Skip to main content

Home/ Dr. Goodyear/ Group items tagged reprogramming

Rss Feed Group items tagged

Nathan Goodyear

Radiation-induced reprograming of breast cancer cells - 0 views

  •  
    Radiation induces CSCs.
Nathan Goodyear

Radiation‐Induced Reprogramming of Breast Cancer Cells - Lagadec - 2012 - STE... - 0 views

  •  
    ionizing radiation increased the number of BCSCs in the overall breast cancer cell population
Nathan Goodyear

The angiocrine Rspondin3 instructs interstitial macrophage transition via metabolic-epi... - 0 views

  •  
    "The tissue niche imprints macrophage identity, phenotype and function". This quote says it all.
Nathan Goodyear

Communication between genomic and non-genomic signaling events coordinate steroid hormo... - 0 views

  • steroid hormones typically interact with their cognate receptor in the cytoplasm for AR, glucocorticoid receptor (GR) and PR, but may also bind receptor in the nucleus as appears to often be the case for ERα and ERβ
  • This ligand binding results in a conformational change in the cytoplasmic NRs that leads to the dissociation of HSPs, translocation of the ligand-bound receptor to the nucleus
  • In the nucleus, the ligand-bound receptor dimerizes and then binds to DNA at specific HREs to regulate gene transcription
  • ...25 more annotations...
  • some steroid hormone-induced nuclear events can occur in minutes
  • the genomic effects of steroid hormones take longer, with changes in gene expression occurring on the timescale of hours
  • Classical steroid hormone signaling occurs when hormone binds nuclear receptors (NR) in the cytoplasm, setting off a chain of genomic events that results in, among other changes, dimerization and translocation to the nucleus where the ligand-bound receptor forms a complex with coregulators to modulate gene transcription through direct interactions with a hormone response element (HRE)
  • NRs have been found at the plasma membrane of cells, where they can propagate signal transduction often through kinase pathways
  • Membrane-localized ER, PR and AR have been reported to modulate the activity of MAPK/ERK, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), nitric oxide (NO), PKC, calcium flux and increase inositol triphosphate (IP3) levels to promote cell processes including autophagy, proliferation, apoptosis, survival, differentiation, and vasodilation
  • ERα36, a 36kDa truncated form of ERα that lacks the transcriptional activation domains of the full-length protein. Membrane-localized ERα36 can activate pathways including protein kinase C (PKC) and/or mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) to promote the progression of various cancers
  • G protein-coupled receptor 30 (GPR30), also referred to as G protein-coupled estrogen receptor (GPER), is a membrane-localized receptor that has been observed to respond to estrogen to activate rapid signaling
  • hormone-responsive G protein coupled receptor is Zip9, which androgens can activate
  • GPRC6A is another G protein-coupled membrane receptor that is responsive to androgen
  • androgen-mediated non-genomic signaling through this GPCR can modulate male fertility, hormone secretion and prostate cancer progression
  • non-NR proteins located at the cell surface can bind to steroid hormones and respond by eliciting rapid signaling events
  • Estrogens have been shown to induce rapid (i.e. seconds) calcium flux via membrane-localized ER (mER)
  • ER-calcium dynamics lead to activation of kinase pathways such as MAPK/ERK which can result in cellular effects like migration and proliferation
  • 17β-estradiol (E2) has been reported to promote angiogenesis through the activation of GPER
  • Membrane NRs may also mediate rapid signaling through crosstalk with growth factor receptors (GFR)
  • A similar crosstalk occurs between the receptor tyrosine kinase insulin-related growth factor-1 receptor (IGF-IR) and ERα. Not only does IGF-IR activate ERα, but inhibition of IGF-IR downregulates estrogen-mediated ERα activity, suggesting that IGF-IR is essential for maximal ERα signaling
    • Nathan Goodyear
       
      This is a bombshell that shatters the current right brain approach to ER. It completely shatters the concept of eat sugar, whatever you want, with cancer treatment in ER+ or hormonally responsive cancer!
  • Further, ER activates IGF-IR pathways including MAPK
  • GPER is involved in the transactivation of the EGFR independent of classical ER
  • tight interconnection between genomic and non-genomic effects of NRs.
  • non-genomic pathways can also lead to genomic effects
  • androgen-bound AR associates with the kinase Src at the plasma membrane, activating Src which then leads to a signaling cascade through MAPK/ERK
  • However, Src can also increase the expression of AR target genes by the ligand-independent transactivation of AR
  • extranuclear steroid hormone actions can potentially reprogram nuclear NR events
  • estrogen modulated the expression of several genes including endothelial nitric oxide synthase (eNOS) via rapid signaling pathways
  • epigenetic changes can then mediate genomic events in uterine tissue and breast cancer cells
Nathan Goodyear

Frontiers | Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Ra... - 0 views

  •  
    Chemotherapy and radiation induce M2 macrophage polarization favoring metastasis.
Nathan Goodyear

(PDF) TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic repro... - 0 views

  •  
    The point of this post is not the drug, but the fact that the inhibition of TLR4 blocked cytokine storm from influenza.
Nathan Goodyear

High-Dose Vitamin C for Cancer Therapy - PMC - 0 views

  • diabetes [8], atherosclerosis [9], the common cold [10], cataracts [11], glaucoma [12], macular degeneration [13], stroke [14], heart disease [15], COVID-19 [16], and cancer.
  • 1–5% of the Vit-C inside the human cells
  • interaction between Fe(II) and H2O2 produces OH− through the Fenton reaction
  • ...35 more annotations...
  • metabolic activity, oxygen transport, and DNA synthesis
  • Iron is found in the human body in the form of haemoglobin in red blood cells and growing erythroid cells.
  • macrophages contain considerable quantities of iron
  • iron is taken up by the majority of cells in the form of a transferrin (Tf)-Fe(III) complex that binds to the cell surface receptor transferrin receptor 1 (TfR1)
  • excess iron is retained in the liver cells
  • the endosomal six transmembrane epithelial antigen of the prostate 3 (STEAP3) reduces Fe(III) (ferric ion) to Fe(II) (ferrous ion), which is subsequently transferred across the endosomal membrane by divalent metal transporter 1 (DMT1)
  • labile iron pool (LIP)
  • LIP is toxic to the cells owing to the production of massive amounts of ROS.
  • DHA is quickly converted to Vit-C within the cell, by interacting with reduced glutathione (GSH) [45,46,47]. NADPH then recycles the oxidized glutathione (glutathione disulfide (GSSG)) and converts it back into GSH
  • Fe(II) catalyzes the formation of OH• and OH− during the interaction between H2O2 and O2•− (Haber–Weiss reaction)
  • Ascorbate can efficiently reduce free iron, thus recycling the cellular Fe(II)/Fe(III) to produce more OH• from H2O2 than can be generated during the Fenton reaction, which ultimately leads to lipid, protein, and DNA oxidation
  • Vit-C-stimulated iron absorption
  • reduce cellular iron efflux
  • high-dose Vit-C may elevate cellular LIP concentrations
  • ascorbate enhanced cancer cell LIP specifically by generating H2O2
  • Vit-C produces H2O2 extracellularly, which in turn inhibits tumor cells immediately
  • tumor cells have a need for readily available Fe(II) to survive and proliferate.
  • Tf has been recognized to sequester most labile Fe(II) in vivo
  • Asc•− and H2O2 were generated in vivo upon i.v Vit-C administration of around 0.5 g/kg of body weight and that the generation was Vit-C-dose reliant
  • free irons, especially Fe(II), increase Vit-C autoxidation, leading to H2O2 production
  • iron metabolism is altered in malignancies
  • increase in the expression of various iron-intake pathways or the downregulation of iron exporter proteins and storage pathways
  • Fe(II) ion in breast cancer cells is almost double that in normal breast tissues
  • macrophages in the cancer microenvironment have been revealed to increase iron shedding
  • Advanced breast tumor patients had substantially greater Fe(II) levels in their blood than the control groups without the disease
  • increased the amount of LIP inside the cells through transferrin receptor (TfR)
  • Warburg effect, or metabolic reprogramming,
  • Warburg effect is aided by KRAS or BRAF mutations
  • Vit-C is supplied, it oxidizes to DHA, and then is readily transported by GLUT-1 in mutant cells of KRAS or BRAF competing with glucose [46]. DHA is quickly converted into ascorbate inside the cell by NADPH and GSH [46,107]. This decrease reduces the concentration of cytosolic antioxidants and raises the intracellular ROS amounts
  • increased ROS inactivates glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
  • ROS activates poly (ADP-ribose) polymerase (PARP), which depletes NAD+ (a critical co-factor of GAPDH); thus, further reducing the GAPDH associated with a multifaceted metabolic rewiring
  • Hindering GAPDH can result in an “energy crisis”, due to the decrease in ATP production
  • high-dose Vit-C recruited metabolites and increased the enzymatic activity in the pentose phosphate pathway (PPP), blocked the tri-carboxylic acid (TCA) cycle, and increased oxygen uptake, disrupting the intracellular metabolic balance and resulting in irreversible cell death, due to an energy crisis
  • mega-dose Vit-C influences energy metabolism by producing tremendous amounts of H2O2
  • Due to its great volatility at neutral pH [76], bolus therapy with mega-dose DHA has only transitory effects on tumor cells, both in vitro and in vivo.
‹ Previous 21 - 40 of 47 Next ›
Showing 20 items per page