Skip to main content

Home/ Dr. Goodyear/ Group items tagged pharmacology

Rss Feed Group items tagged

Nathan Goodyear

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a p... - 0 views

  • Taken together, these data indicate that ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H2O2, and that blood can be a delivery system of the pro-drug to tissues.
  • These findings give plausibility to i.v. ascorbic acid in cancer treatment, and have unexpected implications for treatment of infections where H2O2 may be beneficial
  • pharmacologic concentrations of ascorbate killed cancer but not normal cells, that cell death was dependent only on extracellular but not intracellular ascorbate, and that killing was dependent on extracellular hydrogen peroxide (H2O2) formation with ascorbate radical as an intermediate
  • ...48 more annotations...
  • Our data show that ascorbic acid selectively killed cancer but not normal cells, using concentrations that could only be achieved by i.v. administration
  • Ascorbate-mediated cell death was due to protein-dependent extracellular H2O2 generation, via ascorbate radical formation from ascorbate as the electron donor. Like glucose, when ascorbate is infused i.v., the resulting pharmacologic concentrations should distribute rapidly in the extracellular water space (42). We showed that such pharmacologic ascorbate concentrations in media, as a surrogate for extracellular fluid, generated ascorbate radical and H2O2. In contrast, the same pharmacologic ascorbate concentrations in whole blood generated little detectable ascorbate radical and no detectable H2O2. These findings can be accounted for by efficient and redundant H2O2 catabolic pathways in whole blood (e.g., catalase and glutathione peroxidase) relative to those in media or extracellular fluid
  • ascorbic acid administered i.v. in pharmacologic concentrations may serve as a pro-drug for H2O2 delivery to the extracellular milieu
  • H2O2 generated in blood is normally removed by catalase and glutathione peroxidase within red blood cells, with internal glutathione providing reducing equivalents
  • The electron source for glutathione is NADPH from the pentose shunt, via glucose-6-phosphate dehydrogenase. If activity of this enzyme is diminished, the predicted outcome is impaired H2O2 removal causing intravascular hemolysis, the observed clinical finding.
    • Nathan Goodyear
       
      The mechansism here is inadequate recycling of GSH due to lack of G6PD, build up of intracellular H2O2 and RBC lysis--hemolysis.
  • Only recently has it been understood that the discordant clinical findings can be explained by previously unrecognized fundamental pharmacokinetics properties of ascorbate
  • Intracellular transport of ascorbate is tightly controlled in relation to extracellular concentration
  • Intravenous ascorbate infusion is expected to drastically change extracellular but not intracellular concentrations
  • For i.v. ascorbate to be clinically useful in killing cancer cells, pharmacologic but not physiologic extracellular concentrations should be effective, independent of intracellular ascorbate concentrations.
    • Nathan Goodyear
       
      accumulation of extracellular vitamin C is the effect.
  • It is unknown why ascorbate, via H2O2, killed some cancer cells but not normal cells.
  • There was no correlation with ascorbate-induced cell death and glutathione, catalase activity, or glutathione peroxidase activity.
  • H2O2, as the product of pharmacologic ascorbate concentrations, has potential therapeutic uses in addition to cancer treatment, especially in infections
  • Neutrophils generate H2O2 from superoxide,
  • i.v. ascorbate is effective in some viral infections
  • H2O2 is toxic to hepatitis C
  • Use of ascorbate as an H2O2-delivery system against sensitive pathogens, viral or bacterial, has substantial clinical implications that deserve rapid exploration.
  • Recent pharmacokinetics studies in men and women show that 10 g of ascorbate given i.v. is expected to produce plasma concentrations of nearly 6 mM, which are >25-fold higher than those concentrations from the same oral dose
  • As much as a 70-fold difference in plasma concentrations is expected between oral and i.v. administration,
  • Complementary and alternative medicine practitioners worldwide currently use ascorbate i.v. in some patients, in part because there is no apparent harm
  • Human Burkitt's lymphoma cells
  • We first investigated whether ascorbate in pharmacologic concentrations selectively affected the survival of cancer cells by studying nine cancer cell lines
  • Clinical pharmacokinetics analyses show that pharmacologic concentrations of plasma ascorbate, from 0.3 to 15 mM, are achievable only from i.v. administration
  • plasma ascorbate concentrations from maximum possible oral doses cannot exceed 0.22 mM because of limited intestinal absorption
  • For five of the nine cancer cell lines, ascorbate concentrations causing a 50% decrease in cell survival (EC50 values) were less than 5 mM, a concentration easily achievable from i.v. infusion
  • All tested normal cells were insensitive to 20 mM ascorbate.
    • Nathan Goodyear
       
      meaning safe.
  • Lymphoma cells were selected because of their sensitivity to ascorbate
  • As ascorbate concentration increased, the pattern of death changed from apoptosis to pyknosis/necrosis, a pattern suggestive of H2O2-mediated cell death
  • Apoptosis occurred by 6 h after exposure, and cell death by pyknosis was ≈90% at 14 h after exposure
    • Nathan Goodyear
       
      work continued beyond the IVC therapy itself
  • In contrast to lymphoma cells, there was little or no killing of normal lymphocytes and monocytes by ascorbate
  • Ascorbate is transported into cells as such by sodium-dependent transporters, whereas dehydroascorbic acid is transported into cells by glucose transporters and then immediately reduced internally to ascorbate
  • Whether or not intracellular ascorbate was preloaded, extracellular ascorbate induced the same amount and type of death.
  • extracellular ascorbate in pharmacologic concentrations mediates death of lymphoma cells by apoptosis and pyknosis/necrosis, independently of intracellular ascorbate.
  • H2O2 as the effector species mediating pharmacologic ascorbate-induced cell death
  • Superoxide dismutase was not protective
  • Because these data implicated H2O2 in cell killing, we added H2O2 to lymphoma cells and studied death patterns using nuclear staining (19, 28). The death patterns found with exogenous H2O2 exposure were similar to those found with ascorbate
  • For both ascorbate and H2O2, death changed from apoptosis to pyknosis/necrosis as concentrations increased
  • Sensitivity to direct exposure to H2O2 was greater in lymphoma cells compared with normal lymphocytes and normal monocytes
  • There was no association between the EC50 for ascorbate-mediated cell death and intracellular glutathione concentrations, catalase activity, or glutathione peroxidase activity
  • H2O2 generation was dependent on time, ascorbate concentration, and the presence of trace amounts of serum in media
  • ascorbate radical is a surrogate marker for H2O2 formation.
  • whatever H2O2 is generated should be removed by glutathione peroxidase and catalase within red blood cells, because H2O2 is membrane permeable
  • The data are consistent with the hypothesis that ascorbate in pharmacologic concentrations is a pro-drug for H2O2 generation in the extracellular milieu but not in blood.
  • The occurrence of one predicted complication, oxalate kidney stones, is controversial
  • In patients with glucose-6-phosphate dehydrogenase deficiency, i.v. ascorbate is contraindicated because it causes intravascular hemolysis
  • ascorbate at pharmacologic concentrations in blood is a pro-drug for H2O2 delivery to tissues.
  • ascorbate, an electron-donor in such reactions, ironically initiates pro-oxidant chemistry and H2O2 formation
  • data here showed that ascorbate initiated H2O2 formation extracellularly, but H2O2 targets could be either intracellular or extracellular, because H2O2 is membrane permeant
    • Nathan Goodyear
       
      the conversion of ascorbate to H2O2 occurs extracellular
  • More than 100 patients have been described, presumably without glucose-6-phosphate dehydrogenase deficiency, who received 10 g or more of i.v. ascorbate with no reported adverse effects other than tumor lysis
  •  
    IV vitamin C benefits cancer patients
Nathan Goodyear

Pharmacological Ascorbate Radiosensitizes Pancreatic Cancer - 0 views

  • Previous studies from our laboratory have demonstrated that pharmacological ascorbate is cytotoxic to pancreatic cancer cells while normal cells are resistant
  • Ascorbate-induced cytotoxicity is mediated by the formation of H2O2 during the oxidation of ascorbate
  • the combination of IR + ascorbate increased the concentration of intracellular H2O2
  • ...17 more annotations...
  • Under steady-state conditions, intracellular GSH is maintained at millimolar concentrations, which keeps cells in a reduced environment and serves as the principal intracellular redox buffer when cells are subjected to an oxidative stressor including H2O2 (26). Glutathione peroxidase (GPx) activity catalyzes the reduction of H2O2 to water with the conversion of GSH to glutathione disulfide (GSSG). Under steady-state conditions, GSSG is recycled back to GSH by glutathione disulfide reductase using reducing equivalents from NADPH. However, under conditions of increased H2O2 flux, this recycling mechanism may become overwhelmed leading to a depletion of intracellular GSH (27, 28).
  • ascorbate radiosensitization can create an overwhelming oxidative stress to pancreatic cancer cells resulting in oxidation/depletion of the GSH intracellular redox buffer, resulting in cell death.
  • Treatment with the combination of ascorbate + IR significantly delayed tumor growth compared to controls or ascorbate alone
  • Ascorbate + IR also significantly increased overall survival compared to controls, IR alone or ascorbate alone
  • 54% of mice treated with the combination of IR + ascorbate had no measurable tumors
  • Glutathione is a measurable marker indicative of the oxidation state of the thiol redox buffer in cells. In severe systemic oxidative stress, the GSSG/2GSH couple may become oxidized, i.e. the concentration of GSH decreases and GSSG may increase because the capacity to recycle GSSG to GSH becomes rate-limiting
  • This suggests that the very high levels of pharmacological ascorbate in these experiments may have a pro-oxidant toward red blood cells as seen by a decrease in the capacity of the intracellular redox buffer
  • These data support the hypothesis that ascorbate radiosensitization does not cause an increase in oxidative damage from lipid-derived aldehydes to other organs.
  • Our current study demonstrates the potential for pharmacological ascorbate as a radiosensitizer in the treatment of pancreatic cancer.
  • pharmacological ascorbate enhances IR-induced cell killing and DNA fragmentation leading to induction of apoptosis in HL60 leukemia cells
  • pharmacological ascorbate significantly decreases clonogenic survival and inhibits the growth of all pancreatic cancer cell lines as a single agent, as well as sensitizes cancer cells to IR
  • Hurst et al. demonstrated that pharmacological ascorbate combined with IR leads to increased numbers of double-strand DNA breaks and cell cycle arrest when compared to either treatment alone
  • pharmacological ascorbate could serve as a “pro-drug” for the delivery of H2O2 to tumors
  • the double-strand breaks induced by H2O2 were more slowly repaired
  • The combination of ascorbate and IR provide two distinct mechanisms of action: ascorbate-induced toxicity due to extracellular production of H2O2 that then diffuses into cells and causes damage to DNA, protein, and lipids; and radiation-induced toxicity as a result of ROS-induced damage to DNA. In addition, redox metal metals like Fe2+ may play an important role in ascorbate-induced cytotoxicity. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of H2O2; labile iron can also react with H2O2. Recently our group has demonstrated that pharmacological ascorbate and IR increase the labile iron in tumor homogenates from this murine model of pancreatic cancer
  • we demonstrated that ascorbate or IR alone decreased tumor growth, but the combination treatment further inhibited tumor growth, indicating that pharmacological ascorbate is an effective radiosensitizer in vivo
  • data suggest that pharmacological ascorbate may protect the gut locally by decreasing IR-induced damage to the crypt cells, and systemically, by ameliorating increases in TNF-α
  •  
    IV vitamin C effective as radiosensitizer in pancreatic cancer.
Nathan Goodyear

Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and h... - 0 views

  • Proposed mechanism
  • The data show that pharmacologic ascorbate concentrations produced Asc•− selectively in extracellular fluid compared with blood and that H2O2 formation occurred when Asc•− concentrations were >100 nM in extracellular fluid.
  • These data validate the hypothesis that ascorbate is a prodrug for selective delivery of reactive species to the extravascular space
  • ...22 more annotations...
  • pharmacologic ascorbate as a prooxidant drug for therapeutic use.
  • Recently we reported that pharmacologic ascorbic acid concentrations produced H2O2 concentrations of ≥25 μM, causing cancer cell death in vitro
  • We found that H2O2 concentrations generated in vivo were those that caused cancer cell death in vitro
  • When ascorbate was given parenterally, Asc•−, the product of a loss of one electron from ascorbate, was detected preferentially in extracellular fluid compared with blood
  • Asc•− generation in extracellular fluid depended on the ascorbate dose and the resulting concentrations
  • With i.v. administration of ascorbate, Asc•− concentrations were as much as 12-fold greater in extracellular fluid compared to blood and approached 250 nM
  • In blood, such Asc•− concentrations were never produced and were always <50 nM
  • These data are all consistent with the hypothesis that pharmacologic ascorbate concentrations in vivo serve as a prodrug for selective delivery of H2O2 to the extracellular space
  • After oral ingestion, control of intracellular and extracellular ascorbate concentrations is mediated by three mechanisms: intestinal absorption, tissue transport, and renal reabsorption
  • intestinal absorption, or bioavailability, declines at doses >200 mg
    • Nathan Goodyear
       
      significant limitation of gut absorption of vitamin C--at 200 mg po.
  • corresponding to plasma concentrations of ≈60 μM
    • Nathan Goodyear
       
      equates to 0.06 mM.  Max blood levels found with po AA dosing has been 0.22 mM
  • at approximately this concentration, the ascorbate tissue transporter SVCT2 approaches Vmax, and tissues appear to be saturated
    • Nathan Goodyear
       
      SVCT2 Rc in gut reach max binding.
  • also at ≈60 μM, renal reabsorption approaches saturation, and excess ascorbate is excreted in urine
  • Parenteral administration bypasses tight control
  • When tight control is bypassed, H2O2 forms in the extracellular space
  • in vivo validation of ascorbate as a prodrug for selective H2O2 formation
  • Temporarily bypassing tight control with parenteral administration of ascorbate allows H2O2 to form in discrete time periods only, decreasing likelihood of harm, and provides a pharmacologic basis for therapeutic use of i.v. ascorbate
  • H2O2 formation results in selective cytotoxicity
  • Tumor cells are killed with exposure to H2O2 for ≤30 min
  • In vitro, killing is mediated by H2O2 rather than Asc•−
  • In addition to cancer treatment, another potential therapeutic use is for treatment of infections. H2O2 concentrations of 25–50 μM are bacteriostatic
  • virally infected cells may also be candidates
  •  
    follow up invivo study to previous study from 2005.  Here, the authors prove their hypothesis that ascorbate is a prodrug for delivery of H2O2.
Nathan Goodyear

Multiple Myeloma Tumor Cells are Selectively Killed by Pharmacologically-dosed Ascorbic... - 0 views

  • Recent reports indicate that a certain ROS concentration is required for high-dose vitamin C to induce cytotoxicity in cancer cells.
  • The generation of ascorbyl- and H2O2 radicals by PAA increases ROS stress in cancer cells
  • In this study, we report that PAA is efficacious in killing MM cells in vitro and in vivo models, which generated levels of 20–40 mM ascorbate and 500 nM ascorbyl radicals after intraperitoneal administration of 4 g ascorbate per kilogram of body weight (Chen et al., 2008Chen et al., 2008), in xenograft MM mice
  • ...33 more annotations...
  • These data suggest that PAA may show a therapeutic advantage to blood cancers vs solid tumors because of the communication between tumor cells and blood plasma
  • These results strongly suggest that the mechanism of PAA killing of MM cells is indeed iron-dependent
  • These results suggest that PAA administration in SMM may be able to prevent progression to symtomatic MM
  • A recent study by Yun and colleagues demonstrated that vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH, but spares normal cells
  • RAS family genes show the most frequent mutations in MM. KRAS, NRAS and BRAF are mutated in 22%, 20% and 7% of MM samples
  • the disease stage rather than the mutation of RAS and/or BRAF is the major predictive factor for PAA sensitivity in MM treatment
  • Other molecular mechanisms including ATP depletion and ATM-AMPK signaling have been reported to explain PAA-induced cell death
  • our pilot study also suggested that PAA could overcome drug resistance to bortezomib in MM cells
  • Our findings complement reported studies and further address the mechanism of action using clinical samples in which we observed that PAA killed tumor cells with high iron content, suggesting that iron might be the initiator of PAA cytotoxicity
  • combination of PAA with standard therapeutic drugs, such as melphalan, may significantly reduce the dose of melphalan needed
  • Combined treatment of reduced dose melphalan with PAA achieved a significantly longer progression-free survival than the same dose of melphalan alone.
  • These data also suggest that the bone marrow suppression induced by high-dose melphalan can be ameliorated by the combination of PAA with lower dose of melphalan because of the lack of toxicity of PAA on normal cells with low iron content.
  • if creatinine clearance is <30 mL/min, high dose ascorbic acid should be not administrated.
  • In MM preclinical and clinical studies, ascorbate was used as an adjunct drug and showed controversial results (Harvey et al., 2009, Perrone et al., 2009, Held et al., 2013, Sharma et al., 2012, Nakano et al., 2011, Takahashi, 2010, Sharma et al., 2009, Qazilbash et al., 2008). However, none of these tests used pharmacological doses of ascorbate and intravenous administration
  • Multiple myeloma (MM) is a plasma cell neoplasm.
  • Cameron and Pauling reported that high doses of vitamin C increased survival of patients with cancer
  • pharmacologically dosed ascorbic acid (PAA) 50–100 g (Chen et al., 2008, Padayatty et al., 2004, Hoffer et al., 2008, Padayatty et al., 2006, Welsh et al., 2013), administered intravenously, has potent anti-cancer activity and its role as anti-cancer therapy is being studied at the University of Iowa and in other centers
  • In the presence of catalytic metal ions like iron, PAA administered intravenously exerts pro-oxidant effects leading to the formation of highly reactive oxygen species (ROS), resulting in cell death
  • the labile iron pool (LIP) is significantly elevated in MM cells
  • The survival of CD138+ cells in vitro was significantly decreased following PAA treatment in all 9 MM
  • In contrast, no significant change of cell viability was observed in CD138− BM cells from the same patients
  • The same effect of PAA was also observed in the SMM patients
  • no response to PAA was detected in CD138+ cells from the 2 MGUS patients
  • the combination of melphalan plus PAA showed greater tumor burden reduction than each drug alone, suggesting a synergistic activity between these two drugs
  • Both catalase and NAC protect cells from oxidative damage
  • cells pretreated with NAC and catalase became resistant to PAA even at high doses
  • adding deferoxamine (DFO), an iron chelator, to OCI-MY5 cells before PAA treatment was also sufficient to prevent PAA-induced cellular death
  • iron is essential for PAA to achieve its anti-cancer activity
  • PAA induced early necrosis (Fig. 3Fig. 3A, 60 min) followed by late apoptosis
  • results further indicated that PAA induced mitochondria-mediated apoptosis
  • PAA by reacting with LIP and generating ROS induces mitochondria-mediated apoptosis in which AIF1 cleavage is important for cell death.
  • ROS and H2O2 are well known factors mediating PAA-induced cancer cell death
  • PAA was sensitive to all 9 MMs and 2 SMMs
  •  
    animal study finds high-dose, pharmacologic vitamin C found to kill multiple myeloma cells via pro-oxidant effect found in similar studies in dealing with different cancers.
Nathan Goodyear

From the Cover: Pharmacologic doses of ascorbate act as a prooxidant and decrease growt... - 0 views

  • An extensive panel of 43 tumor and 5 normal cell lines were exposed to ascorbate in vitro for ≤2 h to mimic clinical pharmacokinetics
  • effective concentration that decreased survival 50% (EC50) was determined. EC50 was <10 mM for 75% of tumor cells tested, whereas cytotoxicity was not evident in normal cells with >20 mM ascorbate
  • The addition of catalase to the medium ameliorated death of ovarian carcinoma (Ovcar5), pancreatic carcinoma (Pan02), and glioblastoma (9L) cells exposed to 10 mM ascorbate (1 h), indicating cytotoxicity was mediated by H2O2
  • ...8 more annotations...
  • A treatment dose of 4 g ascorbate/kg body weight either once or twice daily did not produce any discernible adverse effects
  • Xenograft experiments showed that parenteral ascorbate as the only treatment significantly decreased both tumor growth and weight by 41–53%
  • Peak plasma concentrations of ascorbate approached 30 mM
  • Pharmacologic concentrations of ascorbate decreased tumor volumes 41–53% in diverse cancer types known for both their aggressive growth and limited treatment options.
  • Our findings showed that pharmacologic ascorbic acid concentrations were cytotoxic to many types of cancer cells in vitro (Fig. 1A) and significantly impeded tumor progression in vivo without toxicity to normal tissues
  • The amelioration of ascorbate cytotoxicity in vitro by the addition of catalase was consistent among sensitive cancer cells (Fig. 1B) and points unambiguously to H2O2 generation in the extracellular medium
  • the current in vivo data support that pharmacologic ascorbate concentrations, which can readily be achieved in humans (Fig. 3E), diminished growth of several aggressive cancer types in mice (Fig. 2) without causing apparent adverse effects.
  • These intratumoral H2O2 concentrations of >125 μM persisted for >3 h after ascorbate administration
  •  
    Tumor xenograft model in mice finds reduction in growth rates of ovarian cancer, pancreatic cancer, and glioblastoma with daily IV vitamin C.
Nathan Goodyear

Testosterone replacement: Medical alternative to bariatric surgery? : Clinica... - 0 views

  •  
    Testosterone therapy aids weight loss in study of obese men.  The presentation of the potentially biased study (study was funded by the makers of the Testosterone used in the study) proposes Testosterone as a pharmacologic bariatric treatment.  That conclusion is ludicrous!  Testosterone therapy has been shown to improve insulin sensitivity, improve glucose uptake, reduces inflammation, improve muscle building, and reduce the parameters of metabolic syndrome--all of which underlies the obesity.  Thus, men with low T and obesity, Testosterone therapy is playing a causal role in the obesity and thus Testosterone therapy is treating the cause.  But to describe it as pharmacologic bariatric therapy is false and misleading. http://ow.ly/CKrje 
Nathan Goodyear

Anticancer mechanisms of cannabinoids - 0 views

  • modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival
  • cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals
  • Cannabis sativa L. (marijuana)
  • ...41 more annotations...
  • of the approximately 108 cannabinoids produced by C. sativa, Δ9-tetrahydrocannabinol (thc) is the most relevant because of its high potency and abundance in plant preparations
  • Tetrahydrocannabinol exerts a wide variety of biologic effects by mimicking endogenous substances—the endocannabinoids anandamide3 and 2-arachidonoylglycerol4,5—that engage specific cell-surface cannabinoid receptors
  • the cb2 receptor was initially described to be present in the immune system6, but was more recently shown to also be expressed in cells from other origins
  • transient receptor potential cation channel subfamily V, member 1
  • orphan G protein–coupled receptor 55
  • Most of the effects produced by cannabinoids in the nervous system and in non-neural tissues rely on cb1 receptor activation
  • two major cannabinoid-specific receptors—cb1 and cb2
  • cardiovascular tone, energy metabolism, immunity, and reproduction
  • cannabinoids are well known to exert palliative effects in cancer patients
  • best-established use is the inhibition of chemotherapy-induced nausea and vomiting
  • thc and other cannabinoids exhibit antitumour effects in a wide array of animal models of cancer
  • cannabinoid receptors and their endogenous ligands are both generally upregulated in tumour tissue compared with non-tumour tissue
  • cb2 promotes her2 (human epidermal growth factor receptor 2) pro-oncogenic signalling in breast cancer
  • pharmacologic activation of cannabinoid receptors decreases tumour growth
  • endocannabinoid signalling can also have a tumour-suppressive role
  • pharmacologic stimulation of cb receptors is, in most cases, antitumourigenic. Nonetheless, a few reports have proposed a tumour-promoting effect of cannabinoids
  • most prevalent effect is the induction of cancer cell death by apoptosis and the inhibition of cancer cell proliferation
  • impair tumour angiogenesis and block invasion and metastasis
  • thc and other cannabinoids induce the apoptotic death of glioma cells by cb1- and cb2-dependent stimulation
  • Autophagy is primarily a cytoprotective mechanism, although its activation can also lead to cell death
  • autophagy is important for cannabinoid antineoplastic activity
  • autophagy is upstream of apoptosis in the mechanism of cannabinoid-induced cell death
  • the effect of cannabinoids in hormone- dependent tumours might rely, at least in part, on the ability to interfere with the activation of growth factor receptors
  • glioma cells), pharmacologic blockade of either cb1 or cb2 prevents cannabinoid-induced cell death with similar efficacy
  • other types of cancer cells (pancreatic48, breast24, or hepatic43 carcinoma cells, for example), antagonists of cb2 but not of cb1 inhibit cannabinoid antitumour actions
  • thc promotes cancer cell death in a cb1- or cb2-dependent manner (or both) at lower concentrations
  • cannabidiol (cbd), a phytocannabinoid with a low affinity for cannabinoid receptors15, and other marijuana-derived cannabinoids57 have also been proposed to promote the apoptotic death of cancer cells acting independently of the cb1 and cb2 receptors
  • In cancer cells, cannabinoids block the activation of the vascular endothelial growth factor (vegf) pathway, an inducer of angiogenesi
  • In vascular endothelial cells, cannabinoid receptor activation inhibits proliferation and migration, and induces apoptosis
  • cb1 or cb2 receptor agonists (or both) reduce the formation of distant tumour masses in animal models of both induced and spontaneous metastasis, and inhibit adhesion, migration, and invasiveness of glioma64, breast65,66, lung67,68, and cervical68 cancer cells in culture
  • the ceramide/p8–regulated pathway plays a general role in the antitumour activity of cannabinoids targeting cb1 and cb2
  • cbd, by acting independently of the cb1 and cb2 receptors, produces a remarkable anti-tumour effect—including reduction of invasiveness and metastasis
  • cannabinoids can also enhance immune system–mediated tumour surveillance in some contexts
  • ability of thc to reduce inflammation75,76, an effect that might prevent certain types of cancer
  • recent observations suggest that the combined administration of cannabinoids with other anticancer drugs acts synergistically to reduce tumour growth
  • combined administration of gemcitabine (the benchmark agent for the treatment of pancreatic cancer) and various cannabinoid agonists synergistically reduced the viability of pancreatic cancer cells
  • Other reports indicated that anandamide and HU-210 might also enhance the anticancer activity of paclitaxel89 and 5-fluorouracil90 respectively
  • Combined administration of thc and cbd enhances the anticancer activity of thc and reduces the dose of thc needed to induce its tumour growth-inhibiting activity
  • Preclinical animal models have yielded data indicating that systemic (oral or intraperitoneal) administration of cannabinoids effectively decreases tumour growth
  • Combinations of cannabinoids with classical chemotherapeutic drugs such as the alkylating agent temozolomide (the benchmark agent for the management of glioblastoma80,84) have been shown to produce a strong anticancer action in animal models
  • pharmacologic inhibition of egfr, erk83, or akt enhances the cell-death-promoting action of thc in glioma cultures (unpublished observations by the authors), which suggests that targeting egfr and the akt and erk pathways could enhance the antitumour effect of cannabinoids
  •  
    Good review of the anticancer effects of cananbinoids.
Nathan Goodyear

Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive ... - 0 views

  •  
    Nice study that reveals the pharmacologic mechanism of vitamin C as a pro-oxidant in cancer cells.  Obviously, this effect is opposite that found blood.   In this study they looked at high dose IV vitamin C in the treatment of ovarian, pancreatic, and glioblastoma cancer.  Treatment was beneficial and well tolerated.
Nathan Goodyear

Biologic and Pharmacologic Principles of ET for Menopause: Estrogen Steroidogenesis and... - 0 views

  •  
    biologic and pharmacologic principles of ET for Menopause: Estrogen synthesis and action
Nathan Goodyear

Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice wi... - 0 views

  •  
    Just abstract available here.  Curcumin reduces NF-kappaB, Cox2 and 5 lipoxygenase and the cytokines TNF-alpha and IL-1 and IL-6.  This implicates curcumin as an adjuvant for all chronic diseases of aging that involve inflammation.
Nathan Goodyear

Ascorbic acid: Chemistry, biology and the treatment of cancer - 0 views

  • iron and ascorbate has long been used as an oxidizing system; the combination of these two reagents is referred to as the Udenfriend system
  • ascorbate serves as a reducing cofactor for many enzymes
  • uptake of ascorbate from the intestinal tract is very tightly controlled
  • ...11 more annotations...
  • pharmacokinetic data indicate that intravenous administration of ascorbate can bypass this tight control resulting in highly elevated plasma levels
  • ascorbate readily oxidizes to produce H2O2, pharmacological ascorbate has been proposed as a prodrug for the delivery of H2O2 to tumors
  • Ascorbate is an excellent reducing agent and readily undergoes two consecutive, one-electron oxidations to form ascorbate radical (Asc•−) and dehydroascorbic acid (DHA)
  • Ascorbate oxidizes readily. The rate of oxidation is dependent on pH and is accelerated by catalytic metals
  • In near-neutral buffers with contaminating metals, the oxidation and subsequent loss of ascorbate can be very rapid
  • Ascorbate is required for maintaining iron in the ferrous state
  • In the presence of catalytic metal ions, ascorbate can also exert pro-oxidant effects
  • Ascorbate is an excellent one-electron reducing agent that can reduce ferric (Fe3+) to ferrous (Fe2+) iron, while being oxidized to ascorbate radical
  • In a classic Fenton reaction, Fe2+ reacts with H2O2 to generate Fe3+ and the very oxidizing hydroxyl radical
  • e presence of ascorbate can allow the recycling of Fe3+ back to Fe2+, which in turn will catalyze the formation of highly reactive oxidants from H2O2
  • Depending on concentrations, the effects of ascorbate on models of lipid peroxidation can be pro- or antioxidant
  •  
    ferritin released enhanced pharmacologic ascorbate induced-cytotoxicity, indicating that ferritin with high iron-saturation could be a source of catalytic iron. Consistent with this, ascorbate has also been shown to be capable of releasing iron from cellular ferritin
Nathan Goodyear

Ascorbic Acid Chemosensitizes Colorectal Cancer Cells and Synergistically Inhibits Tumo... - 0 views

  • therapeutic potential has been supported by a large and consistent body of evidences from in vitro
  • Ascorbic acid might act as a way to deliver hydrogen peroxide (H2O2) to the tissues
  • pharmacological concentrations of AA were capable of inducing anti-proliferative, cytotoxic and genotoxic effects
  • ...12 more annotations...
  • chemosensitizing
  • pharmacological concentrations of AA can sensitize cancer cells to chemotherapy, enhancing its antineoplastic effect
  • synergistic effect with conventional chemotherapeutic drugs is a fact already reported, in various types of cancer, by numerous authors, namely in pancreatic (Espey et al., 2011), prostate (Gilloteaux et al., 2014), lung (Lee et al., 2017), breast (Kurbacher et al., 1996; Wu et al., 2017) and ovarian (Ma et al., 2014) cancers.
  • chemosensitizing effect of vitamin C has already been proven by several authors in various types of cancer
  • intravenous pharmacological concentrations, may not only potentiate the effects of conventional chemotherapy, but also improve the quality of life of cancer patients
  • AA reinforced the anti-proliferative activity of 5-FU
  • Combined treatment induced a reduction of 11.5% and 43% in cell viability compared with AA or Iri therapies, respectively, emphasizing the synergistic effect
  • cytotoxic effect occurred with treatment with Iri alone, but also this effect was further potentiated by the presence of AA.
  • association of AA with Oxa showed very promising results, considering that a synergistic effect was demonstrated, in almost all conditions
  • AA and Oxa seem to act synergistically by the activation of the intrinsic pathway of apoptosis, translated on the statistically significant increase of the ratio between BAX and BCL-2 proteins, which in turn is associated with a decrease of Δψm
    • Nathan Goodyear
       
      Apoptosis -> decrease in mitochondrial membrane potential
  • Previous results obtained by our group showed that AA mediates reactive oxygen species (ROS) formation capable of irreparably damaging DNA
  • oxidative role of AA may be a key factor on the synergistic anti-cancer mechanism
Nathan Goodyear

ScienceDirect - Toxicology and Applied Pharmacology : The potential biological mechanis... - 0 views

  • Recent studies have shown that, in subjects with chronic arsenic exposure, oxidative stress is increased and the expression of tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) is upregulated
  • these two cytokines have been well known for their effect on the induction of insulin resistance
  • Oxidative stress has been suggested as a major pathogenic link to both insulin resistance and β cell dysfunction through mechanisms involving activation of nuclear factor-κB (NF-κB), which is also activated by low levels of arsenic
  •  
    discussion of possible mechanisms of arsenic induced diabetes
Nathan Goodyear

Investigations on oxidativ... [Eur Arch Psychiatry Clin Neurosci. 1999] - PubMed - NCBI - 0 views

  •  
    This study finds that AGE, advanced glycation end products, play a significant role in free radical generation and neurodegenerative disease. Quote: "... pharmacologoical approaches which break the vicious cycle of oxidative stress and neurodegeneration offer new opportunities for the treatment of AD. These approaches include AGE- inhibitors, antioxidants, and anti-inflammatory substances which prevent radical production." They focus on the pharmacological, how about the natural first?
Nathan Goodyear

ScienceDirect - Trends in Pharmacological Sciences : Pharmacological basis for the role... - 0 views

  • Extensive research within the past two decades has shown that curcumin mediates its anti-inflammatory effects through the downregulation of inflammatory transcription factors (such as nuclear factor κB), enzymes (such as cyclooxygenase 2 and 5 lipoxygenase) and cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6)
  •  
    curcumin as anti-inflammatory in disease
Nathan Goodyear

The Effects of High Concentrations of Vitamin C on Cancer Cells - 0 views

  •  
    Great review of the pharmacological/pharmacodynamic effects of vitamin C in cancer, particularly leukemias.
Nathan Goodyear

http://jeffreydachmd.com/wp-content/uploads/2016/03/Ivermectin-pharmacology-and-therape... - 0 views

  •  
    good review of the mechansims of action of Ivermectin.
Nathan Goodyear

Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2... - 0 views

  • Chen et al. have revealed that ascorbate at pharmacologic concentrations (0.3–20 mM) achieved only by intravenously (i.v.) administration selectively kills a variety of cancer cell lines in vitro, but has little cytotoxic effect on normal cells.
  • Ascorbic acid (the reduced form of vitamin C) is specifically transported into cells by sodium-dependent vitamin C transporters (SVCTs)
  • SVCT-1 is predominantly expressed in epithelial tissues
  • ...41 more annotations...
  • whereas the expression of SVCT-2 is ubiquitous
  • differential sensitivity to VC may result from variations in VC flow into cells, which is dependent on SVCT-2 expression.
  • high-dose VC significantly impaired both the tumorspheres initiation (Fig. 4d, e) and the growth of established tumorspheres derived from HCC cells (Fig. 4f, g) in a time-dependent and dose-dependent manner.
  • Hepatocellular carcinoma (HCC)
  • The antioxidant, N-acetyl-L-cysteine (NAC), preventing VC-induced ROS production (a ROS scavenger), completely restored the viability and colony formation among VC-treated cells
  • DNA double-strand damage was found following VC treatment
  • DNA damage was prevented by NAC
  • Interestingly, the combination of VC and cisplatin was even more effective in reducing tumor growth and weight
  • Consistent with the in vitro results, stemness-related genes expressions in tumor xenograft were remarkably reduced after VC or VC+cisplatin treatment, whereas conventional cisplatin therapy alone led to the increase of CSCs
  • VC is one of the numerous common hepatoprotectants.
  • Interestingly, at extracellular concentrations greater than 1 mM, VC induces strong cytotoxicity to cancer cells including liver cancer cells
  • we hypothesized that intravenous VC might reduce the risk of recurrence in HCC patients after curative liver resection.
  • Intriguingly, the 5-year disease-free survival (DFS) for patients who received intravenous VC was 24%, as opposed to 15% for no intravenous VC-treated patients
  • Median DFS time for VC users was 25.2 vs. 18 months for VC non-users
  • intravenous VC use is linked to improved DFS in HCC patients.
  • In this study, based on the elevated expression of SVCT-2, which is responsible for VC uptake, in liver CSCs, we revealed that clinically achievable concentrations of VC preferentially eradicated liver CSCs in vitro and in vivo
    • Nathan Goodyear
       
      the authors here made similar mistakes to the Mayo authors i.e. under doses here in this study.  They dosed at only 2 grams IVC.  A woefully low dose of IVC.
  • Additionally, we found that intravenous VC reduced the risk of post-surgical HCC progression in a retrospective cohort study.
    • Nathan Goodyear
       
      positive results despite a low dose used.
    • Nathan Goodyear
       
      Their comfort zone was 1mM.  They should have targeted 20-40 mM.
  • Three hundred thirty-nine participants (55.3%) received 2 g intravenous VC for 4 or more days after initial hepatectomy
  • As the key protein responsible for VC uptake in the liver, SVCT-2 played crucial roles in regulating the sensitivity to ascorbate-induced cytotoxicity
  • we also observed that SVCT-2 was highly expressed in human HCC samples and preferentially elevated in liver CSCs
  • SVCT-2 might serve as a potential CSC marker and therapeutic target in HCC
  • CSCs play critical roles in regulating tumor initiation, relapse, and chemoresistance
  • we revealed that VC treatment dramatically reduced the self-renewal ability, expression levels of CSC-associated genes, and percentages of CSCs in HCC, indicating that CSCs were more susceptible to VC-induced cell death
  • as a drug for eradicating CSCs, VC may represent a promising strategy for treatment of HCC, alone or particularly in combination with chemotherapeutic drugs
  • In HCC, we found that VC-generated ROS caused genotoxic stress (DNA damage) and metabolic stress (ATP depletion), which further activated the cyclin-dependent kinase inhibitor p21, leading to G2/M phase cell cycle arrest and caspase-dependent apoptosis in HCC cells
  • we demonstrated a synergistic effect of VC and chemotherapeutic drug cisplatin on killing HCC both in vitro and in vivo
  • Intravenous VC has also been reported to reduce chemotherapy-associated toxicity of carboplatin and paclitaxel in patients,38 but the specific mechanism needs further investigation
    • Nathan Goodyear
       
      so, exclude the benefit to patients until the exact mechanism of action, which will never be fully elicited?!?!?
  • Our retrospective cohort study also showed that intravenous VC use (2 g) was related to the improved DFS in HCC patients after initial hepatectomy
    • Nathan Goodyear
       
      Terribly inadequate dose.  Target is 20-40 mM which other studies have found occur with 50-75 grams of IVC.
  • several clinical trials of high-dose intravenous VC have been conducted in patients with advanced cancer and have revealed improved quality of life and prolonged OS
  • high-dose VC was not toxic to immune cells and major immune cell subpopulations in vivo
  • high recurrence rate and heterogeneity
  • tumor progression, metastasis, and chemotherapy-resistance
  • SVCT-2 was highly expressed in HCC samples in comparison to peri-tumor tissues
  • high expression (grade 2+/3+) of SVCT-2 was in agreement with poorer overall survival (OS) of HCC patients (Fig. 1c) and more aggressive tumor behavior
  • SVCT-2 is enriched in liver CSCs
  • these data suggest that SVCT-2 is preferentially expressed in liver CSCs and is required for the maintenance of liver CSCs.
  • pharmacologic concentrations of plasma VC higher than 0.3 mM are achievable only from i.v. administration
  • The viabilities of HCC cells were dramatically decreased after exposure to VC in dose-dependent manner
  • VC and cisplatin combination further caused cell apoptosis in tumor xenograft
  • These results verify that VC inhibits tumor growth in HCC PDX models and SVCT-2 expression level is associated with VC response
  • qPCR and IHC analysis demonstrated that expression levels of CSC-associated genes and percentages of CSCs in PDXs dramatically declined after VC treatment, confirming the inhibitory role of VC in liver CSCs
  •  
    IV vitamin C in vitro and in vivo found to "preferentially" eradicate cancer stem cells.  In addition, IV vitamin C was found to be adjunctive to chemotherapy, found to be hepatoprotectant.  This study also looked at SVCT-2, which is the transport protein important in liver C uptake.
Nathan Goodyear

Statins stimulate atherosclerosis and heart failure: pharmacological mechanisms: Expert... - 0 views

  •  
    Statins cause atherosclerosis, not reverse it.  New study describes the mechanism.
1 - 20 of 113 Next › Last »
Showing 20 items per page