Skip to main content

Home/ Dr. Goodyear/ Group items tagged inhibits

Rss Feed Group items tagged

Nathan Goodyear

British Journal of Cancer - Dichloroacetate inhibits aerobic glycolysis in multiple mye... - 0 views

  •  
    Dichloroacetate (DCA) inhibits aerobic glycolysis via inhibition of Pyruvate Dehydrogenase kinase (PDK), which allows for the phosphorylation of Pyruvate Dehydrogenase and the formation of acetylCo-A.  This then feeds the krebs cycle.  Increased mitochondrial activity increases ROS and resultant apoptosis of cancer cells.
Nathan Goodyear

Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation - 0 views

  •  
    nattokinase, an enzyme, inhibits platelets aggregation and inhibits inflammatory-induced vascular thrombosis.  Nattokinase is commonly employed as a part of systemic enzyme therapy.
Nathan Goodyear

Inhibition of tumor angiogenesis by cannabinoids | The FASEB Journal - 0 views

  •  
    cannabinioids inhibit tumor angiogenesis in vivo via direct inhibition of vascular endothelial cell migration and survival and suppression of various proangiogenic factos such as MMP.  Great diagram in figure 3.
Nathan Goodyear

Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking m... - 0 views

  • Accumulating evidence suggests that niclosamide targets multiple signaling pathways such as nuclear factor-kappaB (NF-kB), Wnt/β-catenin, and Notch, most of which are closely involved with cancer stem cell proliferation
  • The transcription factor NF-κB has been demonstrated to promote cancer growth, angiogenesis, escape from apoptosis, and tumorigenesis
  • NF-κB is sequestered in the cytosol of resting cells through binding the inhibitory subunit IκBα
  • ...13 more annotations...
  • Niclosamide blocked TNFα-induced IκBα phosphorylation, translocation of p65, and the expression of NF-κB-regulated genes
  • Niclosamide also inhibited the DNA binding of NF-κB to the promoter of its target genes
  • niclosamide has two independent effects: NF-kB activation and ROS elevation
  • The Wnt signaling pathway plays fundamental roles in directing tissue patterning in embryonic development, in maintaining tissue homeostasis in differentiated tissue, and in tumorigenesis
  • niclosamide is a potent inhibitor of the Wnt/β-catenin pathway
  • The Notch signaling pathway plays important roles in a variety of cellular processes such as proliferation, differentiation, apoptosis, cell fate decisions, and maintenance of stem cells
  • niclosamide potently suppresses the luciferase activity of a CBF-1-dependent reporter gene in both a dose-dependent and a time-dependent manners in K562 leukemia cells
  • niclosamide treatment abrogated the epidermal growth factor (EGF)-stimulated dimerization and nuclear translocation and transcriptional activity of Stat3, and induced cell growth inhibition and apoptosis in several types of cancer cells (e.g. Du145, Hela, A549) that exhibit relatively higher levels of Stat3 constitutive activation
  • niclosamide can rapidly increase autophagosome formation
  • niclosamide induced autophagy and inhibited mammalian target of rapamycin complex 1 (mTORC1)
  • Niclosamide has low toxicity in mammals (oral median lethal dose in rats >5000 mg/kg
  • Niclosamide is active against cancer cells such as AML and colorectal cancer cells, not only as a monotherapy but also as part of combination therapy, in which it has been found to be synergistic with frontline chemotherapeutic agents (e.g., oxaliplatin, cytarabine, etoposide, and daunorubicin)
  • Because niclosamide targets multiple signaling pathways (e.g., NF-κB, Wnt/β-catenin, and Notch), most of which are closely involved with cancer stem cells, it holds promise in eradicating cancer stem cells
  •  
    Review article: common anti-parasitic medication, niclosamide, provides anti-proliferative effect in cancer stem cells (CSC), via inhibition of NF-kappaBeta, Wnt/B-catenin, Notch, ROS, mTORC1, and STAT2 pathways.
Nathan Goodyear

Drug Screening Identifies Niclosamide as an Inhibitor of Breast Cancer Stem-Like Cells - 0 views

  • cancer stem cells may also contribute to tumor formation, metastasis, and treatment resistance
  • Studies have shown that some agents (such as metformin) can selectively target cancer stem cells and that dietary polyphenols, curcumin, peperine, and sulforaphane, which are derived from broccoli/broccoli sprouts, are able to target breast cancer stem cells via inhibition of the Wnt signaling, which affects mammosphere size and colony formation
  • niclosamide inhibits tumor growth and reduces tumor weight
  • ...8 more annotations...
  • Niclosamide treatment inhibited the expression of cyclin D1, Hes1, and PTCH by 33%, 57%, and 79%, respectively
  • The mechanism via which niclosamide, a protonophoric anthelmintic drug, induces stem-like-cell-specific toxicity in breast cancer is interesting. It is an old drug that has been used to treat tapeworms in animals
  • Niclosamide is known to uncouple mitochondrial oxidative phosphorylation during tapeworm killing
  • A screening of autophagy modulators revealed that niclosamide is a novel inhibitor of mTORC1 signaling
  • A recent work also demonstrated that niclosamide induces the apoptosis of myelogenous leukemic cells via the inactivation of NF-kappaB and reactive oxygen species generation
  • Niclosamide was also reported to inhibit Wnt signaling [31]–[33] in colon cancer cells
  • Our recent work demonstrated that niclosamide disrupts multiple metabolic pathways in ovarian-cancer-initiating cells
  • The present study showed that niclosamide treatment resulted in the downregulation of target genes involved in the self-renewal of cancer stem-like cells and inhibited breast SPS
  •  
    Old ant-parasitic, niclosamide, found to down-regulate cancer stem cell activity.
Nathan Goodyear

Artesunate in combination with oxacillin protect sepsis model mice challenged with leth... - 0 views

  •  
    Artesunate found to inhibit cytokine release in therapy with oxacillin in MRSA as a part of sepsis induction-inhibits cytokine storm.
Nathan Goodyear

Artesunate attenuates the growth of human colorectal carcinoma and inhibits hyperactive... - 0 views

  •  
    artesunate inhibits colorectal cancer cells via Wnt pathway inhibition.
Nathan Goodyear

Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by d... - 0 views

  •  
    Artesunate inhibits gastric cancer cells via COX2 inhibition.
Nathan Goodyear

Cross-kingdom inhibition of breast cancer growth by plant miR159 - 0 views

  • MicroRNAs (miRNAs), a major family of small RNAs, are ∼23 nt-long single strands of RNA that bind to mRNA transcripts to inhibit their translation
  • A recent study by Zhang et al. reported that plant-derived miRNAs can be found in human serum.
  • The group demonstrates that the plant miRNA miR168 may be taken up through dietary intake to inhibit the expression of its target low-density lipoprotein receptor 1 in the liver21, providing the first evidence that miRNA in food may influence gene expression in mammalian organs.
  • ...6 more annotations...
  • A more recent finding by the same group shows that a plant miRNA from honeysuckle is able to inhibit Influenza A replication22, indicating that plant miRNAs may be useful for treating human diseases.
  • We found that plant miR159 could be detected in human sera and its levels were inversely correlated with BC incidence and progression.
  • We further identified TCF7 as a mammalian target for miR159 and showed the anti-proliferative function of miR159 in BC cells using in vitro and in vivo models, demonstrating for the first time that a plant miRNA is able to influence BC cell growth.
  • certain dietary miRNAs from plants and other species may serve as highly affordable and powerful means of treatment with minimal inconvenience to patients.
  • miR159 which (using a synthetic mimic) targets TCF7 to inhibit the proliferation of cells whose growth is dependent on TCF7 such as the BC cells MDA-MB-231
  • our study using a BC model clearly indicates the anti-tumor effect of orally administered synthetic miR159 in its naturally existing form with the plant-specific 2'-O-methylation, suggesting the feasibility of using synthetic forms of plant miRNAs as dietary supplements in the treatment of human cancers, including those outside of the GI track
  •  
    Plant microRNA found to exist in human serum from gut absorption to then alter genetic expression in in-vitro and in vivo studies.
Nathan Goodyear

Ibuprofen alters human testicular physiology to produce a state of compensated hypogona... - 0 views

  • The levels of LH in the ibuprofen group had increased by 23% after 14 d of administration
  • This increase was even more pronounced at 44 d, at 33%
  • We found an 18% decrease (P = 0.056) in the ibuprofen group compared with the placebo group after 14 d (Fig. 1A) and a 23% decrease (P = 0.02) after 44 d (Fig. 1C). Taken together, these in vivo data suggest that ibuprofen induced a state of compensated hypogonadism during the trial, which occurred as early as 14 d and was maintained until the end of the trial at 44 d
  • ...27 more annotations...
  • We first investigated testosterone production after 24 and 48 h of ibuprofen exposure to assess its effects on Leydig cell steroidogenesis. Inhibition of testosterone levels was significant and dose-dependent (β = −0.405, P = 0.01 at 24 h and β = −0.664, P < 0.0001 at 48 h) (Fig. 2A) and was augmented over time
  • The AMH data show that the hypogonadism affected not only Leydig cells but also Sertoli cells and also occurred as early as 14 d of administration
  • Sertoli cell activity showed that AMH levels decreased significantly with ibuprofen administration, by 9% (P = 0.02) after 14 d (Fig. 1B) and by 7% (P = 0.05) after 44 d compared with the placebo group
  • Examination of the effect of ibuprofen exposure on both the ∆4 and ∆5 steroid pathways (Fig. 2B) showed that it generally inhibited all steroids from pregnenolone down to testosterone and 17β-estradiol; the production of each steroid measured decreased at doses of 10−5–10−4 M. Under control conditions, production of androstenediol and dehydroepiandrosterone (DHEA) was below the limit of detection except in one experiment with DHEA
  • Measuring the mRNA expression of genes involved in steroidogenesis in vitro showed that ibuprofen had a profound inhibitory effect on the expression of these genes (Fig. 3 B–D), consistent with that seen above in our ex vivo organ model. Taken together, these data examining effects on the endocrine cells confirm that ibuprofen-induced changes in the transcriptional machinery were the likely reason for the inhibition of steroidogenesis.
  • Suppression of gene expression concerned the initial conversion of cholesterol to the final testosterone synthesis. Hence, expression of genes involved in cholesterol transport to the Leydig cell mitochondria was impaired
  • A previous study reported androsterone levels decreased by 63% among men receiving 400 mg of ibuprofen every 6 h for 4 wk
  • We next examined the gene expression involved in testicular steroidogenesis ex vivo and found that levels of expression of every gene that we studied except CYP19A1 decreased after exposure for 48 h compared with controls
  • the changes in gene expression indicate that the transcriptional machinery behind the endocrine action of Leydig cells was most likely impaired by ibuprofen exposure.
  • Together, these data show that ibuprofen also directly impairs Sertoli cell function ex vivo by inhibiting transcription
  • ibuprofen use in men led to (i) elevation of LH; (ii) a decreased testosterone/LH ratio and, to a lesser degree, a decreased inhibin B/FSH ratio; and (iii) a reduction in the levels of the Sertoli cell hormone AMH
  • The decrease in the free testosterone/LH ratio resulted primarily from the increased LH levels, revealing that testicular responsiveness to gonadotropins likely declined during the ibuprofen exposure. Our data from the ex vivo experiments support this notion, indicating that the observed elevation in LH resulted from ibuprofen’s direct antiandrogenic action
  • AMH levels were consistently suppressed by ibuprofen both in vivo and ex vivo, indicating that this hormone is uncoupled from gonadotropins in adult men. The ibuprofen suppression of AMH further demonstrated that the analgesic targeted not only the Leydig cells but also the Sertoli cells, a feature encountered not only in the human adult testis but also in the fetal testis
  • ibuprofen displayed broad transcription-repression abilities involving steroidogenesis, peptide hormones, and prostaglandin synthesis
  • a chemical compound, through its effects on the signaling compounds, can result in changes in the testis at gene level, resulting in perturbations at higher physiological levels in the adult human
  • The analgesics acetaminophen/paracetamol and ibuprofen have previously been shown to inhibit the postexercise response in muscles by repressing transcription
  • Previous ex vivo studies on adult testis have indeed pointed to an antiandrogenicity, only on Leydig cells, of phthalates (41), aspirin, indomethacin (42), and bisphenol A (BPA) and its analogs
  • ibuprofen’s effects were not restricted to Leydig and Sertoli cells, as data showed that the expression of genes in peritubular cells was also affected
  • short-term exposure
  • In the clinical setting, compromised Leydig cell function resulting in increased insensitivity to LH is defined as compensated hypogonadism (4), an entity associated with all-cause mortality
  • compensated hypogonadic men present with an increased likelihood of reproductive, cognitive, and physical symptoms
  • an inverse relationship was recently reported between endurance exercise training and male sexual libido
  • AMH concentrations are lower in seminal plasma from patients with azoospermia than from men with normal sperm levels
  • inhibin B is a key clinical marker of reproductive health (32). The function of AMH, also secreted by Sertoli cells, and its regulation through FSH remain unclear in men
  • the striking dual effect of ibuprofen observed here on both Leydig and Sertoli cells makes this NSAID the chemical compound, of all the chemical classes considered, with the broadest endocrine-disturbing properties identified so far in men.
  • after administration of 600 mg of ibuprofen to healthy volunteers
  • 14 d or at the last day of administration at 44 d
  •  
    ibuprofen alters genetic expression that results in decreased Testosterone production.
Nathan Goodyear

Vitamin C Inhibits Metastasis of Peritoneal Tumors By Preventing Spheroid Formation in ... - 0 views

  •  
    Vitamin C inhibits M2 macrophages in the TME and inhibits EMT.
Nathan Goodyear

Curcumin inhibits angiogenesis and improves defective hematopoiesis induced by tumor-de... - 0 views

  •  
    Curcumin inhibits VEGF to inhibit angiogenesis.
Nathan Goodyear

Surgically induced accelerated local and distant tumor growth is significantly attenuat... - 0 views

  •  
    Cox II inhibition helps to slow surgical induced metastatic and local recurrence of cancer. Surgery does cause metastasis and local recurrence and cox II inhibition stops spread.
Nathan Goodyear

Progesterone receptor plays a major antiinfla... [Mol Endocrinol. 2006] - PubMed - NCBI - 0 views

  •  
    progesterone receptor inhibits inflammation through NF-kappaB inhibition and through lack of activation of COX-2.
Nathan Goodyear

Metabolic management of brain cancer - 0 views

  • Glutamine is a major metabolic fuel for both brain tumor cells and tumor-associated macrophages (TAMs)
  • the malignant phenotype of brain tumor cells that survive radiotherapy is often greater than that of the cells from the original tumor.
  • Conventional chemotherapy has faired little better than radiation therapy for the long-term management of malignant brain cancer
  • ...37 more annotations...
  • most conventional radiation and brain cancer chemotherapies can enhance glioma energy metabolism and invasive properties, which would contribute to tumor recurrence and reduced patient survival [34].
  • We contend that all cancer regardless of tissue or cellular origin is a disease of abnormal energy metabolism
  • complex disease phenotypes can be managed through self-organizing networks that display system wide dynamics involving oxidative and non-oxidative (substrate level) phosphorylation
  • As long as brain tumors are provided a physiological environment conducive for their energy needs they will survive; when this environment is restricted or abruptly changed they will either grow slower, growth arrest, or perish [8] and [19]
  • New information also suggests that ketones are toxic to some human tumor cells and that ketones and ketogenic diets might restrict availability of glutamine to tumor cells [68], [69] and [70].
  • The success in dealing with environmental stress and disease is therefore dependent on the integrated action of all cells in the organism
  • Tumor cells survive in hypoxic environments not because they have inherited genes making them more fit or adaptable than normal cells, but because they have damaged mitochondria and have thus acquired the ability to derive energy largely through substrate level phosphorylation
  • Cancer cells survive and multiply only in physiological environments that provide fuels (mostly glucose and glutamine) subserving their requirement for substrate level phosphorylation
  • Integrity of the inner mitochondrial membrane is necessary for ketone body metabolism since β-hydroxybutyrate dehydrogenase, which catalyzes the first step in the metabolism of β-OHB to acetoacetate, interacts with cardiolipin and other phospholipids in the inner membrane
  • the mitochondria of many gliomas and most tumors for that matter are dysfunctional
  • Cardiolipin is essential for efficient oxidative energy production and mitochondrial function
  • Any genetic or environmental alteration in the content or composition of cardiolipin will compromise energy production through oxidative phosphorylation
  • The Crabtree effect involves the inhibition of respiration by high levels of glucose
  • the Warburg effect involves elevated glycolysis from impaired oxidative phosphorylation
  • the Crabtree effect can be reversible, the Warburg effect is largely irreversible because its origin is with permanently damaged mitochondria
  • The continued production of lactic acid in the presence of oxygen is the metabolic hallmark of most cancers and is referred to as aerobic glycolysis or the Warburg effect
  • We recently described how the retrograde signaling system could induce changes in oncogenes and tumor suppressor genes to facilitate tumor cell survival following mitochondrial damage [48].
  • In addition to glycolysis, glutamine can also increase ATP production under hypoxic conditions through substrate level phosphorylation in the TCA cycle after its metabolism to α-ketoglutarate
  • mitochondrial lipid abnormalities, which alter electron transport activities, can account in large part for the Warburg effect
  • targeting both glucose and glutamine metabolism could be effective for managing most cancers including brain cancer
  • The bulk of experimental evidence indicates that mitochondria are dysfunctional in tumors and incapable of generating sufficient ATP through oxidative phosphorylation
  • Cardiolipin defects in tumor cells are also associated with reduced activities of several enzymes of the mitochondrial electron transport chain making it unlikely that tumor cells with cardiolipin abnormalities can generate adequate energy through oxidative phosphorylation
  • The Crabtree effect involves the inhibition of respiration by high levels of glucose
  • Warburg effect involves elevated glycolysis from impaired oxidative phosphorylation
  • TCA cycle substrate level phosphorylation could therefore become another source of ATP production in tumor cells with impairments in oxidative phosphorylation
  • Caloric restriction, which lowers glucose and elevates ketone bodies [63] and [64], improves mitochondrial respiratory function and glutathione redox state in normal cells
  • DR naturally inhibits glycolysis and tumor growth by lowering circulating glucose levels, while at the same time, enhancing the health and vitality of normal cells and tissues through ketone body metabolism
  • DR is anti-angiogenic
  • DR also reduces angiogenesis in prostate and breast cancer
  • We suggest that apoptosis resistance arises largely from enhanced substrate level phosphorylation of tumor cells and to the genes associated with elevated glycolysis and glutaminolysis, e.g., c-Myc, Hif-1a, etc, which inhibit apoptosis
  • Modern medicine has not looked favorably on diet therapies for managing complex diseases especially when well-established procedures for acceptable clinical practice are available, regardless of how ineffective these procedures might be in managing the disease
  • More than 60 years of clinical research indicates that such approaches are largely ineffective in extending survival or improving quality of life
  • The process is rooted in the well-established scientific principle that tumor cells are largely dependent on substrate level phosphorylation for their survival and growth
  • Glucose and glutamine drive substrate level phosphorylation
  • targeting the glycolytically active tumor cells that produce pro-cachexia molecules, restricted diet therapies can potentially reduce tumor cachexia
  • It is important to recognize, however, that “more is not better” with respect to the ketogenic diet
  • Blood glucose ranges between 3.0 and 3.5 mM (55–65 mg/dl) and β-OHB ranges between 4 and 7 mM should be effective for tumor management
  •  
    Dr Seyfriend presents his metabolic approach to the treatment of brain cancer.
Nathan Goodyear

Potency of a novel saw palmetto ethanol extract, SP... [Adv Ther. 2010] - PubMed - NCBI - 0 views

  •  
    Saw Palmetto extract found to be potent inhibitor of 5alpha reductase activity.   Inhibition was 61%.  This study looked at the inhibition in those men with BPH.
Nathan Goodyear

Progesterone metabolites in breast cancer - 1 views

  • P metabolites produced within breast tissues might be independently active hormones functioning as cancer-promoting or -inhibiting regulatory agents
  • these P metabolites function as independent pro-or anti-cancer autocrine/paracrine hormones that regulate cell proliferation, adhesion, apoptosis and cytoskeletal, and other cell status molecules via novel receptors located in the cell membrane and intrinsically linked to cell signaling pathways
  • only a fraction of all breast cancer patients respond to this estrogen-based therapy and the response is only temporary
  • ...30 more annotations...
  • P serves as the precursor for the major steroid hormones (androgens, estrogens, corticosteroids) produced by the gonadal and adrenal cortical tissues.
  • 5α-pregnane, 5β-pregnane, and 4-pregnene metabolites of P
  • These P-metabolizing enzymes included 5α-reductase, 5β-reductase, 3α-hydroxysteroid oxido-reductase (3α-HSO), 3β-HSO, 20α-HSO, 20β-HSO, 6α(β)-, 11β-, 17-, and 21-hydroxylase, and C17–20-lyase
  • Reduction of P to 5α-pregnanes is catalyzed by 5α-reductase and the direct 5α-reduced metabolite of P is 5α-pregnane-3,20-dione (5αP). The 5α-reductase reaction is irreversible
  • The two 4-pregnenes resulting from direct P conversion are 4-pregnen-3α-ol-20-one (3αHP) and 4-pregnen-20α-ol-3-one (20αHP), catalyzed by the actions of 3α-HSO and 20α-HSO respectively
  • the P-metabolizing enzyme activities identified in human breast tissues and cell lines were: 5α-reductase, 3α-HSO, 3β-HSO, 20α-HSO, and 6α-hydroxylase
  • In normal breast tissue, conversion to 4-pregnenes greatly exceeded the conversion to 5α-pregnanes, whereas in tumorous tissue, conversion to 5α-pregnanes greatly exceeded that to 4-pregnenes
  • The results indicated that P 5α-reductase activity is significantly higher, whereas P 3α-HSO and 20α-HSO activities are significantly lower in tumor than in normal tissues
  • he results showed that production of 5α-pregnanes was higher and that of 4-pregnenes was lower in tumorigenic (e.g. MCF-7) than in nontumorigenic (e.g. MCF-10A) cells (Fig. 3c⇑), while differences in ER/P status did not appear to play a role
  • The 5α-pregnane-to-4-pregnene ratios were 7- to 20-fold higher in the tumorigenic than in the nontumorigenic cell lines
  • altered direction in P metabolism, and hence in metabolite ratios, was due to significantly elevated 5α-reductase and depressed 3α- and 20α-HSO activities in breast tumor tissues and tumorigenic cells. It appeared, therefore, that changes in P-metabolizing enzyme activities might be related to the shift toward mammary cell tumorigenicity and neoplasia
  • In vivo, changes in enzyme activity can result from changes in levels of the enzyme due to changes in expression of the mRNA coding for the enzyme, or from changes in the milieu in which the enzyme operates (such as temperature and pH, and concentrations of cofactors, substrates, products, competitors, ions, phospholipids, and other molecules)
  • Overall, the enzyme activity and expression studies strongly suggest that 5α-reductase stimulation and 3α- and 20α-HSO suppression are associated with the transition from normalcy to cancer of the breast
  • The level of expression of 5α-reductase is up-regulated by estradiol and P in the uterus (Minjarez et al. 2001) and by 5α-dihydrotestosterone (DHT) in the prostate
  • 3αHP inhibited whereas 5αP-stimulated proliferation
  • Stimulation in cell numbers was also observed when cells were treated with other 5α-pregnanes, such as 5α-pregnan-3α-ol-20-one, 5α-pregnan-20α-ol-3-one, and 5α-pregnane-3α,20α-diol, whereas other 4-pregnenes such as 20α-HP and 4-pregnene-3α,20α-diol resulted in suppression of cell proliferation
  • Stimulation of cell proliferation with 5αP and inhibition with 3αHP were also observed in all other breast cell lines examined, whether ER/P-negative (MCF-10A, MDA-MB-231) or ER/P-positive (T47D, ZR-75-1) and whether requiring estrogen for tumorigenicity (MCF-7, T47D) or not (MDA-MB-231), or whether they are nontumorigenic (
  • αHP resulted in significant increases in apoptosis and decreases in mitosis, leading to significant decreases in total cell numbers. In contrast, treatment with 5αP resulted in decreases in apoptosis and increases in mitosis.
  • The opposing actions of 5αP and 3αHP on both cell anchorage and proliferation strengthen the hypothesis that the direction of P metabolism in vivo toward higher 5α-pregnane and lower 4-pregnene concentrations could promote breast neoplasia and lead to malignancy.
  • he effects on proliferation and adhesion were not due to P, but due to the 5α-reduced metabolites
  • The studies showed that binding of 5αP or 3αHP occurs in the plasma membrane fractions, but not in the nuclear or cytosolic compartments
  • separate high-specificity, high-affinity, low- capacity receptors for 5αP and 3αHP that are distinct from each other and from the well-studied nuclear/cytosolic P, estrogen, and androgen and corticosteroid receptors
  • The studies thus provided the first demonstration of the existence of specific P metabolite receptors
  • the receptor results suggest that the putative tumorigenic actions of 5αP may be significantly augmented by the estradiol-induced increases in 5αP binding and decreases in 3αHP binding.
  • Estradiol and 5αP resulted in significant dose-dependent increases, whereas 3αHP and 20αHP each resulted in dose-dependent decreases in total ER
  • In combination, estradiol + 5αP or 3αHP + 20αHP resulted in additive increases or decreases respectively in ER numbers.
  • The data suggest that the action of 5αP on breast cancer cells involves modulation of the MAPK signaling pathway
  • current evidence does not appear to support the notion that increased 5α-reductase activity/ expression might significantly alter androgen influences on breast tumor growth.
  • both testosterone and DHT inhibit cell growth more or less to the same extent
  • Note that 5α-reductase reaction is not reversible
  •  
    Fantastic read on the effects of progesterone metabolism on tumor and cancer growth.  Tumorigenesis is not just about the hormone, hormone balance, but about the metabolism of hormones.  This is why premarin is so carcinogenic: it is primarily metabolized by the 4-OH estrone pathway.
Nathan Goodyear

Limited effects of dietary curcumin on Th-1 driven colitis in IL-10 deficient mice sugg... - 0 views

  •  
    curcumin shown to inhibit NF-kappaB through a IL-10 dependent pathway.  IL-10 is required and curcumin appears to augment the inhibition of NF-kappaB
Nathan Goodyear

Curcumin attenuates the development of allergic airway inflammation and hyper-responsiv... - 0 views

  •  
    curcumin shown to inhibit allergic airway inflammation, through NF-kappaB inhibition.  This has implications in asthma flares.
Nathan Goodyear

Curcumin works synergistically with paclitaxel to inhibit breast cancer in a mouse mode... - 0 views

  •  
    curcumin shown to augment paclitaxel in breast cancer treatment.  Specifically, NF-kappaB inhibition resulted in reduction in tumor size, decreased tumor cell proliferation, increased apoptosis, and decreased MM-9.
« First ‹ Previous 41 - 60 of 774 Next › Last »
Showing 20 items per page