Skip to main content

Home/ About The Indian Ocean/ Group items tagged biogéographie

Rss Feed Group items tagged

Jérôme OLLIER

Fine-Scale Biogeographical Boundary Delineation and Sub-population Resolution in the Sy... - 0 views

  •  
    The adaptation of tropical coral communities to the world's hottest sea, the Persian/Arabian Gulf (PAG), has recently been associated with ecological selection acting on a group of coral-associated algal symbionts, the Symbiodinium thermophilum group. Previous studies have shown that considerable genetic diversity exists within the group and that group members found within the PAG are significantly differentiated from those found externally, in the Gulf of Oman and wider waters. However, little is known about this genetic diversity. As an initial step towards understanding whether this diversity could represent niche adapted, selectable populations within the S. thermophilum group that may act as natural sources of stress tolerant associations to Indo-Pacific reefs, we investigate whether the diversity is structured between populations and where the location of the internal-external genetic partition lies. We use regions of the nuclear ribosomal DNA (ITS1-5.8S-ITS2) and chloroplastic psbA gene (non-coding region) from >100 S. thermophilum group-harbouring Porites spp. (P. lobata, P. lutea, and P. harrisoni) sampled across steep temperature and salinity gradients to conduct analyses of variance and create maximum parsimony networks to assess genetic structure and (dis)similarity within and between populations of S. thermophilum found within the PAG and externally in the Gulf of Oman. Our analyses resolve a sharp genetic boundary between Symbiodinium populations in the western Strait of Hormuz and identify significant genetic structure between populations with as little as 20 km between them demonstrating that differentiation between populations is likely due to factors other than limited connectivity. Further, we hypothesize that genotypes identified outside of the PAG in the Gulf of Oman existing in near-oceanic salinities, yet thermally challenging waters, putatively represent candidates for stress-tolerant symbionts that could act as natural seed populations of st
Jérôme OLLIER

Biogeographic role of the Indonesian Seaway implicated by colonization history of purpl... - 0 views

  •  
    As a bio]diversity hotspot, the East Indies (Coral) Triangle possesses the highest biodiversity on the earth. However, evolutionary hypotheses around this area remain controversial; e.g., center of origin, center of accumulation, and center of overlap have been supported by different species. This study aims to answer the evolutionary influence of the Indonesian Seaway on the biodiversity of the Coral Triangle by recovering the evolutionary origins of a wide-ranging ommastrephid squid (Sthenoteuthis oualaniensis) based on integrated molecular and oceanographic clues from the Indo-Pacific. Three new clades were revealed; viz., clade I from the South China Sea, clade II from the northern East Indian Ocean, and clade III from the southern East Indian Ocean. These two Indian Ocean clades formed a monophyly closely related to clade IV from the Central-Southeast Pacific. Clade VI from the central Equatorial Pacific and clade V from the northern Eastern Pacific sit in basal positions of phylogenetic trees. Ancestral Sthenoteuthis was inferred to have originated from the Atlantic Ocean and sequentially dispersed to the northern East Pacific, central Equatorial Pacific, and West Pacific through the open Panama Seaway and being transported by westward North Equatorial Current. The East Indian Ocean was likely colonized by an ancestral population of clade IV from the Southeast Pacific. Westward South Equatorial Circulation could have promoted transoceanic migration of S. oualaniensis through the wide paleo-Indonesian Seaway. Sea level regression since the Miocene and the closure of the Indonesian Seaway at 4-3 Ma were responsible for the population genetic differentiation of S. oualaniensis in the Indo-Pacific. Therefore, the Indonesian Gateway played an important role in influencing marine organisms' migration and population differentiation through controlling and reorganizing circulations in the Indo-Pacific.
1 - 3 of 3
Showing 20 items per page