Skip to main content

Home/ Dr. Goodyear/ Group items tagged elevated

Rss Feed Group items tagged

Nathan Goodyear

Sustaining elevated levels of nitrite in the oral cavity through consumption of nitrate... - 1 views

  •  
    NO metabolism
Nathan Goodyear

Histamine and histamine intolerance - 0 views

  • Histamine intolerance can develop through both increased availability of histamine and impaired histamine degradation
  • increased availability may be an endogenous histamine overproduction caused by allergies, mastocytosis, bacterias, gastrointestinal bleeding, or increased exogenous ingestion of histidine or histamine by food or alcohol
  • Other biogenic amines, such as putrescine, may also be involved in displacing histamine from its mucosal mucine linkage, which results in an increase of free absorbable histamine in circulation
  • ...2 more annotations...
  • the main cause of histamine intolerance is an impaired enzymatic histamine degradation caused by genetic or acquired impairment of the enzymatic function of DAO or HNMT
  • The main enzyme for metabolism of ingested histamine is diamine oxidase (DAO)
  •  
    good discussion of histamine and histamine intolerance.  All centers around diamine oxidase function (DAO).
Nathan Goodyear

Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle: Cell Metabolism - 0 views

  • our results provide evidence to suggest that acute exercise induces gene-specific DNA hypomethylation in human skeletal muscle
  • Our results suggest that DNA methylation is a component of the exercise-induced effect on expression of these genes.
  • Caffeine exposure decreased promoter methylation of Pgc-1α, Tfam, Mef2a, Cs, and Pdk4
  • ...4 more annotations...
  • the effect of exercise on DNA methylation in human skeletal muscle and provide evidence that acute exercise alters promoter methylation of exercise-responsive genes in a dose-dependent manner
  • DNA methylation was unaltered 48 hr after a 3-week exercise training program, whereas RNA expression of PGC-1α and TFAM promoters was elevated (data not shown), further suggesting that DNA hypomethylation is a transient mechanism involved in mRNA synthesis
  • Our findings that ionomycin, AICAR, or ROS production increased mRNA expression without altering promoter methylation may support the notion that DNA methylation does not exclusively control exercise-induced gene expression
  • acute exercise leads to transient changes in DNA methylation in adult skeletal muscle
  •  
    Small study finds acute exercise is associated with epigenetic alteration of muscle through methylation.  This study found a hypomethylation of the genes PGC-1alpha, PDK4, and PPAR-delta with a respondent increase in expression.  The methylation activity was in the promoter region of these genes.
Nathan Goodyear

Chronic exposure to Low dose bacterial lipopolysaccharide inhibits leptin signaling in ... - 0 views

  • Obesity and models of obesity induced by ingestion of HF-diet in rodents are associated with chronically elevated circulating levels of LPS
  • chronic low-dose administration of LPS induces leptin-resistance in vagal afferent neurons and abolition of CCK-induced inhibition of food intake
  • HF fat feeding has been shown to enhance gastrointestinal permeability promoting the translocation of LPS to the circulation
  • ...9 more annotations...
  • LPS leads to an increase in SOCS3 expression [20]. SOCS3 is a negative regulator of leptin signaling
  • We observed a significant increase in energy intake in the LPS-treated rats
  • the data provides a mechanism linking changes in gut microbiota induced by ingestion of HF diets to dysregulation of food intake and body weight
  • SOCS3 is an important mechanism by which leptin resistance develops in vagal afferent neurons and coincides with the onset of hyperphagia
  • Chronic low-dose LPS treatment induced TLR4 activation and MyD88 signaling in vagal afferent neurons, associated with increased SOCS3 expression and reduced leptin-signaling, characterized by the absence of leptin-induced pSTAT3.
  • We demonstrate that this chronic low dose LPS is sufficient to induce leptin–resistance in vagal afferent neurons, reduced sensitivity to the satiating effects of CCK, and loss of vagal afferent plasticity
  • it suggests that the increase in food intake and body weight we observed at week 6 in the LPS treated rats may be caused by LPS-induced leptin resistance.
  • chronic LPS treatment of mice for four weeks increased body weight
  • chronic LPS treatment of mice for four weeks increased subcutaneous fat
  •  
    Very interesting study.  High fat diet in rats induced gut flora change that resulted in LPS which induced appetite through leptin resistance and reduced cholecystokinin signaling.
Nathan Goodyear

Elevated serum interleukin-6 and decreased thyroid hormone levels in postoperative pati... - 0 views

  •  
    IL-6 decreases T3
Nathan Goodyear

Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer... - 0 views

  • More than half of cancer patients are treated with IR at some point during their treatment
  • fractionation schedule is the delivery of 1.8–2.0 Gy per day, five days per week
  • Nuclear DNA is the primary target of IR; it causes DNA damage (genotoxic stress) by direct DNA ionization
  • ...121 more annotations...
  • IR also indirectly induces DNA damage by stimulating reactive oxygen species (ROS) production
  • IR is known to induce EMT in vitro
  • p53 is activated in response to IR-induced DNA damage
  • IR paradoxically also promotes tumour recurrence and metastasis
  • DNA double-strand breaks (DSBs)
  • cancer cells undergoing EMT acquire invasive and metastatic properties
  • changes in the tumour microenvironment (TME)
  • IR seems to induce EMT and CSC phenotypes by regulating cellular metabolism
  • EMT, stemness, and oncogenic metabolism are known to be associated with resistance to radiotherapy and chemotherapy
  • Hanahan and Weinberg proposed ten hallmarks of cancer that alter cell physiology to enhance malignant growth: 1) sustained proliferation, 2) evasion of growth suppression, 3) cell death resistance, 4) replicative immortality, 5) evasion of immune destruction, 6) tumour-promoting inflammation, 7) activation of invasion and metastasis, 8) induction of angiogenesis, 9) genome instability, and 10) alteration of metabolism
  • EMT is a developmental process that plays critical roles in embryogenesis, wound healing, and organ fibrosis
  • IR is known to induce stemness and metabolic alterations in cancer cells
  • transforming growth factor-β [TGF-β], epidermal growth factor [EGF]) and their associated signalling proteins (Wnt, Notch, Hedgehog, nuclear-factor kappa B [NF-κB], extracellular signal-regulated kinase [ERK], and phosphatidylinositol 3-kinase [PI3K]/Akt
  • activate EMT-inducing transcription factors, including Snail/Slug, ZEB1/δEF1, ZEB2/SIP1, Twist1/2, and E12/E47
  • Loss of E-cadherin is considered a hallmark of EMT
  • IR has been shown to induce EMT to enhance the motility and invasiveness of several cancer cells, including those of breast, lung, and liver cancer, and glioma cells
  • IR may increase metastasis in both the primary tumour site and in normal tissues under some circumstance
  • sublethal doses of IR have been shown to enhance the migratory and invasive behaviours of glioma cells
  • ROS are known to play an important role in IR-induced EMT
  • High levels of ROS trigger cell death by causing irreversible damage to cellular components such as proteins, nucleic acids, and lipids, whereas low levels of ROS have been shown to promote tumour progression—including tumour growth, invasion, and metastasis
  • hypoxia-inducible factor-1 (HIF-1) is involved in IR-induced EMT
  • Treatment with the N-acetylcysteine (NAC), a general ROS scavenger, prevents IR-induced EMT, adhesive affinity, and invasion of breast cancer cells
    • Nathan Goodyear
       
      NAC for all patients receiving radiation therapy
  • Snail has been shown to play a crucial role in IR-induced EMT, migration, and invasion
  • IR activates the p38 MAPK pathway, which contributes to the induction of Snail expression to promote EMT and invasion
  • NF-κB signalling that promotes cell migration
  • ROS promote EMT to allow cancer cells to avoid hostile environments
  • HIF-1 is a heterodimer composed of an oxygen-sensitive α subunit and a constitutively expressed β subunit.
  • Under normoxia, HIF-1α is rapidly degraded, whereas hypoxia induces stabilisation and accumulation of HIF-1α
  • levels of HIF-1α mRNA are enhanced by activation of the PI3K/Akt/mammalian target of rapamycin (mTOR)
  • IR is known to increase stabilisation and nuclear accumulation of HIF-1α, since hypoxia is a major condition for HIF-1 activation
  • IR induces vascular damage that causes hypoxia
  • ROS is implicated in IR-induced HIF-1 activation
  • IR causes the reoxygenation of hypoxic cancer cells to increase ROS production, which leads to the stabilisation and nuclear accumulation of HIF-1
  • IR increases glucose availability under reoxygenated conditions that promote HIF-1α translation by activating the Akt/mTOR pathway
  • The stabilised HIF-1α then translocates to the nucleus, dimerizes with HIF-1β, and increases gene expression— including the expression of essential EMT regulators such as Snail—to induce EMT, migration, and invasion
  • TGF-β signalling has been shown to play a crucial role in IR-induced EMT
  • AP-1 transcription factor is involved in IR-induced TGF-β1 expression
  • Wnt/β-catenin signalling is also implicated in IR-induced EMT
  • Notch signalling is known to be involved in IR-induced EMT
  • IR also increases Notch-1 expression [99]. Notch-1 is known to induce EMT by upregulating Snail
  • PAI-1 signalling is also implicated in IR-induced Akt activation that increases Snail levels to induce EMT
  • EGFR activation is known to be associated with IR-induced EMT, cell migration, and invasion by activating two downstream pathways: PI3K/Akt and Raf/MEK/ERK
  • ROS and RNS are also implicated in IR-induced EGFR activation
  • IR has also been shown to activate Hedgehog (Hh) signalling to induce EMT
  • IR has been shown to induce Akt activation through several signalling pathways (EGFR, C-X-C chemokine receptor type 4 [CXCR4]/C-X-C motif chemokine 12 [CXCL12], plasminogen activator inhibitor 1 [PAI-1]) and upstream regulators (Bmi1, PTEN) that promote EMT and invasion
  • CSCs possess a capacity for self-renewal, and they can persistently proliferate to initiate tumours upon serial transplantation, thus enabling them to maintain the whole tumour
  • Conventional cancer treatments kill most cancer cells, but CSCs survive due to their resistance to therapy, eventually leading to tumour relapse and metastasis
  • identification of CSCs, three types of markers are utilised: cell surface molecules, transcription factors, and signalling pathway molecules
  • CSCs express distinct and specific surface markers; commonly used ones are CD24, CD34, CD38, CD44, CD90, CD133, and ALDH
  • Transcription factors, including Oct4, Sox2, Nanog, c-Myc, and Klf4,
  • signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, platelet-derived growth factor receptor (PDGFR), and JAK/STAT
  • microRNAs (miRNAs), including let-7, miR-22, miR-34a, miR-128, the miR-200 family, and miR-451
  • Non-CSCs can be reprogrammed to become CSCs by epigenetic and genetic changes
  • EMT-inducing transcription factors, such as Snail, ZEB1, and Twist1, are known to confer CSC properties
  • Signalling pathways involved in EMT, including those of TGF-β, Wnt, and Notch, have been shown to play important roles in inducing the CSC phenotype
  • TGF-β1 not only increases EMT markers (Slug, Twist1, β-catenin, N-cadherin), but also upregulates CSC markers (Oct4, Sox2, Nanog, Klf4) in breast and lung cancer cells
  • some CSC subpopulations arise independently of EMT
  • IR has been shown to induce the CSC phenotype in many cancers, including breast, lung, and prostate cancers, as well as melanoma
  • Genotoxic stress due to IR or chemotherapy promotes a CSC-like phenotype by increasing ROS production
  • IR has been shown to induce reprogramming of differentiated cancer cells into CSCs
  • In prostate cancer patients, radiotherapy increases the CD44+ cell population that exhibit CSC properties
  • IR also induces the re-expression of stem cell regulators, such as Sox2, Oct4, Nanog, and Klf4, to promote stemness in cancer cells
  • EMT-inducing transcription factors and signalling pathways, including Snail, STAT3, Notch signalling, the PI3K/Akt pathway, and the MAPK cascade, have been shown to play important roles in IR-induced CSC properties
  • STAT3 directly binds to the Snail promoter and increases Snail transcription, which induces the EMT and CSC phenotypes, in cisplatin-selected resistant cells
  • Other oncogenic metabolic pathways, including glutamine metabolism, the pentose phosphate pathway (PPP), and synthesis of fatty acids and cholesterol, are also enhanced in many cancers
  • metabolic reprogramming
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • metabolic reprogramming
  • tumour cells exhibit high mitochondrial metabolism as well as aerobic glycolysis
  • occurring within the same tumour
  • CSCs can be highly glycolytic-dependent or oxidative phosphorylation (OXPHOS)-dependen
  • mitochondrial function is crucial for maintaining CSC functionality
  • cancer cells depend on mitochondrial metabolism and increase mitochondrial production of ROS that cause pseudo-hypoxia
  • HIF-1 then enhances glycolysis
  • CAFs have defective mitochondria that lead to the cells exhibiting the Warburg effect; the cells take up glucose, and then secrete lactate to 'feed' adjacent cancer cells
  • lactate transporter, monocarboxylate transporter (MCT)
  • nutrient microenvironment
  • Epithelial cancer cells express MCT1, while CAFs express MCT4. MCT4-positive, hypoxic CAFs secrete lactate by aerobic glycolysis, and MCT1-expressing epithelial cancer cells then uptake and use that lactate as a substrate for the tricarboxylic acid (TCA) cycle
  • MCT4-positive cancer cells depend on glycolysis and then efflux lactate, while MCT1-positive cells uptake lactate and rely on OXPHOS
  • metabolic heterogeneity induces a lactate shuttle between hypoxic/glycolytic cells and oxidative/aerobic tumour cells
  • bulk tumour cells exhibit a glycolytic phenotype, with increased conversion of glucose to lactate (and enhanced lactate efflux through MCT4), CSC subsets depend on oxidative phosphorylation; most of the glucose entering the cells is converted to pyruvate to fuel the TCA cycle and the electron transport chain (ETC), thereby increasing mitochondrial ROS production
  • the major fraction of glucose is directed into the pentose phosphate pathway, to produce redox power through the generation of NADPH and ROS scavengers
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • regulatory molecules involved in EMT and CSCs, including Snail, Dlx-2, HIF-1, STAT3, TGF-β, Wnt, and Akt, are implicated in the metabolic reprogramming of cancer cells
  • HIF-1 induces the expression of glycolytic enzymes, including the glucose transporter GLUT, hexokinase, lactate dehydrogenase (LDH), and MCT, resulting in the glycolytic switch
  • HIF-1 represses the expression of pyruvate dehydrogenase kinase (PDK), which inhibits pyruvate dehydrogenase (PDH), thereby inhibiting mitochondrial activity
  • STAT3 has been implicated in EMT-induced metabolic changes as well
  • TGF-β and Wnt play important roles in the metabolic alteration of cancer cells
  • Akt is also implicated in the glycolytic switch and in promoting cancer cell invasiveness
  • EMT, invasion, metastasis, and stemness
  • pyruvate kinase M2 (PKM2), LDH, and pyruvate carboxylase (PC), are implicated in the induction of the EMT and CSC phenotypes
  • decreased activity of PKM2 is known to promote an overall shift in metabolism to aerobic glycolysis
  • LDH catalyses the bidirectional conversion of lactate to pyruvate
  • High levels of LDHA are positively correlated with the expression of EMT and CSC markers
  • IR has been shown to induce metabolic changes in cancer cells
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR also elevates MCT1 expression that exports lactate into the extracellular environment, leading to acidification of the tumour microenvironment
  • IR increases intracellular glucose, glucose 6-phosphate, fructose, and products of pyruvate (lactate and alanine), suggesting a role for IR in the upregulation of cytosolic aerobic glycolysis
  • Lactate can activate latent TGF-
  • lactate stimulates cell migration and enhances secretion of hyaluronan from CAF that promote tumour metastasis
  • promote tumour survival, growth, invasion, and metastasis; enhance the stiffness of the ECM; contribute to angiogenesis; and induce inflammation by releasing several growth factors and cytokines (TGF-β, VEGF, hepatocyte growth factor [HGF], PDGF, and stromal cell-derived factor 1 [SDF1]), as well as MMP
  • tumours recruit the host tissue’s blood vessel network to perform four mechanisms: angiogenesis (formation of new vessels), vasculogenesis (de novo formation of blood vessels from endothelial precursor cells), co-option, and modification of existing vessels within tissues.
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • intrinsic immunogenicity or induce tolerance
  • cancer immunoediting’
  • three phases: 1) elimination, 2) equilibrium, and 3) escape.
  • The third phase, tumour escape, is mediated by antigen loss, immunosuppressive cells (TAM, MDSCs, and regulatory T cells), and immunosuppressive cytokines (TGF-β and IL-10).
  • IR can elicit various changes in the TME, such as CAF activity-mediated ECM remodelling and fibrosis, cycling hypoxia, and an inflammatory response
  • IR activates CAFs to promote the release of growth factors and ECM modulators, including TGF-β and MMP
  • TGF-β directly influences tumour cells and CAFs, promotes tumour immune escape, and activates HIF-1 signalling
    • Nathan Goodyear
       
      And now the receipts
  • MMPs degrade ECM that facilitates angiogenesis, tumour cell invasion, and metastasis
    • Nathan Goodyear
       
      Receipts and mechanisms
  • IR also promotes MMP-2/9 activation in cancer cells to promote EMT, invasion, and metastasis
  • IR-induced Snail increases MMP-2 expression to promote EMT
  • Radiotherapy has the paradoxical side-effect of increasing tumour aggressiveness
  • IR promotes ROS production in cancer cells, which may induce the activation of oncogenes and the inactivation of tumour suppressors, which further promote oncogenic metabolism
  • Metabolic alterations
  • oncogenic metabolism
  • elicit various changes in the TME
  • Although IR activates an antitumour immune response, this signalling is frequently suppressed by tumour escape mechanisms
  •  
    Important review article.
Nathan Goodyear

Patients with Community Acquired Pneumonia Exhibit Depleted Vitamin C Status and Elevat... - 0 views

  •  
    Patients with CAP found to be depleted of vitamin C...a metabolic scurvy if you will.
Nathan Goodyear

Plant-Based Nutritional Supplementation Attenuates LPS-Induced Low-Grade Systemic Activ... - 0 views

  • consumption of this particular diet for at least a 2-month period helped to reduce the outcomes of both acute and chronic inflammation induced by LPS.
  • chronic inflammation compromised both glucose and insulin tolerance, which is normally seen in certain chronic metabolic diseases
  • LPS resulted in an increase in neopterin levels, which is a marker for immune system activation
  • ...6 more annotations...
  • diet enriched in fruits and vegetables (and consequently phytochemicals) was able to reverse the process and maintain and even elevate insulin sensitivity and glucose tolerance
  • LPS-mediated effects are related to an increase in TLR4 levels that triggers the activation of nuclear factor-kB (NF-kB), a transcription factor that activates a cascade of inflammatory mediators [41]. These factors control the transcription of inflammatory mediators, such as IL-1β, IL-6, TNF-α, TNF-β, INF-α, INFβ, INF-γ
  • Inflammation can alter insulin action and give rise to diabetes and obesity by blocking insulin receptor downstream events, impairing insulin receptor substrate 1 (IRS-1) activation and phosphatidylinositol 3-kinase-dependent (PI3K) pathways, therefore compromising insulin signaling
  • systemic inflammation (generated by LPS) also increased neopterin levels in the urine and resulted in altered neuronal activity by decreasing dopamine (DA) metabolism
  • an increase in neopterin levels has been recognized a sensitive biomarker for immune system activation
  • Our experiments denoted that these diets were able to diminish inflammatory mediators and oxidative damage
Nathan Goodyear

Elevated Muscle TLR4 Expression and Metabolic Endotoxemia in Human Aging - 0 views

  •  
    Not a direct cause and effect, but a clear associated between metabolic endotoxemia and increase in TLR4
Nathan Goodyear

NETosis and Neutrophil Extracellular Traps in COVID-19: Immunothrombosis and Beyond - PMC - 0 views

  • Pneumonia is a typical symptom of COVID-19 infection, while acute respiratory distress syndrome (ARDS) and multiple organ failure are common in severe COVID-19 patients
  • NETs are important for preventing pathogen invasion, their excessive formation can result in a slew of negative consequences, such as autoimmune inflammation and tissue damage
  • SARS-CoV-2 infection has also been linked to increased neutrophil-to-lymphocyte ratios, which is associated with disease severity and clinical prognosis
  • ...40 more annotations...
  • NETosis is a special form of programmed cell death in neutrophils, which is characterized by the extrusion of DNA, histones, and antimicrobial proteins in a web-like structure known as neutrophil extracellular traps (NETs)
    • Nathan Goodyear
       
      Definition
  • increased generation of reactive oxygen species (ROS) is a crucial intracellular process that causes NETosis
  • Another indirect route of SARS-CoV-2-induced NET production is platelet activation
  • When NETs are activated in the circulation, they can also induce hypercoagulability and thrombosis
  • In COVID-19, major NET protein cargos of NETs (i.e., NE, MPO, and histones) are significantly elevated.
  • SARS-CoV-2 can also infect host cells through noncanonical receptors such as C-type lectin receptors
  • Immunopathological manifestations, including cytokine storms and impaired adaptive immunity, are the primary drivers behind COVID-19, with neutrophil infiltration being suggested as a significant cause
  • NETosis and NETs are increasingly recognized as causes of vascular injury
  • SARS-CoV-2 and its components (e.g., spike proteins and viral RNA) attach to platelets and increase their activation and aggregation in COVID-19, resulting in vascular injury and thrombosis, both of which are linked to NET formation
    • Nathan Goodyear
       
      Connects SARS-CoV-2 to TLR on Platelets to NETosis to metastasis.
  • NET formation may be caused by activated platelets rather than SARS-CoV-2 itself
  • NETosis, leading to aberrant immunity such as cytokine storms, autoimmune disorders, and immunosuppression.
  • early bacterial coinfections were more prevalent in COVID-19 patients than those infected with other viruses
  • NETosis and NETs may also have a role in the development of post COVID-19 syndromes, including lung fibrosis, neurological disorders, tumor growth, and worsening of concomitant disease
    • Nathan Goodyear
       
      NETosis-> tumor growth
  • NETs and other by-products of NETosis have been shown to act as direct inflammation amplifiers. Hyperinflammation
  • “cytokine storm”
  • SARS-CoV-2 drives NETosis and NET formation to allow for the release of free DNA and by-products (e.g., elastases and histones). This may trigger surrounding macrophages and endothelial cells to secrete excessive proinflammatory cytokines and chemokines, which, in turn, enhance NET formation and form a positive feedback of cytokine storms in COVID-19
    • Nathan Goodyear
       
      Cycle of hyperinflammation
  • NET release enables self-antigen exposure and autoantibody production, thereby increasing the autoinflammatory response
  • patients with COVID-19 who have higher anti-NET antibodies are more likely to be detected with positive autoantibodies [e.g., antinuclear antibodies (ANA) and anti-neutrophil cytoplasmic antibodies (ANCA)]
  • COVID-19 NETs may act as potential inducers for autoimmune responses
  • have weakened adaptive immunity as well as a high level of inflammation
    • Nathan Goodyear
       
      Immunomodulation
  • tumor-associated NETosis and NETs promote an immunosuppressive environment in which anti-tumor immunity is compromised
  • NETs have also been shown to enhance macrophage pyroptosis in sepsis
  • facilitating an immunosuppressive microenvironment
  • persistent immunosuppression may result in bacterial co-infection or secondary infection
  • can enhance this process by interacting with neutrophils through toll-like receptor 4 (TLR4), platelet factor 4 (PF4), and extracellular vesicle-dependent processes
  • NET-induced immunosuppression in COVID-19 in the context of co-existing bacterial infection
  • Following initial onset of COVID-19, an estimated 50% or more of COVID-19 survivors may develop multi-organ problems (e.g., pulmonary dysfunction and neurologic impairment) or have worsening concomitant chronic illness
  • NETs in the bronchoalveolar lavage fluid of severe COVID-19 patients cause EMT in lung epithelial cells
  • decreased E-cadherin (an epithelial marker) expression
    • Nathan Goodyear
       
      Leads to emt
  • COVID-19 also has a long-term influence on tumor progression
  • Patients with tumors have been shown to be more vulnerable to SARS-CoV-2 infection and subsequent development of severe COVID-19
  • patients who have recovered from COVID-19 may have an increased risk of developing cancer or of cancer progression and metastasis
  • awaken cancer cells
  • NETs have been shown to change the tumor microenvironment
  • enhance tumor progression and metastasis
  • vitamin C has been tested in phase 2 clinical trials aimed at reducing COVID-19-associated mortality by reducing excessive activation of the inflammatory response
  • vitamin C is an antioxidant that significantly attenuates PMA-induced NETosis in healthy neutrophils by scavenging ROS
  • vitamin C may also inhibit NETosis and NET production in COVID-19
  • Metformin
  • Vitamin C
  •  
    NETosis intimately involved in progressive COVID, long COVID, autoimmunity, and cancer
Nathan Goodyear

Tumor regionalization after surgery: Roles of the tumor microenvironment and neutrophil... - 0 views

  • tumor surgery must be carefully considered because the risk of metastasis could be increased by the surgical procedure.
  • NETosis, which is the process of forming neutrophil extracellular traps (NETs)
  • surgery-induced metastasis
  • ...61 more annotations...
  • surgery per se can promote cancer metastasis through a series of local and systemic events
  • surgery results in a serious wound that disrupts the structural barrier preventing the outspreading of cancer cells, change the properties of the cancer cells and stromal cells remaining in the tumor microenvironment, or impairs the host defense systems against cancers
    • Nathan Goodyear
       
      Key point; add to presentation on surgery and metastasis
  • After the primary tumor is surgically removed, the metastases can start to grow vigorously via neoangiogenesis because the circulating inhibitors disappear
  • infection and inflammation during the postoperative period have been reported to increase the risk of cancer recurrence in patients
  • Surgeons have long suspected that surgery, even if it is a necessary step in cancer treatment, facilitates cancer metastasis
  • Surgery-induced cancer metastasis has been well established in animal models
  • tumor cell dissemination, tumor-favoring immune responses, and neoangiogenesis
  • the surgical resection of primary tumors is beneficial is controversial
  • CTCs abruptly increase just after surgery
  • Even externally palpitating tumors for diagnosis could increase the numbers of CTCs in skin cancer and breast cancer
  • excessive glucocorticoids negatively modulate immune functions
  • immune surveillance against tumors is considered to be impaired by surgical stress
  • In addition to glucocorticoids, during stimulation of the HPA axis, the catecholamine hormones epinephrine and norepinephrine are released from the adrenal medulla
  • NK cell suppression may be attributed to increased levels of catecholamines as well as glucocorticoids
  • In mice bearing a primary tumor, it was observed that the removal of the primary tumor facilitated the growth of highly vascularized metastases
  • primary tumors may secrete angiogenic inhibitors as well as angiogenic activators
  • second phase of tumor recurrence and metastasis, which are newly acquired events, rather than just outcomes of incomplete treatment.
    • Nathan Goodyear
       
      Another key point
  • double-edged sword
  • HIF-1 in neutrophils plays a critical role in NETosis and bacteria-killing activity
  • neutrophils play various roles in the initiation and progression of cancer
  • NETosis
  • many inflammatory and neoplastic diseases
  • formation of neutrophil extracellular traps (NETs), which are large extracellular complexes composed of chromatin and cytoplasmic/granular proteins1
  • NETosis has been highlighted as an inflammatory event that promotes cancer metastasis
  • Once activated, neutrophils produce intracellular precursors by using DNA, histones, and granular and cytoplasmic proteins and then spread the mature form of NETs out around themselves
  • A series of these events is called NETosis.
  • neutrophil elastase, myeloperoxidase, cathepsin G, proteinase 3, lactoferrin, gelatinase, lysozyme C, calprotectin, neutrophil defensins, and cathelicidins
  • innate immune response against infection
  • Neutrophils are the most abundant type of granulocytes, comprising 40–70% of all white blood cells
  • two types of NEToses, suicidal (or lytic) NETosis and vital NETosis
  • Suicidal NETosis mainly depends on the production of reactive oxygen species (ROS)
  • Since neutrophils die during this process, it is called suicidal NETosis.
  • vital NETosis
  • vital NETosis occurs independently of ROS production
  • Vital NETosis can be induced by Gram-negative bacteria. LPS
  • NETs are present in a variety of cancers, such as lung cancer, colon cancer, ovarian cancer, and leukemia
  • neutrophils actively undergo NETosis in the tumor microenvironment
  • Hypoxia
  • NETosis plays a pivotal role in noninfectious autoimmune diseases,
  • cytokines
  • tumor-derived proteases
  • tumor exosomes
  • NETosis generally actively progresses in the tumor microenvironment.
  • the proliferative cytokines TGFβ and IL-10 and the angiogenic factor VEGF are representative of neutrophil-derived tissue repair proteins.
  • NETosis is a defense system to protect the body from invading pathogens
  • when neutrophils are excessively stimulated, they produce excess NETs, thereby leading to pathological consequences
  • plasma levels of NETosis markers are elevated after major surgeries
  • local invasion, intravasation into the blood or lymphatic vessels, escape from the immune system, anchoring to capillaries in target organs, extravasation into the organs, transformation from dormant cells to proliferating cells, colonization to micrometastases, and growth to macrometastases
  • NETs promote metastasis at multiple steps
  • NETs loosen the ECM and capillary wall to promote the intravasation of cancer cells
  • NETs and platelets wrap CTCs, which protects them from attack by immune cells and shearing force by blood flow
  • NETs promote the local invasion of cancer cells by degrading the extracellular matrix (ECM)
  • neutrophil elastase, matrix metalloproteinase 9, and cathepsin G
  • NETs also promote the intravasation of cancer cells
  • millions of tumor cells are released into the circulation every day,
  • NETs can wrap up CTCs with platelets
  • β1-integrin plays an important role in the interaction between CTCs and NETs
  • NET-platelet-CTC aggregates.
  • After metastasizing to distant tissues, tumor cells are often found to remain dormant for a period of time and unexpectedly regrow late
  • NETs are believed to participate in the reactivation of dormant cancer cells in metastatic regions
  • NET-associated proteases NE and MMP-9 were found to be responsible for the reactivation of dormant cancer cells
  •  
    Surgery induced metastasis: it is real and steered by NETosis.
Nathan Goodyear

High-Dose Vitamin C for Cancer Therapy - PMC - 0 views

  • diabetes [8], atherosclerosis [9], the common cold [10], cataracts [11], glaucoma [12], macular degeneration [13], stroke [14], heart disease [15], COVID-19 [16], and cancer.
  • 1–5% of the Vit-C inside the human cells
  • interaction between Fe(II) and H2O2 produces OH− through the Fenton reaction
  • ...35 more annotations...
  • metabolic activity, oxygen transport, and DNA synthesis
  • Iron is found in the human body in the form of haemoglobin in red blood cells and growing erythroid cells.
  • macrophages contain considerable quantities of iron
  • iron is taken up by the majority of cells in the form of a transferrin (Tf)-Fe(III) complex that binds to the cell surface receptor transferrin receptor 1 (TfR1)
  • excess iron is retained in the liver cells
  • the endosomal six transmembrane epithelial antigen of the prostate 3 (STEAP3) reduces Fe(III) (ferric ion) to Fe(II) (ferrous ion), which is subsequently transferred across the endosomal membrane by divalent metal transporter 1 (DMT1)
  • labile iron pool (LIP)
  • LIP is toxic to the cells owing to the production of massive amounts of ROS.
  • DHA is quickly converted to Vit-C within the cell, by interacting with reduced glutathione (GSH) [45,46,47]. NADPH then recycles the oxidized glutathione (glutathione disulfide (GSSG)) and converts it back into GSH
  • Fe(II) catalyzes the formation of OH• and OH− during the interaction between H2O2 and O2•− (Haber–Weiss reaction)
  • Ascorbate can efficiently reduce free iron, thus recycling the cellular Fe(II)/Fe(III) to produce more OH• from H2O2 than can be generated during the Fenton reaction, which ultimately leads to lipid, protein, and DNA oxidation
  • Vit-C-stimulated iron absorption
  • reduce cellular iron efflux
  • high-dose Vit-C may elevate cellular LIP concentrations
  • ascorbate enhanced cancer cell LIP specifically by generating H2O2
  • Vit-C produces H2O2 extracellularly, which in turn inhibits tumor cells immediately
  • tumor cells have a need for readily available Fe(II) to survive and proliferate.
  • Tf has been recognized to sequester most labile Fe(II) in vivo
  • Asc•− and H2O2 were generated in vivo upon i.v Vit-C administration of around 0.5 g/kg of body weight and that the generation was Vit-C-dose reliant
  • free irons, especially Fe(II), increase Vit-C autoxidation, leading to H2O2 production
  • iron metabolism is altered in malignancies
  • increase in the expression of various iron-intake pathways or the downregulation of iron exporter proteins and storage pathways
  • Fe(II) ion in breast cancer cells is almost double that in normal breast tissues
  • macrophages in the cancer microenvironment have been revealed to increase iron shedding
  • Advanced breast tumor patients had substantially greater Fe(II) levels in their blood than the control groups without the disease
  • increased the amount of LIP inside the cells through transferrin receptor (TfR)
  • Warburg effect, or metabolic reprogramming,
  • Warburg effect is aided by KRAS or BRAF mutations
  • Vit-C is supplied, it oxidizes to DHA, and then is readily transported by GLUT-1 in mutant cells of KRAS or BRAF competing with glucose [46]. DHA is quickly converted into ascorbate inside the cell by NADPH and GSH [46,107]. This decrease reduces the concentration of cytosolic antioxidants and raises the intracellular ROS amounts
  • increased ROS inactivates glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
  • ROS activates poly (ADP-ribose) polymerase (PARP), which depletes NAD+ (a critical co-factor of GAPDH); thus, further reducing the GAPDH associated with a multifaceted metabolic rewiring
  • Hindering GAPDH can result in an “energy crisis”, due to the decrease in ATP production
  • high-dose Vit-C recruited metabolites and increased the enzymatic activity in the pentose phosphate pathway (PPP), blocked the tri-carboxylic acid (TCA) cycle, and increased oxygen uptake, disrupting the intracellular metabolic balance and resulting in irreversible cell death, due to an energy crisis
  • mega-dose Vit-C influences energy metabolism by producing tremendous amounts of H2O2
  • Due to its great volatility at neutral pH [76], bolus therapy with mega-dose DHA has only transitory effects on tumor cells, both in vitro and in vivo.
Nathan Goodyear

Dihydroartemisinin is potential therapeutics for treating late-stage CRC by targeting t... - 0 views

  •  
    Ras mutation connected to abnormal expression of Myc
« First ‹ Previous 421 - 440 of 442 Next ›
Showing 20 items per page