Skip to main content

Home/ Groups/ Robotics
York Jong

Build this simple "electronic electroscope," a FET electrometer - 0 views

  • This simple circuit can detect the invisible fields of voltage which surround all electrified objects
  • ...9 more annotations...
  • The Gate acts as an antenna, so leave it unconnected.
  • The 1-meg resistor helps protect the FET from being harmed by any accidental sparks to its Gate lead. The circuit will work fine without this resistor. Just don't intentionally "zap" the Gate wire with a charged object or your charged finger.
  • To test the circuit, charge up a pen or a comb on your hair, then wave it close to the little "antenna" wire. The LED should go dark. When you remove the electrified pen or comb, the LED should light up again.
  • If you suspect that humidity is very high, test this by rubbing a balloon or a plastic object upon your arm. If the balloon does not attract your arm hairs, humidity is too high.
  • This FET sensor is not an ideal educational device because it responds differently to positive than to negative.
  • negative objects turn the LED off, it lights again when removed. positive objects make the LED bright, then dark when removed.
  • Obtain a small capacitor with a value below 100 picofarads. Connect it between the FET gate lead and one of the other FET leads (doesn't matter which one.) This greatly reduces the sensitivity of the device
  • Now make the circuit MORE sensitive. Obtain an alligator clip-lead, and connect it to the Gate lead of the FET. Let it hang loose without touching anything. You'll find that this has vastly increased the sensitivity of your FET circuit.
  •  
    This simple circuit can detect the invisible fields of voltage which surround all electrified objects. It acts as an electronic "electroscope.
York Jong

Inside The Ugobe Pleo - Organic Robot Life - 0 views

  • CALEB CHUNG: Of course we could have used micro-servo motors to accomplish the motion of Pleo, but we aren’t able to use expensive motors. So we had to engineer it with a high-speed motor with high gearing and no backlash for control purposes and have it all fit within the muscle envelope of Pleo.
  • So what we did was go after a lot of ethology research. How do animals really handle the complexity of their environment? We built a virtual brain—a whole system that decides how Pleo will react in various situations.
  • CALEB CHUNG: Pleo will reset thresholds and adjust his idea of what he thinks is normal. Let’s say you get Pleo and you take him home to your shag carpet. When Pleo walks, the carpet will drag on his feet. So his force feedback sensors will realize that he is spending too much energy to walk around. Pleo will try different things to reduce the energy spent. Eventually, he will have the idea to step higher. Your Pleo compared to my Pleo will walk with a higher step.
  • ...8 more annotations...
  • Eventually, we got to the point where we don’t know what Pleo will do next because he learns. If Caleb and I went to your house to see your Pleo, we couldn’t predict a lot of the things he would do, even though we know everything we put in him. Pleo has the ability to change and figure things out on his own.
  • Consumers will be able to download and customize Pleo later this year or early next year. We want to give the user the ability to change Pleo’s personality, animations and tricks. We also want to allow developers and hobbyists to take the SDK and motion system and behavior system and choreograph advanced features and animations for new AI functionality.
  • The only way you can create life is to give it choice. Life is very complex, and it has to evolve, otherwise it is a robot. The only way to get complex systems to work is to let them chose for themselves.
  • We didn’t include a camera (or voice recognition) in Pleo because of the price point for the product. Pleo is probably a good hack for a CMU camera, and we want people to develop these sorts of things.
  •  
    Pleo is UGOBE's first designer Life Form and is based on the Camarasaurus dinosaur. He is made up of an amazing array of sensors, motors  (14!), and distributed computing with an ARM-7 processor commanding it all.
York Jong

Trossen Robotics Offers Pleo Preorder - 0 views

  • Pleo Technical Specs: Ugobe LifeOS 32 bit Atmel ARM 7 microprocessor - The main processor for Pleo 16 bit sub processor - The processor dedicated to the camera system (4) 8 bit processors that provide the low-level motor control for the servos (35) Sensors including a camera custom designed to fit into Pleo’s very compact body. (4) foot-switches to detect footfalls and being picked up - assists with spatial orientation. (12) capacitive touch sensors (4) legs, (4) feet, back, shoulder, head, chin (2) microphones for directional sound detection (14) “Force” sensors, one per servo, to recognize abuse through force feedback joints. Orientation/tilt sensor IR transceiver for bidirectional data communication with other Pleos. IR interrupter for detection of objects in Pleo’s mouth (14) motors. Standard low voltage DC motors (150) gears and clutches Rechargeable NiMH battery pack USB port with mini USB connector SD/MMC memory card slot
York Jong

全球首款"生命体"机器恐龙Pleo粉墨登场 - 0 views

  • Pleo不仅拥有内置的触摸、感光、听觉系统,还能够随着环境的改变随时“学习”,适应新环境。对于感官上的刺激,Pleo会立即做出真实的反映
  • Pleo同样善于表达,喜怒哀乐,皆形于色。当他感到疲劳时,它会昏昏欲睡渐渐入睡,甚至会做梦——这可是机器人过去想也不敢想的。更令人惊叹的是它们还能识别同类!但是你得当心了,因为感冒也会在它们之间传播!对了,差点忘了,它们甚至还会有见到强光就喷嚏连天的Achoo综合症。
York Jong

Furby Schematics - 0 views

  • Note that the resistor value of the pull-down resistor affects the voltage at pin 3 of the Furby's connector. We used a 1k ohm resistor to make it less sensitive to light (since we're now operating with it open to ambient light).
  • In the above diagram, a 20k ohm resistor is used as the pull-up resistor. You can, however, use any resistor as the pull-up resistor as long as the resistance is high enough to protect the circuit.
  •  
    There are a number of sensors and a motor driver on the Furby. The following is a list of these sensors and their functions.
York Jong

Ray's Solder-less Motor Mount Tutorial - 0 views

  • attach your Pager Motors to your Popper using two Fuse Clips, two Small Paper Clips, and no solder
  • ...7 more annotations...
  • Set one straightened paper clip aside, you will use it at the end. Bend the two tips of one of the two paper clips as shown.
  • Put it in through the fuse clip like this, but make sure the notch in the fuse clip is facing out. (The clip has one edge bent inwards. This is the part that has to face outwards). Study this next picture closely.
  • From the position above, bend the paper clip up and then around the lead of the fuse clip as in the next picture.
  • Bend the paper clip under the fuse clip...
  • then up and over the fuse clip:
  • then around its other lead and you're almost done with the first fuse clip.
  • First clip -- wire is on the RIGHT side of the fuse clip leads... Second Clip -- wire is on the LEFT side of the fuse clip leads... But remember to make sure the notch in the fuse clip is facing out. (The clip has one edge bent inwards. This is the part that has to face outwards).  Follow all the steps above with the second clip and you get this:
  •  
    I'll show you how to attach your Pager Motors to your Popper using two Fuse Clips, two Small Paper Clips, and no solder.
York Jong

BEAM Circuits -- Field sensors - 0 views

  • note that the human body is a good absorber of stray RF fields, so this sensor should be a good people-detector
    • York Jong
       
      should be shield, not sheilduses two of six inverting Schmitt trigger in a 74HC14 IC
York Jong

Robotics -- Logo Products - 0 views

  • Many Logo-based and other robotics products produced by LEGO are distributed to schools in the USA by Pitsco.
  • This free-range turtle does not require connection to a computer. All the controls are on board.
  • The Cricket is a tiny computer, suitable for all kinds of robotics projects, that you can program using Logo.
  •  
    Logo has long been used to control mechanical turtles and other robotic devices. Here are some sources of equipment and related software.
York Jong

MetaCricket: A designer's kit for making computational devices - 0 views

  • All Cricket devices have a built-in bidirectional infrared communications channel, which is used for Cricket-to-desktop communication (when downloading programs to a Cricket, or viewing sensor data) and Cricket-to-Cricket communication.
  • Cricket Logo is based on an iterative, interactive model of project development. It includes a “command center” window; instructions typed into this window are instantaneously compiled, downloaded to a Cricket, and executed, giving the system the flavor of an interpreted software environment such as LISP, BASIC, or FORTH.
  • The MetaCricket software system is based on a virtual machine, written in PIC assembly language and running on the Cricket, and a compiler for the virtual machine running on a desktop development computer
  • ...13 more annotations...
  • It is straightforward to implement an interpreter-like interface, where user commands are transparently compiled, downloaded, and executed.
  • The Cricket virtual machine is burned into the PIC microprocessor's internal ROM
  • The user's code resides in a serial EEPROM
  • Built-in infrared communications routines include a protocol for reading and writing to this external EEPROM, and for asking the virtual machine to begin execution of byte codes already loaded into the EEPROM.
  • Users write programs for the Cricket in Cricket Logo, a dialect of Logo specialized for the Cricket virtual machine. Essentially, there is a one-to-one mapping between statements in Cricket Logo and primitive functions built into the virtual machine. This makes the implementation of the compiler far simpler than typical compilers.
  • The compiler includes an interactive mode—a text window where user expressions are compiled, downloaded, and executed in one step when the user presses the return key. A portion of the Cricket's memory is set aside for these dynamic programs.
  • we have found that a debugger is not necessary because of the interactive and incremental style of project development that occurs when using the Cricket.
  • The infrared protocol includes the following capabilities: Check that a Cricket is present and ready for other commands. Write a byte to the Cricket's EEPROM. Read a byte from the Cricket's memory. Begin program execution from a particular memory address.
  • User-level primitive functions compile to one, two, or three bytes of object code for the Cricket virtual machine.
  • The Cricket virtual machine has two process threads: a foreground process and a background daemon. In most Cricket programs, the foreground thread handles all the work, but for some tasks, the background daemon is valuable. For example, the background daemon can be used to instigate a periodic activity, or take action when some event occurs.
  • There are hardware-specific primitives for interacting with on-board Cricket hardware. Motor commands set state (on or off), direction, and power levels for each of the two integrated motor drivers. Analog sensor primitives (sensora and sensorb) return a value (0 to 255) for each of the two voltage inputs. These inputs also may be interpreted as digital values using the switcha and switchb primitives. There is a pair of primitive functions for generating tones on the piezo beeper: beep and note, the latter taking pitch and duration arguments.
  • there is a background millisecond timer that is updated every four milliseconds
  • One foreground thread plus one background daemon Daemon fires when provided Boolean expression makes false-to-true transition
York Jong

Robot Room - Recommended books and periodicals - 0 views

  •  
    Hobbyist may have difficultly finding a book about electronics that doesn't contain too much mathematical or theoretical material. The books listed on this page are those that I found helpful, readable, and interesting.
York Jong

ELM - Desktop Line Following Robot - 0 views

  •  
    The Line Following is a kind of the robot contests to vie running speed on the line. I build a tiny line following robot which can run on the desk, moving the key board aside will do.
York Jong

ROBOT BATTERIES - 0 views

  • Motorcycle lead acid batteries work great for larger low performance type robots. They are great for solar power robots too.
  • lead acid batteries have the serious problem of being very large and heavy, need to always be kept charged, and do not have the high discharge rates as the more modern batteries.
  • They have low power capacities, are heavy, have trouble supplying large amounts of current in short time periods, and get expensive to constantly replace
  • ...6 more annotations...
  • Li-ion batteries have the same high energy capacity as NiMHs, power output rates of NiCads, and weigh about 20%-35% less. They also have zero memory effect problems, meaning you can recharge whenever
  • NiCad (Nickel Cadmium) batteries are good for small to medium size range robots. They have the highest current output, are more affordable than NiMH's, and can be recharged within one or two hours
  • A NiCad, over many charges, can only store less and less energy after each recharge. To prevent memory effect, whenever you wish to recharge your NiCad, you must first fully discharge it.
  • NiCad batteries contain toxic cadmium stuff, so save a squirrel and recycle/dispose of it properly.
  • NiMH battaries can last many more cycles than your typical NiCad battery.
  • they have good current output, and have the highest energy capacity. I would recommend them for small size robots and for powering circuits. Note, NiMH batteries usually take like 10 hours to recharge depending on various factors.
York Jong

ROBOT SENSOR INTERPRETATION - 0 views

  • how to interpret sensor data into a mathematical form readable by computers
  • There are only 3 steps you need to follow: Gather Sensor Data (data logging) Graph Sensor Data Generate Line Equation
  • Some sensors (such as sonar and Sharp IR) do not work properly at very close range
  • ...1 more annotation...
  • The way to get rid of noise is get a bunch of readings, then only keep the average. Make sure you test for noise in the actual environment your robot will be in
  •  
    Most roboticists understand faily well how sensors work. They understand that most sensors give continuous readings over a particular range. Most usually understand the physics behind them as well, such as speed of sound for sonar or sun interference for IR. Yet most do not understand how to interpret sensor data into a mathematical form readable by computers.
York Jong

PHOTORESISTOR ALGORITHMS - 0 views

  • pseudocode: read left_photoresistor read right_photoresistor if left_photoresistor detects more light than right_photoresistor then turn robot left if right_photoresistor detects more light than left_photoresistor then turn robot right if right_photoresistor detects about the same as left_photoresistor then robot goes straight loop
  • Photovore Algorithm, Improved This algorithm does the same as the original, but instead of case-based it works under a more advanced Fuzzy Logic control algorithm. Your robot will no longer just have the three modes of turn left, turn right, and go forward. Instead will have commands like 'turn left by 10 degrees' or 'turn right really fast', and with no additional lines of code! pseudocode: read left_photoresistor read right_photoresistor left_motor = (left_photoresistor - right_photoresistor) * arbitrary_constant right_motor = (right_photoresistor - left_photoresistor) * arbitrary_constant loop
  • ...1 more annotation...
  • Photovore, Split Brain Approach This algorithm works without comparison of photoresistor values. Instead, just command the right motor based on light from the right sensor, and the left motor with only data from the left sensor. You can also get interesting variations by reversing the sensors for a cross-brain algorithm. pseudocode: read left_photoresistor read right_photoresistor move left_wheel_speed = left_photoresistor * arbitrary_constant move right_wheel_speed = right_photoresistor * arbitrary_constant loop
  •  
    The photovore is a robot that chases light, and is perhaps the simplest of all sensor algorithms. If you are a beginner, this should be your first algorithm.
York Jong

http://www-robotics.usc.edu/~maja/robot-control.html - 0 views

  • stimulus-response
  • a plan of action
  • combine the best of both Reactive and Deliberative control
  • ...3 more annotations...
  • if a robot needs to plan ahead, it does so in a network of behaviors which talk to each other and send information around, rather than a single planner, as with hybrid systems.
  • three-layer systems.
  • Deliberative Control: Think hard, then act. Reactive Control: Don't think, (re)act. Hybrid Control: Think and act independently, in parallel. Behavior-Based Control: Think the way you act.
  •  
    Robot control refers to the way in which the sensing and action of a robot are coordinated. There are infinitely many possible robot programs, but they all fall along a well-defined spectrum of control. Along this spectrum, there are four basic practical
York Jong

74*14-based photopopper circuits - 0 views

  • Droidmakr (Cliff Boerema) came up with an interesting idea for a light-tracking head with a form of peripheral vision. As often happens, the circuit turned into something different -- a photopopper:
  • All done with a single 74HC14 (the '240 being a motor driver).
  • I tried the same setup with the 74*240 (with an extra inverter per motor) and 7404, but the 74HC14 seems to work best.
  • ...6 more annotations...
  • John-Isaac Mumford started off by simplifying the Maxibug design, and wound up with an entirely new circuit -- Mazibug
  • The tactiles switches behave even more strongly: if a switch is closed then the bot turns away unconditionally. If both switches are closed the robots reverse straight back regardless of light level.
  • When the robot bumps into something on one side, it over-rides all the photodiode circuits and reverses the motor on the OPPOSITE side
  • From the title it would appear that all 4 photodiodes face forward but the 2 inner PDs face directly forward and the outer 2 are angled to the left and right
    • York Jong
       
      behavior-based control that all done with a sigle 74HC14
York Jong

A Bot With Peripheral Vision - 0 views

  • I wanted to share an adaptation of the Schead v4, that I have been experimenting with. It is (for lack of a better term) a Master/Slave Schmitt Comparitor Head (M/S SC-H). With the addition of a 74 AC 240 or two (as motor drivers) and a pair of motors, you can put together an interesting little light seeking, wheeled robot with peripheral vision.
  • As long as the light reaching the photo-bridge of the Master SC-H is balanced, then the Slave SC-H acts as a regular, lone SC-H would. So, if one of the slave photo-diodes detects more light then the other, the inverter that controls the motor on that side changes states and is now the same as the inverter of the Master SC-H tied to the same motor. This turns that motor off and the robot will pivot around the stopped wheel toward the greater light source until the light on each sensors is balanced and the motor again begins to turn.
  • I am also using SCar to continue experimenting with Stacking separate Sensor/Behavior circuits onto a robot. I will post more as progress is made.
  • ...9 more annotations...
  • The diodes between the  photo-diodes create a constant voltage drop between the inputs of the inverters. They cause  a dead band to exist between the thresholds of the two inverters. In a way they cause the circuit to act like a kind of window  comparator. Without these diodes both inverters would always be in the same state. With them, there is a small range where their outputs are in opposite states.
  • The Slave section has only two diodes (or one LED) between the photo-diodes. This makes it respond to smaller differences in light levels than does the Master part of the circuit
  • Basically, what I did was to stack one SC-H on top of another
  • I?m using a 74 HC 139 to direct the outputs of the M/S SC-H circuit to the appropriate motor(s)
  • Cheesy works very well. I?ve had fun making him chase a spot of light from a flashlight around on the floor. He has even been able to detect and react to the flashlight spot on the floor of the brightly lighted lab where I work.
    • York Jong
       
      Stacking separate Sensor/Behavior
York Jong

Maxibug, Minibug, Microbug - 0 views

  • It is powered with two 3.3F Goldcaps. They can be charged in a few seconds. When they are charged, MAXIBUg gets "afraid" of light, and wanders of to go to play "in the dark". After a while, about 20 seconds (depending on the current used by the two motors ), the power has dropped, and it wants to "eat". It gets light attracted, and will turn and go to the light. When it gets there, it will recharge and still will be atrackted to the light until it reaches a trigger voltage , at which it gets "afraid"of the light again. This will go on all day until someone turns off the lightsource. While doing all this it also will backup when bumping into something.
  • Because of the "on-off" output of the first schmitt trigger, the inputs for the LDRs will switch. That's why it gets light atracted -light afraid. This also means that you cannot use IR diodes (like SHF205). You have to use LDRs !
  • ...2 more annotations...
  • The change in output is visualised with two red LEDs. When the LEDs are burning, the bot is "afraid" of light. They are mounted as eyes off the bot, that's why I used two off them. One LED will do also, but doesn't look nice !
« First ‹ Previous 61 - 80 of 177 Next › Last »
Showing 20 items per page