Skip to main content

Home/ About The Indian Ocean/ Group items tagged stress

Rss Feed Group items tagged

Jérôme OLLIER

Experimental Assessment of Vulnerability to Warming in Tropical Shallow-Water Marine Or... - 0 views

  •  
    Tropical shallow-water habitats represent the marine environments with the greatest biodiversity; however, these habitats are the most vulnerable to climate warming. Corals, seagrasses, and macroalgae play a crucial role in the structure, functions, and processes of the coastal ecosystems. Understanding their growth and physiological responses to elevated temperature and interspecific sensitivity is a necessary step to predict the fate of future coastal community. Six species representatives, including Pocillopora acuta, Porites lutea, Halophila ovalis, Thalassia hemprichii, Padina boryana, and Ulva intestinalis, collected from Phuket, Thailand, were subjected to stress manipulation for 5 days. Corals were tested at 27, 29.5, 32, and 34.5°C, while seagrasses and macroalgae were tested at 27, 32, 37, and 42°C. After the stress period, the species were allowed to recover for 5 days at 27°C for corals and 32°C for seagrasses and macroalgae. Non-destructive evaluation of photosynthetic parameters (Fv/Fm, Fv/F0, ϕPSII and rapid light curves) was carried out on days 0, 3, 5, 6, 8, and 10. Chlorophyll contents and growth rates were quantified at the end of stress, and recovery periods. An integrated biomarker response (IBR) approach was adopted to integrate the candidate responses (Fv/Fm, chlorophyll content, and growth rate) and quantify the overall temperature effects. Elevated temperatures were found to affect photosynthesis, chlorophyll content, and growth rates of all species. Lethal effects were detected at 34.5°C in corals, whereas adverse but recoverable effects were detected at 32°C. Seagrasses and macroalgae displayed a rapid decline in photosynthesis and lethal effects at 42°C. In some species, sublethal stress manifested as slower growth and lower chlorophyll content at 37°C, while photosynthesis remained unaffected. Among all, T. hemprichii displayed the highest thermotolerance. IBR provided evidence that elevated temperature affected the overall perf
Jérôme OLLIER

Fine-Scale Biogeographical Boundary Delineation and Sub-population Resolution in the Sy... - 0 views

  •  
    The adaptation of tropical coral communities to the world's hottest sea, the Persian/Arabian Gulf (PAG), has recently been associated with ecological selection acting on a group of coral-associated algal symbionts, the Symbiodinium thermophilum group. Previous studies have shown that considerable genetic diversity exists within the group and that group members found within the PAG are significantly differentiated from those found externally, in the Gulf of Oman and wider waters. However, little is known about this genetic diversity. As an initial step towards understanding whether this diversity could represent niche adapted, selectable populations within the S. thermophilum group that may act as natural sources of stress tolerant associations to Indo-Pacific reefs, we investigate whether the diversity is structured between populations and where the location of the internal-external genetic partition lies. We use regions of the nuclear ribosomal DNA (ITS1-5.8S-ITS2) and chloroplastic psbA gene (non-coding region) from >100 S. thermophilum group-harbouring Porites spp. (P. lobata, P. lutea, and P. harrisoni) sampled across steep temperature and salinity gradients to conduct analyses of variance and create maximum parsimony networks to assess genetic structure and (dis)similarity within and between populations of S. thermophilum found within the PAG and externally in the Gulf of Oman. Our analyses resolve a sharp genetic boundary between Symbiodinium populations in the western Strait of Hormuz and identify significant genetic structure between populations with as little as 20 km between them demonstrating that differentiation between populations is likely due to factors other than limited connectivity. Further, we hypothesize that genotypes identified outside of the PAG in the Gulf of Oman existing in near-oceanic salinities, yet thermally challenging waters, putatively represent candidates for stress-tolerant symbionts that could act as natural seed populations of st
Jérôme OLLIER

Assessment of thermocline depth bias in the Seychelles-Chagos Thermocline Ridge of the ... - 0 views

  •  
    The Seychelles-Chagos Thermocline Ridge (SCTR, 5°S-10°S, 50°E-80°E) is a unique open-ocean upwelling region in the southwestern Indian Ocean. Due to the negative wind stress curl between the equatorial westerlies and southeasterly trade winds, SCTR is known as a strong upwelling region with high biological productivity, providing a primary fishing zone for the surrounding countries. Given its importance in shaping the variability of the Indian Ocean climate by understanding the sea-air interaction and its dynamics, the simulation of SCTR is evaluated using outputs from the Coupled Model Intercomparison Project Phase Sixth (CMIP6). Compared to observations, 23 out of 27 CMIP6 models tend to simulate considerably deeper SCTR thermocline depth (defined as the 20°C isotherm depth (D20))- a common bias in climate models. The deep bias is related to the easterly wind bias in the equatorial to southern Indian Ocean, which is prominent in boreal summer and fall. This easterly wind bias produces a weak annual mean Ekman pumping, especially in the boreal fall. Throughout the year, the observed Ekman pumping is positive and is driven by two components: the curl term, is associated with the wind stress curl, leads to upwelling during boreal summer to fall; the beta term, is linked to planetary beta and zonal wind stress, contributes to downwelling during boreal spring to fall. However, the easterly wind bias in the CMIP6 increases both the positive curl and negative beta terms. The beta term bias offsets the curl term bias and reduces the upwelling velocity. Furthermore, the easterly wind bias is likely caused by the reduced east-west sea surface temperature (SST) difference associated with a pronounced warm bias in the western equatorial Indian Ocean, accompanied by the east-west mean sea level pressure gradient over the Indian Ocean. Furthermore, this study finds local wind-induced Ekman pumping to be a more dominant factor in thermocline depth bias than Rossby waves,
Jérôme OLLIER

Genome of elegance coral Catalaphyllia jardinei (Euphylliidae) - @FrontMarineSci - 0 views

  •  
    Coral reefs are under stress throughout the world. To better understand the molecular mechanisms underlying coral biology and their genomic evolution, here we sequenced the genome and transcriptomes of elegance coral Catalaphyllia jardinei (Euphylliidae). This monotypic genus stony coral is widespread but rare, being found across the Indo-West Pacific, from the northern Indian Ocean, Australia, Philippines, to the South China Sea. Due to its popularity among aquarium hobbyists, it is an overexploited species collected in large quantities from the wild for aquarium trade. The assembled genome is ~ 651.3 Mb in total length and of high physical contiguity with a scaffold N50 size of 28.9 Mb. The gene copy numbers of abiotic stress regulator (heat shock protein family genes) and neuropeptides (GLWamide, GRFamide, PRGamide and HIRamide) are similar to other sequenced anthozoans, and we have also identified the first set of sesquiterpenoid biosynthetic pathway genes in coral. Sequencing of small RNAs allows us to identify 35 microRNAs in C. jardinei and update the number of conserved microRNAs in cnidarians. This study established a foundation for further investigation into the roles of sesquiterpenoids and microRNAs in development of coral and understand their responses to climate change. Due to the easiness to culture C. jardinei in reef tanks and the established resources in this study, we propose this species be adopted as a new laboratory model in environmental and ecological experiments aiming to understand coral biology and responses to environmental stressors.
Jérôme OLLIER

54 years of microboring community history explored by machine learning in a massive cor... - 0 views

  •  
    Coral reefs are increasingly in jeopardy due to global changes affecting both reef accretion and bioerosion processes. Bioerosion processes dynamics in dead reef carbonates under various environmental conditions are relatively well understood but only over a short-term limiting projections of coral reef evolution by 2100. It is thus essential to monitor and understand bioerosion processes over the long term. Here we studied the assemblage of traces of microborers in a coral core of a massive Diploastrea sp. from Mayotte, allowing us to explore the variability of its specific composition, distribution, and abundance between 1964 and 2018. Observations of microborer traces were realized under a scanning electron microscope (SEM). The area of coral skeleton sections colonized by microborers (a proxy of their abundance) was estimated based on an innovative machine learning approach. This new method with 93% accuracy allowed analyzing rapidly more than a thousand SEM images. Our results showed an important shift in the trace assemblage composition that occurred in 1985, and a loss of 90% of microborer traces over the last five decades. Our data also showed a strong positive correlation between microborer trace abundance and the coral bulk density, this latter being particularly affected by the interannual variation of temperature and cumulative insolation. Although various combined environmental factors certainly had direct and/or indirect effects on microboring species before and after the breakpoint in 1985, we suggest that rising sea surface temperature, rainfall, and the loss of light over time were the main factors driving the observed trace assemblage change and decline in microborer abundance. In addition, the interannual variability of sea surface temperature and instantaneous maximum wind speed appeared to influence greatly the occurrence of green bands. We thus stress the importance to study more coral cores to confirm the decadal trends observed in the Diploas
Jérôme OLLIER

Maldives coral reefs under stress from climate change: research survey reveals over 60%... - 0 views

  •  
    Preliminary findings of a comprehensive scientific survey examining the impact of the climate change-related 2016 mass bleaching in the Maldives indicate that all reefs surveyed were affected by the event. Approximately 60% of all coral colonies assessed - and up to 90% in some sites - were bleached.
  •  
    Preliminary findings of a comprehensive scientific survey examining the impact of the climate change-related 2016 mass bleaching in the Maldives indicate that all reefs surveyed were affected by the event. Approximately 60% of all coral colonies assessed - and up to 90% in some sites - were bleached.
Jérôme OLLIER

Microbiomes of Healthy and Bleached Corals During a 2016 Thermal Bleaching Event in the... - 0 views

  •  
    As seawater temperature rises, repeated thermal bleaching events have negatively affected the reefs of the Andaman Sea for over decades. Studies on the coral-associated microbial diversity of prokaryotes and microbial eukaryotes (microbiome) in healthy and bleached corals are important to better understand the coral holobionts that involved augmented resistance to stresses, and this information remains limited in the Andaman Sea of Thailand. The present study thereby described the microbiomes of healthy (unbleached) and bleached colonies of four prevalent corals, Acropora humilis, Platygyra sp., Pocillopora damicornis, and Porites lutea, along with the surrounding seawater and sediments, that were collected during a 2016 thermal bleaching event, using 16S and 18S rRNA genes next-generation sequencing (NGS). Both prokaryotic and eukaryotic microbes showed isolated community profiles among sample types (corals, sediment, and seawater) [analysis of similarities (ANOSIM): p = 0.038 for prokaryotes, p < 0.001 for microbial eukaryotes] and among coral genera (ANOSIM: p < 0.001 for prokaryotes and microbial eukaryotes). In bleached state corals, we found differences in microbial compositions from the healthy state corals. Prevalent differences shared among bleached coral genera (shared in at least three coral genera) included a loss of reported coral-beneficial microbes, such as Pseudomonadales, Alteromonadales, and Symbiodinium; meanwhile an increase of putative coral-pathogenic Malassezia and Aspergillus. This difference could affect carbon and nitrogen availability for coral growth, reflective of a healthy or bleached state. Our findings in part supported previously microbial dysbiosis knowledge of thermal bleaching coral microbiomes around South East Asia marine geography, and together ongoing efforts are to support the understanding and management of microbial diversity to reduce the negative impacts to corals in massive thermal bleaching events.
Jérôme OLLIER

The Decline and Recovery of a Crab Population From an Extreme Marine Heatwave and a Cha... - 0 views

  •  
    Driven by a very strong La Niña event and a record strength Leeuwin Current, the 2011 Western Australian marine heatwave (MHW) raised sea surface temperatures (SSTs) along the Western Australian coastline by up to 5°C between November 2010 and March 2011. This single thermal perturbation led to several mortality events and recruitment impairment of commercially important species including Australia's single highest producing blue swimmer crab (Portunus armatus) fishery in Shark Bay. Monthly catch landings dramatically declined from 166 t in April 2011 to 24°C, and detrimental when they exceed 26°C as was the case during the 2011 MHW when SSTs reached 29°C inside Shark Bay. Partial recovery of the crab stock 18 months after the MHW was strongly associated with mean summer temperatures returning below 24°C. Together with a change in management to a quota system, the fishery returned to full recovery status in 2018 with sustainable catch levels of up to 550 t. Long term productivity of this fishery is now at high risk from climate change impacts with shifts in winter water temperatures being cooler by 2°C and occurring earlier by few months inside the Bay. This cooling trend appears to be impacting the spawning period with the timing of peak recruitment also occurring earlier, shifting from February to November. The impacts of the 2011 MHW highlighted the risk to stock sustainability through external drivers such as climate change that was previously poorly understood. The south-west region of Western Australia is considered a climate change hotspot with water temperatures rising at rates above global trends and at inc
Jérôme OLLIER

Via @MBSociety - Coral-macroalgal interactions: Herbivory and substrate type influence ... - 0 views

  •  
    Introduced macroalgae becoming invasive may alter ecological functions and habitats in recipient ecosystems. In the Western Indian Ocean (WIO), non-native strains of the native macroalgae Eucheuma denticulatum were introduced for farming practices and consequently spread into the surrounding seascape. We investigated potential effects of non-native and native strains of this macroalgae on a branching coral. We conducted a four-factor field experiment where we examined growth and holdfast development of introduced and native E. denticulatum on live and dead branches of Acropora sp. in the presence and absence of herbivores in Unguja Island, Zanzibar. Moreover, we estimated coral and macroalgae condition by visual examinations, gene expression analyses, and photosynthetic measurements. Macroalgae did not attach to any live coral and coral condition was not impacted by the presence of E. denticulatum, regardless of geographical origin. Instead, necrotic tissue on the macroalgae in areas of direct contact with corals indicated damage inflicted by the coral. The biomass of E. denticulatum did not differ between the replicates attached to live or dead corals in the experiment, yet biomass was strongly influenced by herbivory and replicates without protection from herbivores had a significantly lower biomass. In the absence of herbivory, introduced E. denticulatum had significantly higher growth rates than native algae based on wet weight measurements. These results contribute to an increased understanding of environmental effects by the farming of a non-native strain of algae on corals and stresses the importance to maintain viable populations of macroalgal feeding fishes in such areas.
Jérôme OLLIER

Unraveling the potential of bacteria isolated from the equatorial region of Indian Ocea... - 0 views

  •  
    The marine environment is most vital and flexible with continual variations in salinity, temperature, and pressure. As a result, bacteria living in such an environment maintain the adaption mechanisms that are inherent in unstable environmental conditions. The harboring of metal-resistant genes in marine bacteria contributes to their effectiveness in metal remediation relative to their terrestrial counterparts. A total of four mercury-resistant bacteria (MRB) i.e. NIOT-EQR_J7 (Alcanivorax xenomutans); NIOT-EQR_J248 and NIOT-EQR_J251 (Halomonas sp.); and NIOT-EQR_J258 (Marinobacter hydrocarbonoclasticus) were isolated from the equatorial region of the Indian Ocean (ERIO) and identified by analyzing the 16S rDNA sequence. The MRBs can reduce up to 70% of Hg(II). The mercuric reductase (merA) gene was amplified and the mercury (Hg) volatilization was confirmed by the X-ray film method. The outcomes obtained from ICP-MS validated that the Halomonas sp. NIOT-EQR_J251 was more proficient in removing the Hg from culture media than other isolates. Fourier transform infrared (FT-IR) spectroscopy results revealed alteration in several functional groups attributing to the Hg tolerance and reduction. The Gas Chromatography-Mass Spectrometry (GC-MS) analysis confirmed that strain Halomonas sp. (NIOT-EQR_J248 and NIOT-EQR_J251) released Isooctyl thioglycolate (IOTG) compound under mercury stress. The molecular docking results suggested that IOTG can efficiently bind with the glutathione S-transferase (GST) enzyme. A pathway has been hypothesized based on the GC-MS metabolic profile and molecular docking results, suggesting that the compound IOTG may mediate mercuric reduction via merA-GST related detoxification pathway.
Jérôme OLLIER

Macrobenthic community of an anthropogenically influenced mangrove associated estuary o... - 0 views

  •  
    The Mahanadi Estuarine System (MES), with a complex network of freshwater channels, rivers, and mangroves, is a leading seaport in State Odisha on the east coast of India, but subjected to intense human activity in recent years. Such anthropic impingements are known to impact sediment-dwelling biota adversely. However, information on the macrobenthic community of the MES is not well documented yet. Therefore, the primary objectives of this study (February 2013-March 2017) were to address knowledge gaps on the macrobenthic community structure vis-à-vis local environmental conditions and to evaluate the extent of anthropogenic disturbances on macrobenthos. The results from 264 benthic grab samples (van Veen, 0.04 m2; 2 replicates × 12 GPS fixed locations × 3 seasons) revealed 73 taxa representing 64 genera and 48 families of macrobenthic fauna. The polychaetes (81.41%) and crustaceans (15.42%) were significant faunal groups that contributed mainly to the benthic population and diversity. Multivariate approaches using benthic community attributes and biotic indices (AMBI and M-AMBI) as proxy measures of environmental disturbances proved effective for appraisal. The correlations between the environmental parameters (temperature, pH, salinity) and community estimates were statistically significant. Hierarchical clustering analysis disclosed three major groups (Global R 0.70; p < 0.002) influenced by tolerant/opportunist species. The lower abundance, richness, diversity, and dominance of opportunistic species mark the signs of environmental stress. The community health status remained unbalanced, as indicated by AMBI scoring. M-AMBI analysis contributed best in differentiating areas exposed to diverse impacts and indicated polluted community health status with moderate ecological quality. Our results reiterate the effective use of macrobenthos as bioindicators for ecological status and monitoring. The findings could be utilized for future monitoring assessments, transl
Jérôme OLLIER

Genomic consequences and selection efficacy in sympatric sexual versus asexual kelps - ... - 0 views

  •  
    Genetic diversity can influence resilience and adaptative capacity of organisms to environmental change. Genetic diversity within populations is largely structured by reproduction, with the prevalence of asexual versus sexual reproduction often underpinning important diversity metrics that determine selection efficacy. Asexual or clonal reproduction is expected to reduce genotypic diversity and slow down adaptation through reduced selection efficacy, yet the evolutionary consequences of clonal reproduction remain unclear for many natural populations. Here, we examine the genomic consequences of sympatric sexual (haplodiplontic) and clonal morphs of the kelp Ecklonia radiata that occur interspersed on reefs in Hamelin Bay, Western Australia. Using genome-wide single nucleotide polymorphisms, we confirm significant asexual reproduction for the clonal populations, indicated by a significantly lower number of multi-locus lineages and higher intra-individual diversity patterns (individual multi-locus heterozygosity, MLH). Nevertheless, co-ancestry analysis and breeding experiments confirmed that sexual reproduction by the clonal morph and interbreeding between the two morphs is still possible, but varies among populations. One clonal population with long-term asexuality showed trends of decreased selection efficacy (increased ratio non- vs. synonymous gene diversities). Yet, all clonal populations showed distinct patterns of putative local adaptation relative to the sexual morph, possibly indicating maladaptation to local environmental conditions and high vulnerability of this unique clonal morph to environmental stress.
Jérôme OLLIER

Social-ecological vulnerability to climate change and risk governance in coastal fishin... - 0 views

  •  
    In Bangladesh, fishing communities are one of the most climate-vulnerable groups, though they play an important role in economic development. The main objective of this study was to identify vulnerability by exploring exposure (i.e., lack of regulating services or household capitals), susceptibility (i.e., lack of access to provisioning services), and lack of resilience (i.e., lack of alternative livelihoods and capacity) and to explore adaptation options, and challenges to understand risk governance. The study considered 45 published research articles for analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Keywords were used in combinations (e.g., fishing communities and Bangladesh) to identify and screen published articles. Articles published in English focusing on vulnerability and/or risk governance, published between 2011 and 2022, featuring original empirical data or a comprehensive systematic review, and published in peer-reviewed journals were included. Articles were excluded if vulnerability and risk governance were evaluated but did not fit or match the definition used in this study. The study found frequent disasters and ocean warming caused different stresses, such as reduced fish catch and income, and resulted in an increased risk of fisheries conflict. Moreover, fishing communities have limited access to properties, modern fishing equipment, financial institutions, and fisher-centered organizations. Adaptation strategies include ecosystem-based (e.g., plantation, payment for ecosystem services) and non-ecosystem-based (e.g., temporary migration, getting help from neighbors) approaches. To boost fish production, the Government of Bangladesh instituted fishing restrictions and social safety net programs (e.g., distributing rice during the fishing restrictions); both initiatives were helpful. However, the conservation policies are not being implemented properly, and there is no particular social welfa
Jérôme OLLIER

Seagrass Meadows Reduce Wind-Wave Driven Sediment Resuspension in a Sheltered Environme... - 0 views

  •  
    Seagrass meadows are prominent in many coastal zones worldwide and significant contributors to global primary production. The large bottom roughness (or canopy) created by seagrass meadows substantially alters near-bed hydrodynamics and sediment transport. In this study, we investigate how a seagrass meadow in a low-energy environment (forced by local winds) modifies near-bed mean and wave-driven flows and assess how this relates to suspended sediment concentration (SSC). A two-week field study was conducted at Garden Island in southwestern Australia, a shallow and sheltered coastal region subjected to large diurnal sea-breeze cycles, typical of many low-energy environments where seagrasses are found. The mean and turbulent flow structure, along with optical estimates of SSC, were measured within both a seagrass canopy and over an adjacent bare bed. Near-bed mean current velocities within the seagrass canopy were on average 35% of the velocity above the canopy. Oscillatory wave velocities were less attenuated than mean current velocities, with near-bed values on average being 83% of those above the canopy. Mean and maximum shear velocities inferred from currents and waves above the canopy frequently exceeded the threshold for sediment resuspension, but no significant variation was observed in the SSC. However, a significant correlation was observed between SSC and bed shear stress estimated using near-bed velocities inside the canopy. When sediment was resuspended, there were substantial differences between the SSCs within and above the canopy layer, with higher levels confined within the canopy. This study demonstrates the importance of measuring near-bed hydrodynamic processes directly within seagrass canopies for predicting the role seagrass meadows play in regulating local rates of sediment resuspension.
Jérôme OLLIER

Variations of phytoplankton chlorophyll in the Bay of Bengal: Impact of climate changes... - 0 views

  •  
    Phytoplankton biomass, quantified as the concentration of chlorophyll-a (CHL), is the base of the marine food web that supports fisheries production in the Bay of Bengal (BoB). Nutrients from river discharge, the ocean subsurface layer, and the atmosphere have been reported to determine CHL in the BoB. Which source of nutrients mainly determines CHL in different parts of the bay has not been determined. Furthermore, how climate variations influence nutrient inputs from different sources and their impacts on CHL have not been detailed. To address these questions, we used relationships between satellite-derived CHL and in situ river discharge data (a proxy for river-borne nutrients) from 1997 to 2016, physical variables, and modeled dust deposition (DD), a proxy for atmosphere-borne nutrients. Nutrients supplied from the ocean subsurface layer were assessed based on variations in physical parameters (i.e., wind stress curl, sea surface height anomaly, and sea surface temperature). We found that nutrients from the Ganges and Brahmaputra Rivers were important for CHL along the northern coast of the bay. By increasing rainfall and river discharge, La Niña extended high-CHL waters further southward. Nutrients from the ocean subsurface layer determine CHL variations mainly in the southwestern bay. We suggest that the variations in the supply of nutrients from the subsurface layer are related to the generation of mesoscale cyclonic eddies during La Niña, a negative Indian Ocean Dipole, or both. Climate-driven cyclonic eddies together with cyclones can intensify Ekman divergence and synergistically lead to a pronounced increase in CHL in the southwestern bay. Nutrients from the atmosphere mainly determine CHL in the central/eastern BoB. We further suggest that DD in the central/eastern BoB is influenced by ENSO with a 6-7-month time lag. CHL in the central/eastern bay responds to the ENSO 6-7 months after the ENSO peak because of the 6-7-month lag between ENSO and DD
Jérôme OLLIER

Changes in size-dependent Chlorophyll a concentration and group-specific picophytoplank... - 0 views

  •  
    To clarify the changes in phytoplankton community and influencing factors in short-term nutrient-addition experiments in the Equatorial Eastern Indian Ocean, we conducted three experiments (one in situ-like experiment, one on-deck experiment with deep seawater, and one on-deck experiment with surface seawater). Our findings indicate that when nutrients were added, there was a more significant increase in the chlorophyll a (chl a) concentrations of microphytoplankton (>20 μm) compared to those of nanophytoplankton (2-20 μm) and picophytoplankton (<20 μm phytoplankton. Furthermore, bottle effects should be considered when conducting incubation experiments.
Jérôme OLLIER

A Maldives Beach Awash in Bioluminescent Phytoplankton Looks Like an Ocean of Stars - C... - 0 views

  •  
    A Maldives Beach Awash in Bioluminescent Phytoplankton Looks Like an Ocean of Stars.
Jérôme OLLIER

Northwest seagrass in a world of its own (in the lab) - @WAMSInews - 0 views

  •  
    In the second part of our report into measuring the effects of light reduction and sediment burial to determine the capacity for northwest seagrasses to withstand change, we move from the field to the lab for some surprising results.
  •  
    In the second part of our report into measuring the effects of light reduction and sediment burial to determine the capacity for northwest seagrasses to withstand change, we move from the field to the lab for some surprising results.
1 - 20 of 22 Next ›
Showing 20 items per page