Influence of Indo-Pacific ocean currents on the distribution and demographic patterns o... - 0 views
-
Long-distance drifting of seaweeds driven by ocean currents is an ideal model for exploring population-level genetic connectivity and phylogeographic structure. In the Indo-Pacific convergence region, we integrated phylogeographic and ocean current data and Lagrangian particle simulations to explore how the ocean currents contributed to the biogeographical patterns and population genetic connectivity of Sargassum polycystum. The oceanographic transport and direction of gene flow was in line with contemporary ocean currents. The S. polycystum geographical dispersal from glacial refugia homogenized the footprint of genetic divergence. The multidisciplinary intersection provides insights into the evolutionary history and biogeographic conservation of tropical seaweeds in the Indo-Pacific convergence region.
Genomic consequences and selection efficacy in sympatric sexual versus asexual kelps - ... - 0 views
-
Genetic diversity can influence resilience and adaptative capacity of organisms to environmental change. Genetic diversity within populations is largely structured by reproduction, with the prevalence of asexual versus sexual reproduction often underpinning important diversity metrics that determine selection efficacy. Asexual or clonal reproduction is expected to reduce genotypic diversity and slow down adaptation through reduced selection efficacy, yet the evolutionary consequences of clonal reproduction remain unclear for many natural populations. Here, we examine the genomic consequences of sympatric sexual (haplodiplontic) and clonal morphs of the kelp Ecklonia radiata that occur interspersed on reefs in Hamelin Bay, Western Australia. Using genome-wide single nucleotide polymorphisms, we confirm significant asexual reproduction for the clonal populations, indicated by a significantly lower number of multi-locus lineages and higher intra-individual diversity patterns (individual multi-locus heterozygosity, MLH). Nevertheless, co-ancestry analysis and breeding experiments confirmed that sexual reproduction by the clonal morph and interbreeding between the two morphs is still possible, but varies among populations. One clonal population with long-term asexuality showed trends of decreased selection efficacy (increased ratio non- vs. synonymous gene diversities). Yet, all clonal populations showed distinct patterns of putative local adaptation relative to the sexual morph, possibly indicating maladaptation to local environmental conditions and high vulnerability of this unique clonal morph to environmental stress.
Australia's Extremophile Coral Could Be Key to Saving the World's Reefs - @hakaimagazine - 0 views
Maldives coral reefs under stress from climate change: research survey reveals over 60%... - 0 views
-
Preliminary findings of a comprehensive scientific survey examining the impact of the climate change-related 2016 mass bleaching in the Maldives indicate that all reefs surveyed were affected by the event. Approximately 60% of all coral colonies assessed - and up to 90% in some sites - were bleached.
-
Preliminary findings of a comprehensive scientific survey examining the impact of the climate change-related 2016 mass bleaching in the Maldives indicate that all reefs surveyed were affected by the event. Approximately 60% of all coral colonies assessed - and up to 90% in some sites - were bleached.
New study shows parrotfish are critical to coral reef island building - @UniofExeter - 0 views
-
As well as being a beautiful species capable of changing its colour, shape and even gender, new research published today shows that parrotfish, commonly found on healthy coral reefs, can also play a pivotal role in providing the sands necessary to build and maintain coral reef islands.
-
As well as being a beautiful species capable of changing its colour, shape and even gender, new research published today shows that parrotfish, commonly found on healthy coral reefs, can also play a pivotal role in providing the sands necessary to build and maintain coral reef islands.
-
As well as being a beautiful species capable of changing its colour, shape and even gender, new research published today shows that parrotfish, commonly found on healthy coral reefs, can also play a pivotal role in providing the sands necessary to build and maintain coral reef islands.
Restoring coral reefs, with some help from local fish - @sciencemag - 0 views
Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and S... - 0 views
-
Chlorophyll-a can be used as a proxy for phytoplankton and thus is an essential water quality parameter. The presence of phytoplankton in the ocean causes selective absorption of light by chlorophyll-a pigment resulting in change of the ocean color that can be identified by ocean color remote sensing. The accuracy of chlorophyll-a concentration (Chl-a) estimated from remote sensing sensors depends on the bio-optical algorithm used for the retrieval in specific regional waters. In this work, it is attempted to estimate Chl-a from two currently active satellite sensors with relatively good spatial resolutions considering ocean applications. Suitability of two standard bio-optical Ocean Color (OC) Chlorophyll algorithms, OC-2 (2-band) and OC-3 (3-band) in estimating Chl-a for turbid waters of the northern coastal Bay of Bengal is assessed. Validation with in-situ data showed that OC-2 algorithm gives an estimate of Chl-a with a better correlation of 0.795 and least bias of 0.35 mg/m3. Further, inter-comparison of Chl-a retrieved from the two sensors, Landsat-8 OLI and Sentinel-2 MSI was also carried out. The variability of Chl-a during winter, pre-monsoon, and post-monsoon seasons over the study region were inter-compared. It is observed that during pre-monsoon and post-monsoon seasons, Chl-a from MSI is over estimated compared to OLI. This work is a preliminary step toward estimation of Chl-a in the coastal oceans utilizing available better spatially resolved sensors.
New study reveals hidden impact of marine heatwaves - @UWA - 0 views
Contact- and Water-Mediated Effects of Macroalgae on the Physiology and Microbiome of T... - 0 views
-
Competitive interactions between corals and macroalgae play an important role in determining benthic community structure on coral reefs. While it is known that macroalgae may negatively affect corals, the relative influence of contact- versus water-mediated macroalgal interactions on corals - such as via an influence on coral-associated microbiomes - is less well understood. Further, the impacts of macroalgae on corals that have persisted in a heavily urbanized reef system have not been explored previously. We examined the effects of the macroalgae Lobophora sp. and Hypnea pannosa on the physiology and microbiome of three Indo-Pacific coral species (Merulina ampliata, Montipora stellata, and Pocillopora acuta) collected from two reefs in Singapore (Pulau Satumu and Kusu Island), and compared how these effects varied between direct contact and water-mediated interactions. Direct contact by Lobophora sp. caused visible tissue bleaching and reduced maximum quantum yield (Fv/Fm) in all three coral species, while direct contact by H. pannosa only led to slight, but significant, suppression of Fv/Fm. No detrimental effects on coral physiology were observed when corals were in close proximity to the macroalgae or when in direct contact with algal mimics. However, both direct contact and water-mediated interactions with Lobophora sp. and H. pannosa altered the prokaryotic community structures in M. stellata. For M. ampliata and P. acuta, the changes in their microbiomes in response to algal treatments were more strongly influenced by the source reefs from which the coral colonies were collected. In particular, coral colonies collected from Kusu Island had proportionately more initial abundances of potentially pathogenic bacteria in their microbiomes than those collected from Pulau Satumu; nevertheless, coral fragments from Kusu Island had the same physiological responses to macroalgal interactions as corals from Pulau Satumu. Overall, our results reveal that, for the sp
Surface Phytoplankton Assemblages and Controlling Factors in the Strait of Malacca and ... - 0 views
-
Shifts in phytoplankton phenology were observed in the Strait of Malacca (SM) and Sunda Shelf (SS), which were speculated to be potentially related to global warming and climate anomaly events. Such interactions between phytoplankton structure and physico-chemical factors were less known in narrow straits. Therefore, the spatial distribution pattern and diversity of surface phytoplankton assemblage, local hydrology, and nutrient regimes were investigated over the SM and SS (South China Sea, SCS) during 2017 and 2018 pre-monsoon season (spring). Diatoms, dinoflagellates, and cyanobacteria were representatives of microphytoplankton in the survey area. Total phytoplankton abundance peaked near Singapore Strait (SGS) and diminished toward SS. From the lower ratio of diatoms to dinoflagellates (<3) in SS, we deduced lower carbon pump efficiency here. In agreement with the modeled results proposed previously, cold conditions (negative Indian Ocean Dipole, IOD) were more suitable for high diatom (especially centric forms) abundance, while warm scenarios (positive IOD/El Niño period as in 2017) seemed to favor dinoflagellates and/or cyanobacteria. Specifically, diatom proportion increased by 30% and dinoflagellate, cyanobacteria reduced by 71%, 75% in response to shifts of climate anomaly from 2017 cruise to 2018 cruise. This study between field microalgae and physical and chemical conditions would be helpful to launch large-scale climate model, biogeochemistry, and carbon cycling in future research.
Sea urchin emits a cloud of venomous jaws to deter predators - @NewScientist - 0 views
Experimental Assessment of Vulnerability to Warming in Tropical Shallow-Water Marine Or... - 0 views
-
Tropical shallow-water habitats represent the marine environments with the greatest biodiversity; however, these habitats are the most vulnerable to climate warming. Corals, seagrasses, and macroalgae play a crucial role in the structure, functions, and processes of the coastal ecosystems. Understanding their growth and physiological responses to elevated temperature and interspecific sensitivity is a necessary step to predict the fate of future coastal community. Six species representatives, including Pocillopora acuta, Porites lutea, Halophila ovalis, Thalassia hemprichii, Padina boryana, and Ulva intestinalis, collected from Phuket, Thailand, were subjected to stress manipulation for 5 days. Corals were tested at 27, 29.5, 32, and 34.5°C, while seagrasses and macroalgae were tested at 27, 32, 37, and 42°C. After the stress period, the species were allowed to recover for 5 days at 27°C for corals and 32°C for seagrasses and macroalgae. Non-destructive evaluation of photosynthetic parameters (Fv/Fm, Fv/F0, ϕPSII and rapid light curves) was carried out on days 0, 3, 5, 6, 8, and 10. Chlorophyll contents and growth rates were quantified at the end of stress, and recovery periods. An integrated biomarker response (IBR) approach was adopted to integrate the candidate responses (Fv/Fm, chlorophyll content, and growth rate) and quantify the overall temperature effects. Elevated temperatures were found to affect photosynthesis, chlorophyll content, and growth rates of all species. Lethal effects were detected at 34.5°C in corals, whereas adverse but recoverable effects were detected at 32°C. Seagrasses and macroalgae displayed a rapid decline in photosynthesis and lethal effects at 42°C. In some species, sublethal stress manifested as slower growth and lower chlorophyll content at 37°C, while photosynthesis remained unaffected. Among all, T. hemprichii displayed the highest thermotolerance. IBR provided evidence that elevated temperature affected the overall perf