Skip to main content

Home/ About The Indian Ocean/ Group items tagged population

Rss Feed Group items tagged

Jérôme OLLIER

Genetic connectivity of the scalloped hammerhead shark Sphyrna lewini across Indonesia ... - 0 views

  •  
    Scalloped Hammerhead shark (Sphyrna lewini) is an endangered species which its populations have been declining globally including in Indonesia, the world's top shark fishing country. However, there is a lack of information on the recent population structure of this species to promote proper management and its conservation status. This study aimed to investigate the genetic diversity, population structure, and connectivity of the S. lewini population, in three major shark landing sites: Aceh (n = 41), Balikpapan (n = 30), and Lombok (n = 29). Meanwhile, additional sequences were retrieved from West Papua (n = 14) and the Western Indian Ocean (n = 65) populations. From the analyses of the mitochondrial CO1 gene, a total of 179 sequences of S. lewini, with an average size of 594 bp, and 40 polymorphic loci in four and eight haplotypes for the Indonesian population and the Western Indian Ocean population were identified. The overall values of genetic diversity were high (h = 0.717; π = 0.013), with the highest values recorded in Aceh (h = 0.668; π = 0.002) and the lowest in Papua (h = 0.143; π = 0.000). On the contrary, the overall value was fairly low in the Western Indian Ocean (h = 0.232; π = 0.001). Furthermore, AMOVA and FST showed three significant subdivisions in Indonesia (FST = 0.442; P < 0.001), with separated populations for Aceh and West Papua, and mixed between Balikpapan and Lombok (FST = 0.044; P = 0.091). In contrast, genetic homogeneity was observed within the population of the Western Indian Ocean (FST = -0.013; P = 0.612). The establishment of a haplotype network provided evidence of a significantly different population and a limited genetic distribution between the Indonesian and the Western Indian Ocean populations (FST = 0.740; P < 0.001). This study showed the presence of a complex population of S. lewini with limited connectivity only in Indonesia separated from the Western Indian Ocean and requiring specific management measures based on
Jérôme OLLIER

Fine-Scale Biogeographical Boundary Delineation and Sub-population Resolution in the Sy... - 0 views

  •  
    The adaptation of tropical coral communities to the world's hottest sea, the Persian/Arabian Gulf (PAG), has recently been associated with ecological selection acting on a group of coral-associated algal symbionts, the Symbiodinium thermophilum group. Previous studies have shown that considerable genetic diversity exists within the group and that group members found within the PAG are significantly differentiated from those found externally, in the Gulf of Oman and wider waters. However, little is known about this genetic diversity. As an initial step towards understanding whether this diversity could represent niche adapted, selectable populations within the S. thermophilum group that may act as natural sources of stress tolerant associations to Indo-Pacific reefs, we investigate whether the diversity is structured between populations and where the location of the internal-external genetic partition lies. We use regions of the nuclear ribosomal DNA (ITS1-5.8S-ITS2) and chloroplastic psbA gene (non-coding region) from >100 S. thermophilum group-harbouring Porites spp. (P. lobata, P. lutea, and P. harrisoni) sampled across steep temperature and salinity gradients to conduct analyses of variance and create maximum parsimony networks to assess genetic structure and (dis)similarity within and between populations of S. thermophilum found within the PAG and externally in the Gulf of Oman. Our analyses resolve a sharp genetic boundary between Symbiodinium populations in the western Strait of Hormuz and identify significant genetic structure between populations with as little as 20 km between them demonstrating that differentiation between populations is likely due to factors other than limited connectivity. Further, we hypothesize that genotypes identified outside of the PAG in the Gulf of Oman existing in near-oceanic salinities, yet thermally challenging waters, putatively represent candidates for stress-tolerant symbionts that could act as natural seed populations of st
Jérôme OLLIER

Genomic consequences and selection efficacy in sympatric sexual versus asexual kelps - ... - 0 views

  •  
    Genetic diversity can influence resilience and adaptative capacity of organisms to environmental change. Genetic diversity within populations is largely structured by reproduction, with the prevalence of asexual versus sexual reproduction often underpinning important diversity metrics that determine selection efficacy. Asexual or clonal reproduction is expected to reduce genotypic diversity and slow down adaptation through reduced selection efficacy, yet the evolutionary consequences of clonal reproduction remain unclear for many natural populations. Here, we examine the genomic consequences of sympatric sexual (haplodiplontic) and clonal morphs of the kelp Ecklonia radiata that occur interspersed on reefs in Hamelin Bay, Western Australia. Using genome-wide single nucleotide polymorphisms, we confirm significant asexual reproduction for the clonal populations, indicated by a significantly lower number of multi-locus lineages and higher intra-individual diversity patterns (individual multi-locus heterozygosity, MLH). Nevertheless, co-ancestry analysis and breeding experiments confirmed that sexual reproduction by the clonal morph and interbreeding between the two morphs is still possible, but varies among populations. One clonal population with long-term asexuality showed trends of decreased selection efficacy (increased ratio non- vs. synonymous gene diversities). Yet, all clonal populations showed distinct patterns of putative local adaptation relative to the sexual morph, possibly indicating maladaptation to local environmental conditions and high vulnerability of this unique clonal morph to environmental stress.
Jérôme OLLIER

Via @WhySharksMatter - Boom-and-bust cycles of holothurian (sea cucumber) populations i... - 0 views

  •  
    1 - The Chagos Archipelago is a remote Indian Ocean atoll of international conservation significance. Holothurians (sea cucumbers) are a major resource and influence reef health. Past populations have fluctuated from poaching and natural events. 2 - Visual censuses of holothurians were conducted in 62 shallow-water transects within four atolls of Chagos in 2014, 4 years after creation of the Marine Protected Area, to determine its possible influence on holothurians. 3 - Comparison with data from the same locations in 2006 and 2010, using the same methodologies, showed significant overall population decline at Diego Garcia, recovery at Salomon (significant) and Peros Banhos (not significant), and no significant change on the Great Chagos Bank. 4 - The median abundance of Holothuria atra and Bohadschia sp(p.) decreased at Diego Garcia, while that of Stichopus chloronotus increased at Diego Garcia and Salomon atolls. Changes for other species were less marked. 5 - Diego Garcia, Salomon and Peros Bahnos showed a decline in diversity (no. of holothurian taxa and/or Shannon index, H), but diversity has been relatively stable on the Great Chagos Bank. 6 - All atolls, except Diego Garcia, are uninhabited and illegal fishing of holothurians, principally by Sri Lankan fishers, appears to have eased since 2005/2006, based on evaluation of 299 patrol survey reports. This may have led to the recovery or stabilization of populations in the outer atolls of Salomon, Peros Banhos atolls and the Great Chagos Bank. 7 - The reasons for holothurian decline at Diego Garcia, where exploitation is also prohibited (but cannot be ruled out), are unclear. Population patterns on all islands may reflect both natural fluctuations and disturbance events, including changing exploitation pressure. 8 - Conservation requirements include periodic re-censusing of holothurians and ongoing monitoring of illegal fishing to help safeguard populations and the integrity of the Marine Protected Area.
Jérôme OLLIER

Coastal Landform Constrains Dispersal in Mangroves - @FrontMarineSci - 0 views

  •  
    Mangrove forests are dynamic ecosystems found along low-lying coastal plains along tropical, subtropical, and some warm-temperate coasts, predominantly on tidal flats fringing deltas, estuaries, bays, and oceanic atolls. These landforms present varied hydrodynamic and geomorphological settings for mangroves to persist and could influence the extent of within-site propagule transport and subsequent local regeneration. In this study, we examined how different landform characteristics may influence local genetic diversity, kinship, and neighborhood structure of mangrove populations. To do so, we considered independent populations of Avicennia marina, one of the most abundant and widespread mangrove species, located in estuarine and coastal bay environments spread across the Western Indian Ocean region. A transect approach was considered to estimate kinship-based fine-scale spatial genetic structure using 15 polymorphic microsatellite markers in 475 adult A. marina trees from 14 populations. Elevated kinship values and significant fine-scale structure up to 30, 60, or 90 m distances were detected in sheltered systems void of river discharge, suggesting a setting suitable for very local propagule retention and establishment within a neighborhood. Slopes of a linear regression over restricted distance within 150 m were significantly declining in each sheltered transect. Contrastingly, such a spatial structure has not been detected for A. marina transects bordering rivers in the estuarine systems considered, or alongside partially sheltered creeks, suggesting that recruitment here is governed by unrelated carried-away mixed-origin propagules. South African populations showed strong inbreeding levels. In general, we have shown that A. marina populations can locally experience different modes of propagule movement, explained from their position in different coastal landforms. Thus, the resilience of mangroves through natural regeneration is achieved by different responses in
Jérôme OLLIER

Via @aims_gov_au @arneadam1- Population connectivity and genetic offset in the spawning... - 0 views

  •  
    Anthropogenic climate change has caused widespread loss of species biodiversity and ecosystem productivity across the globe, particularly on tropical coral reefs. Predicting the future vulnerability of reef-building corals, the foundation species of coral reef ecosystems, is crucial for cost-effective conservation planning in the Anthropocene. In this study, we combine regional population genetic connectivity and seascape analyses to explore patterns of genetic offset (the mismatch of gene-environmental associations under future climate conditions) in Acropora digitifera across 12 degrees of latitude in Western Australia. Our data revealed a pattern of restricted gene flow and limited genetic connectivity among geographically distant reef systems. Environmental association analyses identified a suite of loci strongly associated with the regional temperature variation. These loci helped forecast future genetic offset in gradient forest and generalized dissimilarity models. These analyses predicted pronounced differences in the response of different reef systems in Western Australia to rising temperatures. Under the most optimistic future warming scenario (RCP 2.6), we predicted a general pattern of increasing genetic offset with latitude. Under the extreme climate scenario (RCP 8.5 in 2090-2100), coral populations at the Ningaloo World Heritage Area were predicted to experience a higher mismatch between current allele frequencies and those required to cope with local environmental change, compared to populations in the inshore Kimberley region. The study suggests complex and spatially heterogeneous patterns of climate-change vulnerability in coral populations across Western Australia, reinforcing the notion that regionally tailored conservation efforts will be most effective at managing coral reef resilience into the future.
Jérôme OLLIER

Environmental Factors and Genetic Diversity as Drivers of Early Gonadal Maturation: A G... - 0 views

  •  
    In recent years, attaining gonadal maturation in smaller Hilsa (Tenualosa ilisha) has become a burning issue for Hilsa fishery of Bangladesh. Causes of early maturation are not yet clearly understood. Along with environmental parameters, genetic differentiation within the population was hypothesized as the main driver, and therefore, assessing the correlation between gonadosomatic index (GSI) and environmental factors and analyzing genetic diversity were set as objectives of the present study. To address these complex issues, six diverse habitats across Bangladesh were chosen for Hilsa sample collection. For GSI, gonad was dissected from fresh fish and preserved in Bouin's fluid for histological observation. Water quality parameters such as temperature, dissolved oxygen, pH, and salinity were also assessed. 35 fish from each habitat were used to extract and amplify DNA through the PCR technique, and genetic diversity was examined. Further, to draw a firm conclusion, the phylogenetic tree of the Hilsa population was developed by the unweighted pair-group method of arithmetic mean method based on the Cyt b gene of mitochondrial DNA. Results of GSI studies revealed that peak spawning months of T. ilisha were in October and February, where October showed the highest values in all six habitats. Histological examination showed different stages of gonadal development in different sizes and ages of Hilsa. Among all sampling sites, no statistical difference was observed for GSI value; however, smaller sized and aged Hilsa being ripped were evident in Gaglajur Haor and Kali River. Among the observed water quality parameters, temperature correlated with GSI strongly. Increased GSI was observed with temperature augmentation from downstream to upper stream, irrespective of body size and age. A perplex correlation between dissolved oxygen of observed habitats and GSI was executed. Other physico-chemical parameters viz. pH and salinity exhibited weak and moderate positive associ
Jérôme OLLIER

Science Alone Won't Do It! South Africa's Endangered Humpback Dolphins Sousa plumbea Fa... - 0 views

  •  
    The Indian Ocean humpback dolphin (Sousa plumbea) is "endangered" with likely less than 500 animals remaining in South African waters. Established in 2016, the SouSA Consortium is a formalised network of scientists and conservationists to combine knowledge and research efforts, and make coordinated decisions with the aim of conserving the species. The first collaborative project collated available photo-identification data in an attempt to refine a national population estimate and investigate movements between research sites. This work was able to identify 250 uniquely marked individuals, with the population divided into the south-coast (Agulhas bioregion) and east-coast (Natal bioregion) populations. Environmental factors almost certainly play a role in the declining numbers of the species in South African waters. However, individual threats and solutions are challenging to identify as the South African marine environment is undergoing significant natural and anthropogenic changes with major shifts in the distribution and numbers of some prey, competitor and predator species. Therefore, we believe that a continued investigation of potential contributing factors and their interaction will take too long, inevitably resulting in another case of documenting extinction. With this in mind, we present the results of a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis in an effort to help us identify the next steps to take toward the conservation of humpback dolphins in South African waters. We unanimously conclude that no single cause for the rapid decline of humpback dolphins in South African waters can be identified, and that the cumulative effects of multiple stressors, which are difficult to pinpoint and mitigate, are impacting population numbers. While highlighting the need for continued research, we suggest a shift toward more action-focused conservation efforts, the first concrete steps being the development of a Conservation Management Plan wit
Jérôme OLLIER

Via @Biomarine_fr @squamiferum - Endosymbiont population genomics sheds light on transm... - 0 views

  •  
    The scaly-foot snail (Chrysomallon squamiferum) inhabiting deep-sea hydrothermal vents in the Indian Ocean relies on its sulphur-oxidising gammaproteobacterial endosymbionts for nutrition and energy. In this study, we investigate the specificity, transmission mode, and stability of multiple scaly-foot snail populations dwelling in five vent fields with considerably disparate geological, physical and chemical environmental conditions. Results of population genomics analyses reveal an incongruent phylogeny between the endosymbiont and mitochondrial genomes of the scaly-foot snails in the five vent fields sampled, indicating that the hosts obtain endosymbionts via horizontal transmission in each generation. However, the genetic homogeneity of many symbiont populations implies that vertical transmission cannot be ruled out either. Fluorescence in situ hybridisation of ovarian tissue yields symbiont signals around the oocytes, suggesting that vertical transmission co-occurs with horizontal transmission. Results of in situ environmental measurements and gene expression analyses from in situ fixed samples show that the snail host buffers the differences in environmental conditions to provide the endosymbionts with a stable intracellular micro-environment, where the symbionts serve key metabolic functions and benefit from the host's cushion. The mixed transmission mode, symbiont specificity at the species level, and stable intracellular environment provided by the host support the evolutionary, ecological, and physiological success of scaly-foot snail holobionts in different vents with unique environmental parameters.
Jérôme OLLIER

Les experts identifient les populations de tortues les plus menacées - UICN - 0 views

  •  
    Les plus grands spécialistes mondiaux des tortues ont découvert que près de la moitié (45%) des populations menacées de tortues marines se trouvent dans le nord de l'Océan Indien. L'étude a aussi déterminé que les menaces les plus importantes pour l'ensemble des populations des tortues marines sont les captures accidentelles par des pêcheurs qui ciblent d'autres espèces, et le prélèvement direct de tortues ou de leurs œufs pour les manger ou pour le commerce de l'écaille.
Jérôme OLLIER

Plastic Ingestion in Sardines (Sardinops sagax) From Frenchman Bay, Western Australia, ... - 0 views

  •  
    The ingestion of plastic debris has been studied in many marine fish species, although comparisons between species can be difficult due to factors thought to influence ingestion rates, such as habitat preference, feeding behaviours and trophic level. Sardines are found internationally in many coastal environments and represent a potential sentinel species for monitoring and comparing marine plastic exposure rates. We conducted a pilot study, examining the rate of plastic ingestion in 27 commercially caught sardines (Sardinops sagax) from a low populated coastal region of Western Australia. A total of 251 potentially anthropogenic particles were extracted by chemical digestion of the gastrointestinal tract and classified visually. Fibres were the dominant type of material recovered (82.9%), with both yellow (39.8%) and black (32.7%) coloured particles commonly observed. A subset of 64 particles (25.5%), were subject to Fourier transform infrared (FTIR) spectroscopy to identify polymer composition. This chemical characterisation identified seven plastic items (polypropylene, nylon and polyethylene) and a variety of cellulose-based material that was further examined and classified as natural or semi-synthetic. The mean plastic ingestion rate was 0.3 ± 0.4 particles per fish, suggesting Western Australian sardines ingest relatively low concentrations of plastic when compared to international sardine populations examined using similar methodologies. Despite comparatively low concentrations, plastic and semi-synthetic material are still being ingested by sardines from a low populated coastal region demonstrating the ubiquitous nature of the marine debris problem.
Jérôme OLLIER

Biogeographic role of the Indonesian Seaway implicated by colonization history of purpl... - 0 views

  •  
    As a bio]diversity hotspot, the East Indies (Coral) Triangle possesses the highest biodiversity on the earth. However, evolutionary hypotheses around this area remain controversial; e.g., center of origin, center of accumulation, and center of overlap have been supported by different species. This study aims to answer the evolutionary influence of the Indonesian Seaway on the biodiversity of the Coral Triangle by recovering the evolutionary origins of a wide-ranging ommastrephid squid (Sthenoteuthis oualaniensis) based on integrated molecular and oceanographic clues from the Indo-Pacific. Three new clades were revealed; viz., clade I from the South China Sea, clade II from the northern East Indian Ocean, and clade III from the southern East Indian Ocean. These two Indian Ocean clades formed a monophyly closely related to clade IV from the Central-Southeast Pacific. Clade VI from the central Equatorial Pacific and clade V from the northern Eastern Pacific sit in basal positions of phylogenetic trees. Ancestral Sthenoteuthis was inferred to have originated from the Atlantic Ocean and sequentially dispersed to the northern East Pacific, central Equatorial Pacific, and West Pacific through the open Panama Seaway and being transported by westward North Equatorial Current. The East Indian Ocean was likely colonized by an ancestral population of clade IV from the Southeast Pacific. Westward South Equatorial Circulation could have promoted transoceanic migration of S. oualaniensis through the wide paleo-Indonesian Seaway. Sea level regression since the Miocene and the closure of the Indonesian Seaway at 4-3 Ma were responsible for the population genetic differentiation of S. oualaniensis in the Indo-Pacific. Therefore, the Indonesian Gateway played an important role in influencing marine organisms' migration and population differentiation through controlling and reorganizing circulations in the Indo-Pacific.
Jérôme OLLIER

Via @WhySharksMatter - Growth rate and projected age at sexual maturity for immature ha... - 0 views

  •  
    Changes in marine ecosystems from human stressors, and concerns over how species will respond to these changes have emphasized the importance of understanding and monitoring crucial demographic parameters for population models. Long-lived, migratory, marine vertebrates such as sea turtles are particularly vulnerable to changes. Life-history parameters like growth-in-body size can be largely influenced by environmental processes which can impact population growth. We analyzed a 40-year (1981-2021) capture-mark-recapture dataset from the protected UNESCO World Heritage Site, Aldabra Atoll, Seychelles, to estimate key population parameters, including body growth, for immature green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata). Curved carapace length (CCL) range was 34.3-110.9 cm (mean ± SD: 51.0 ± 11.4 cm, n = 1191) for green turtles and 28.7-89.4 cm (47.7 ± 14.4 cm, n = 538) for hawksbill turtles. Recapture events, with an 11-month minimum period, revealed a mean annual growth rate of 3.2 ± 1.5 cm year−1 for green turtles (n = 75) and 2.8 ± 1.4 cm year−1 for hawksbill turtles (n = 110). Hawksbill turtles exhibited a non-monotonic growth rate while no significant growth-size relationship was detected for green turtles. Green turtle mean annual growth per 10-cm size class was highest in the larger size classes (50‒69.9 cm). Hawksbill turtle growth rate was highest in the larger size classes (50‒69.9 cm) then declined in the largest size class (70‒79.9 cm). Green turtles and hawksbill turtles may spend > 8 and 18 years, respectively, using Aldabra, Seychelles, as a foraging ground.
Jérôme OLLIER

Reef sharks in remote Chagos archipelago hit by big population decline - @mashable - 0 views

  •  
    Reef sharks in remote Chagos archipelago hit by big population decline.
Jérôme OLLIER

Influence of Indo-Pacific ocean currents on the distribution and demographic patterns o... - 0 views

  •  
    Long-distance drifting of seaweeds driven by ocean currents is an ideal model for exploring population-level genetic connectivity and phylogeographic structure. In the Indo-Pacific convergence region, we integrated phylogeographic and ocean current data and Lagrangian particle simulations to explore how the ocean currents contributed to the biogeographical patterns and population genetic connectivity of Sargassum polycystum. The oceanographic transport and direction of gene flow was in line with contemporary ocean currents. The S. polycystum geographical dispersal from glacial refugia homogenized the footprint of genetic divergence. The multidisciplinary intersection provides insights into the evolutionary history and biogeographic conservation of tropical seaweeds in the Indo-Pacific convergence region.
Jérôme OLLIER

Geographical subdivision of Alviniconcha snail populations in the Indian Ocean hydrothe... - 0 views

  •  
    The hairy snails of the genus Alviniconcha are representative deep-sea hydrothermal vent animals distributed across the Western Pacific and Indian Ocean. Out of six known species in the genus Alviniconcha, only one nominal species of A. marisindica was found in the Indian Ocean from the Carlsberg Ridge (CR), Central Indian Ridge (CIR) to the northern part of Southwest Indian Ridge (SWIR) and Southeast Indian Ridge (SEIR). Recently, the Alviniconcha snails were found at three new vent fields, named Onnare, Onbada, and Onnuri, in the northern CIR, which promotes a more comprehensive phylogeographic study of this species. Here, we examined the phylogeography and connectivity of the Alviniconcha snails among seven vent fields representing the CR and CIR based on DNA sequence data of a mitochondrial COI gene and two protein-coding nuclear genes. Phylogenetic inferences revealed that the Alviniconcha snails of the newly found in the northern CIR and two vent fields of Wocan and Tianxiu in the CR were divergent with the previously identified A. marisindica in the southern CIR and mitochondrial COI data supported the divergence with at least greater than 3% sequence divergence. Population structure analyses based on the three genetic markers detected a phylogeographic boundary between Onnuri and Solitaire that divides the whole snail populations into northern and southern groups with a low migration rate. The high degree of genetic disconnection around the 'Onnuri' boundary suggests that the Alviniconcha snails in the Indian Ocean may undergo allopatric speciation. The border may similarly act as a dispersal barrier to many other vent species co-distributed in the CIR. This study would expand understanding the speciation and connectivity of vent species in the Indian Ocean.
Jérôme OLLIER

First success for recovering Kalbarri abalone - @SNWA - 0 views

  •  
    SCIENTISTS working to return abalone to a once-flourishing population on the notoriously wild coastline north of Kalbarri have enjoyed their first major success-with new juvenile abalone recruits popping up in the region.
  •  
    SCIENTISTS working to return abalone to a once-flourishing population on the notoriously wild coastline north of Kalbarri have enjoyed their first major success-with new juvenile abalone recruits popping up in the region.
Jérôme OLLIER

Via @Seasaver - Mozambique sharks, manta rays population decline spurs conservation eff... - 0 views

  •  
    Mozambique sharks, manta rays population decline spurs conservation efforts.
Jérôme OLLIER

New Population of Blue Whales Discovered in the Western Indian Ocean - @NEAQ - 0 views

  •  
    An international team of researchers has discovered what it believes to be a new population of blue whales in the western Indian Ocean.
Jérôme OLLIER

Via @SimonPierce - No Place Like Home? High Residency and Predictable Seasonal Movement... - 0 views

  •  
    Highly mobile marine megafauna species, while widely distributed and frequently threatened, often aggregate in distinct localized habitats. Implementation of local management initiatives within these hotspots is more achievable than developing effective conservation strategies that encompass their entire distributions. Such measures have the potential for disproportionate population-level benefits but rely on a detailed understanding of spatiotemporal habitat use. To that end, we examined the residency and small-scale habitat use of 51 whale sharks (Rhincodon typus) over 5 years at an aggregation site in Tanzania using passive acoustic telemetry. Whale sharks were highly resident within and across years, with a combined maximum residency index of 0.39. Although fewer sharks were detected from March to September, residency was high throughout the year. Ancillary photographic-identification data showed that individual residency persisted before and after tag attachment. Kernel utilization distributions (KUD) and movement networks both revealed the same spatiotemporal pattern of habitat use, with a small core habitat (50% KUD area for all sharks combined = 12.99 km2) that predictably changed on a seasonal basis. Activity spaces did not differ with time of day, sex, or size of the sharks, indicating a population-level pattern driven by prey availability. The small and predictable core habitat area at this site means that site-based management options to reduce shark injuries and mortality from boat strike and fishing gear entanglement can be spatially targeted for maximum effectiveness and compliance by human users.
1 - 20 of 90 Next › Last »
Showing 20 items per page