention, as it would suppress one of the key early initiating steps where DNA damage and tumor-stroma metabolic-coupling begins. This would prevent cancer cells from acting as metabolic “parasites
  • Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the “reverse Warburg effect.
  • Then, oxidative stress, in cancer-associated fibroblasts, triggers the activation of two main transcription factors, NFκB and HIF-1α, leading to the onset of inflammation, autophagy, mitophagy and aerobic glycolysis in the tumor microenvironment
  • ...38 more annotations...
  • oxidative stress and ROS, produced in cancer-associated fibroblasts, has a “bystander effect” on adjacent cancer cells, leading to DNA damage, genomic instability and aneuploidy, which appears to be driving tumor-stroma co-evolution
  • tumor cells produce and secrete hydrogen peroxide, thereby “fertilizing” the tumor microenvironment and driving the “reverse Warburg effect.”
  • This type of stromal metabolism then produces high-energy nutrients (lactate, ketones and glutamine), as well as recycled chemical building blocks (nucleotides, amino acids, fatty acids), to literally “feed” cancer cells
  • loss of stromal caveolin (Cav-1) is sufficient to drive mitochondrial dysfunction with increased glucose uptake in fibroblasts, mimicking the glycolytic phenotype of cancer-associated fibroblasts.
  • oxidative stress initiated in tumor cells is transferred to cancer-associated fibroblasts.
  • Then, cancer-associated fibroblasts show quantitative reductions in mitochondrial activity and compensatory increases in glucose uptake, as well as high ROS production
  • These findings may explain the prognostic value of a loss of stromal Cav-1 as a marker of a “lethal” tumor microenvironment
  • Interruption of this process, by addition of catalase (an enzyme that detoxifies hydrogen peroxide) to the tissue culture media, blocks ROS activity in cancer cells and leads to apoptotic cell death in cancer cells
  • our results may also explain the “field effect” in cancer biology,5 as hydrogen peroxide secreted by cancer cells, and the propagation of ROS production, from cancer cells to fibroblasts, would create an increasing “mutagenic field” of ROS production, due to the resulting DNA damage
  • aerobic glycolysis takes place in cancer-associated fibroblasts, rather than in tumor cells, as previously suspected.
  • In this new paradigm, cancer cells induce oxidative stress in neighboring cancer-associated fibroblasts
  • cancer-associated fibroblasts have the largest increases in glucose uptake
  • cancer cells secrete hydrogen peroxide, which induces ROS production in cancer-associated fibroblasts
  • Then, oxidative stress in cancer-associated fibroblast leads to decreases in functional mitochondrial activity, and a corresponding increase in glucose uptake, to fuel aerobic glycolysis
  • cancer cells show significant increases in mitochondrial activity, and decreases in glucose uptake
  • fibroblasts and cancer cells in co-culture become metabolically coupled, resulting in the development of a “symbiotic” or “parasitic” relationship.
  • cancer-associated fibroblasts undergo aerobic glycolysis (producing lactate), while cancer cells use oxidative mitochondrial metabolism.
  • We have previously shown that oxidative stress in cancer-associated fibroblasts drives a loss of stromal Cav-1, due to its destruction via autophagy/lysosomal degradation
  • a loss of stromal Cav-1 is sufficient to induce further oxidative stress, DNA damage and autophagy, essentially mimicking pseudo-hypoxia and driving mitochondrial dysfunction
  • loss of stromal Cav-1 is a powerful biomarker for identifying breast cancer patients with early tumor recurrence, lymph-node metastasis, drug-resistance and poor clinical outcome
  • this type of metabolism (aerobic glycolysis and autophagy in the tumor stroma) is characteristic of a lethal tumor micro-environment, as it fuels anabolic growth in cancer cells, via the production of high-energy nutrients (such as lactate, ketones and glutamine) and other chemical building blocks
  • the upstream tumor-initiating event appears to be the secretion of hydrogen peroxide
  • one such enzymatically-active protein anti-oxidant that may be of therapeutic use is catalase, as it detoxifies hydrogen peroxide to water
  • numerous studies show that “catalase therapy” in pre-clinical animal models is indeed sufficient to almost completely block tumor recurrence and metastasis
  • by eliminating oxidative stress in cancer cells and the tumor microenvironment,55 we may be able to effectively cut off the tumor's fuel supply, by blocking stromal autophagy and aerobic glycolysis
  • breast cancer patients show systemic evidence of increased oxidative stress and a decreased anti-oxidant defense, which increases with aging and tumor progression.68–70 Chemotherapy and radiation therapy then promote further oxidative stress.69 Unfortunately, “sub-lethal” doses of oxidative stress during cancer therapy may contribute to tumor recurrence and metastasis, via the activation of myofibroblasts.
  • a loss of stromal Cav-1 is associated with the increased expression of gene profiles associated with normal aging, oxidative stress, DNA damage, HIF1/hypoxia, NFκB/inflammation, glycolysis and mitochondrial dysfunction
  • cancer-associated fibroblasts show the largest increases in glucose uptake, while cancer cells show corresponding decreases in glucose uptake, under identical co-culture conditions
  • Thus, increased PET glucose avidity may actually be a surrogate marker for a loss of stromal Cav-1 in human tumors, allowing the rapid detection of a lethal tumor microenvironment.
  • it appears that astrocytes are actually the cell type responsible for the glucose avidity.
  • In the brain, astrocytes are glycolytic and undergo aerobic glycolysis. Thus, astrocytes take up and metabolically process glucose to lactate.7
  • Then, lactate is secreted via a mono-carboxylate transporter, namely MCT4. As a consequence, neurons use lactate as their preferred energy substrate
  • both astrocytes and cancer-associated fibroblasts express MCT4 (which extrudes lactate) and MCT4 is upregulated by oxidative stress in stromal fibroblasts.34
  • In accordance with the idea that cancer-associated fibroblasts take up the bulk of glucose, PET glucose avidity is also now routinely used to measure the extent of fibrosis in a number of human diseases, including interstitial pulmonary fibrosis, postsurgical scars, keloids, arthritis and a variety of collagen-vascular diseases.
  • PET glucose avidity and elevated serum inflammatory markers both correlate with poor prognosis in breast cancers.
  • PET signal over-estimates the actual anatomical size of the tumor, consistent with the idea that PET glucose avidity is really measuring fibrosis and inflammation in the tumor microenvironment.
  • human breast and lung cancer patients can be positively identified by examining their exhaled breath for the presence of hydrogen peroxide.
  • tumor cell production of hydrogen peroxide drives NFκB-activation in adjacent normal cells in culture6 and during metastasis,103 directly implicating the use of antioxidants, NFκB-inhibitors and anti-inflammatory agents, in the treatment of aggressive human cancers.
  •  
    Good description of the communication between cancer cells and fibroblasts.  This theory is termed the "reverse Warburg effect".
wheelchairindia9

Net Neutrality: Battle to 'save the Internet' - 0 views

  •  
    Net neutrality is one of the biggest issue debated globally by the telecom regulators and it is also in the process of finalising what will be a landmark recommendation for Indian telecom. The important aspects of Net neutrality are: Internet service providers should enable access to all content and applications regardless of the source. The Internet service provider from whom buy internet pack, should not under any circumstance be able to control how exactly use it and it's upto how you use the data. All websites can co-exist without hampering others and all websites are accessible at the same speed and no particular website of application is favoured. All web sites and content creators are treated equal, and it don't have to pay extra for faster Internet speed to a particular site/service. The concept of net neutrality doesn't exist legally but most companies have Net Neutrality is simply the Internet Freedom - Free, Fast and Open Internet for all. Net Neutrality is the principle that Internet service providers (ISPs) should give consumers access to all and every contents and application on an equal basis, treating all Internet traffic equally. Today, if there's something that makes everyone across the world "Equal" is nothing but the Internet. Equality over the Internet means, the richest man in the world has the same rights to access the Internet as the poorer. And this is what "Net Neutrality" aims at adhered to it until now. With the Internet taking the world into its folds, Internet Service Providers across the world are trying to encash this potent commodity and trying to control the traffic. Karma Healthcare KP-80 Standing Wheelchair is a compact and fully powered wheelchair designed for budget. The front-wheel drive provides agile control for the chair to negotiate various indoors and out. It comes with the innovative seat and wide range of power backrest angle adjustment (80~120 degree).
Nathan Goodyear

Lead Exposure Exacerbates Cardiovascular Risk - 0 views

  •  
    Pb is associated with increased CVD, however, studies are limited and the association is not clear as the exact process by which Pb contributes to CVD is not know.  Oxidative stress and inflammation are proposed as the mechanisms.
« First ‹ Previous 61 - 80 of 197 Next › Last »
Showing 20 items per page