Skip to main content

Home/ Dr. Goodyear/ Group items tagged changes

Rss Feed Group items tagged

Nathan Goodyear

The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pa... - 0 views

  • WNT signaling
  • early colon cancers commonly display loss of function of the tumor suppressor Adenomatous polyposis coli (APC), a key component of the β-CATENIN destruction complex
  • Other cancers also show an active canonical WNT pathway; these include carcinomas of the lung, stomach, cervix, endometrium, and lung as well as melanomas and gliomas
  • ...31 more annotations...
  • In normal embryogenesis and homeostasis, the canonical WNT pathway is activated by secreted WNT ligands produced in highly controlled context-dependent manners and in precise amounts. WNT activity is transduced in the cytoplasm, inactivates the APC destruction complex, and results in the translocation of activate β-CATENIN to the nucleus, where it cooperates with DNA-binding TCF/LEF factors to regulate WNT-TCF targets and the ensuing genomic response
  • beyond the loss of activity of the APC destruction complex, for instance throughAPC mutation, phosphorylation of β-CATENIN at C-terminal sites is required for the full activation of WNT-TCF signaling and the ensuing WNT-TCF responses in cancer.
  • The WNT-TCF response blockade that we describe for low doses of Ivermectin suggests an action independent to the deregulation of chloride channels
  • involve the repression of the levels of C-terminally phosphorylated β-CATENIN forms and of CYCLIN D1, a critical target that is an oncogene and positive cell cycle regulator.
  • the Avermectin single-molecule derivative Selamectin, a drug widely used in veterinarian medicine (Nolan & Lok, 2012), is ten times more potent acting in the nanomolar range
  • Ivermectin also diminished the protein levels of CYCLIN D1, a direct TCF target and oncogene, in both HT29 and H358 tumor cells
  • Activated Caspase3 was used as a marker of apoptosis by immunohistochemistry 48 h after drug treatment. Selamectin and Ivermectin induced up to a sevenfold increase in the number of activated Caspase3+ cells in two primary (CC14 and CC36) and two cell line (DLD1 and Ls174T) colon cancer cell types (Fig​(Fig2C).2C). All changes were significative
  • The strong downregulation of the expression of the intestinal stem cell genesASCL2 andLGR5 (van der Flieret al, 2009; Scheperset al, 2012; Zhuet al, 2012b) by Ivermectin and Selamectin (Fig​(Fig2D)2D) raised the possibility that these drugs could affect WNT-TCF-dependent colon cancer stem cell behavior
  • Pre-established H358 tumors responded to Ivermectin showing a ˜ 50% repression of growth
  • Ivermectin hasin vivo efficacy against human colon cancer xenografts sensitive to TCF inhibition with no discernable side effects
  • Ivermectin (Campbellet al, 1983), an off-patent drug approved for human use, and related macrocyclic lactones, have WNT-TCF pathway response blocking and anti-cancer activities
  • these drugs block WNT-TCF pathway responses, likely acting at the level of β-CATENIN/TCF function, affecting β-CATENIN phosphorylation status.
  • anti-WNT-TCF activities of Ivermectin and Selamectin
  • Ivermectin has a well-known anti-parasitic activity mediated via the deregulation of chloride channels, leading to paralysis and death (Hibbs & Gouaux, 2011; Lynagh & Lynch, 2012). The same mode of action has been suggested to underlie the toxicity of Ivermectin for liquid tumor cells and the potentiation or sensitization effect of Avermectin B1 on classical chemotherapeutics
  • the specificity of the blockade of WNT-TCF responses we document, at low micromolar doses for Ivermectin and low nanomolar doses for Selamectin, indicate that the blockade of WNT-TCF responses and chloride channel deregulation are distinct modes of action
  • What is key then is to find a dose and a context where the use of Ivermectin has beneficial effects in patients, paralleling our results with xenografts in mice.
  • Cell toxicity appears at doses greater (> 10 μM for 12 h or longer or > 5 μM for 48 h or longer for Ivermectin) than those required to block TCF responses and induce apoptosis.
  • Our data point to a repression of WNT-β-CATENIN/TCF transcriptional responses by Ivermectin, Selamectin and related macrocylic lactones.
  • (i) The ability of Avermectin B1 to inhibit the activation of WNT-TCF reporter activity by N-terminal mutant (APC-insensitive) β-CATENIN as detected in our screen
  • (ii) The ability of Avermectin B1, Ivermectin, Doramectin, Moxidectin and Selamectin to parallel the modulation of WNT-TCF targets by dnTCF
  • (iii) The finding that the specific WNT-TCF response blockade by low doses of Ivermectin and Selamectin is reversed by constitutively active TCF
  • (iv) The repression of key C-terminal phospho-isoforms of β-CATENIN resulting in the repression of the TCF target and positive cell cycle regulator CYCLIN D1 by Ivermectin and Selamectin
  • (v) The specific inhibition ofin-vivo-TCF-dependent, but notin-vivo-TCF-independent cancer cells by Ivermectin in xenografts.
  • These results together with the reduction of the expression of the colon cancer stem cell markersASCL2 andLGR5 (e.g., Hirschet al, 2013; Ziskinet al, 2013) raise the possibility of an inhibitory effect of Ivermectin, Selamectin and related macrocyclic lactones on TCF-dependent cancer stem cells.
  • the capacity of cancer cells to form 3D spheroids in culture, as well as the growth of these, is also WNT-TCF-dependent (Kanwaret al, 2010) and they were also affected by Ivermectin treatment
  • If Ivermectin is specific, it should only block TCF-dependent tumor growth. Indeed, the sensitivity and insensitivity of DLD1 and CC14 xenografts to Ivermectin treatment, respectively, together with the desensitization to Ivermectin actionin vivo by constitutively active TCF provide evidence of the specificity of this drug to block an activated WNT-TCF pathway in human cancer.
  • Ivermectin has a good safety profile since onlyin-vivo-dnTCF-sensitive cancer xenografts are responsive to Ivermectin treatment, and we have not detected side effects in Ivermectin-treated mice at the doses used
  • previous work has shown that side effects from systemic treatments with clinically relevant doses in humans are rare (Yang, 2012), that birth defects were not observed after exposure of pregnant mothers (Pacquéet al, 1990) and that this drug does not cross the blood–brain barrier (Kokozet al, 1999). Similarly, only dogs with mutantABCB1 (MDR1) alleles leading to a broken blood–brain barrier show Ivermectin neurotoxicity (Mealeyet al, 2001; Orzechowskiet al, 2012)
  • Indications may include treatment for incurable β-CATENIN/TCF-dependent advanced and metastatic human tumors of the lung, colon, endometrium, and other organs.
  • Ivermectin, Selamectin, or related macrocyclic lactones could also serve as topical agents for WNT-TCF-dependent skin lesions and tumors such as basal cell carcinomas
  • they might also be useful as routine prophylactic agents, for instance against nascent TCF-dependent intestinal tumors in patients with familial polyposis and against nascent sporadic colon tumors in the general aging population
  •  
    Ivermectin, a common anti-parasitic, found to inhibit WTF-TCF pathway and decrease c-terminal phosophorylaiton of Beta-CATENIN all resulting in increased aptosis and inhibition of cancer growth in colon cancer cell lines and lung cancer cell lines.
Nathan Goodyear

In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epitheli... - 0 views

  • we functionally validated a potent EOC oncogene, KPNB1, and showed its clinical relevance to human EOC
  • a well-established antiparasitic drug, ivermectin, has antitumor effects on EOC through its inhibition of KPNB1
  • EOC has high intertumor and intratumor heterogeneity at the molecular and epigenetic levels
  • ...22 more annotations...
  • the mortality rate of EOC has not been significantly changed for several decades
  • Sequencing revealed that almost all tumors (96%) had mutations in TP53, which serves as a major driver of this cancer
  • Low-prevalence but statistically significant mutations in nine other genes including NF1, BRCA1, BRCA2, RB1, and CDK12 were also identified, but the majority of genes were mutated at low frequency, making it difficult to distinguish between driver and passenger mutations
  • KPNB1 inhibition via any of three KPNB1 siRNAs or importazole treatment induced apoptosis in human EOC cell lines (Fig. 3 A–F and Fig. S4), and was accompanied by an increase in the expression levels of the proapoptotic proteins BAX and cleaved caspase-3
  • Stable overexpression of KPNB1 in SKOV3 and OVCAR3 (Fig. S6) significantly accelerated cell proliferation/survival (Fig. 5 A–C), confirming that KPNB1 functions as an oncogene in EOC
  • KPNB1 overexpression significantly decreased caspase-3/7 activity (Fig. 5D), in addition to the expression levels of cleaved caspase-3 and BAX proteins (Fig. 5E). KPNB1 overexpression also decreased p21 and p27 protein levels (Fig. 5E), as opposed to their increase by KPNB1 inhibition
  • KPNB1 functions as an antiapoptotic and proproliferative oncogene in EOC.
  • Patients with higher expression levels of KPNB1 showed earlier recurrence and worse prognosis than those with lower expression levels of KPNB1
  • KPNB1 acts as an oncogene in human EOC and represents a promising therapeutic target.
  • ivermectin treatment suppressed cell proliferation/viability in a dose-dependent manner (Fig. 7A), indicating that it exerts an antitumor effect on EOC
  • ivermectin also induced apoptosis
  • ivermectin increased the expression levels of BAX, and cleaved PARP, as well as p21 and p27
  • KPNB1 inhibition is responsible for the antitumor effect of ivermectin
  • we found that ivermectin synergistically reduced cell proliferation/viability in combination with paclitaxel in human EOC cells
  • Single treatment of ivermectin or paclitaxel reduced tumor growth in nude mice, but, notably, combination treatment of ivermectin and paclitaxel almost completely suppressed tumor growth
  • ERBB2, is amplified and overexpressed in many cancers, including breast (31), ovary (31), colon (32), bladder (33), non-small-cell lung (34), and gastric cancer (35), and is a poor prognostic factor in certain cancer types
  • KPNB1 was the second-highest-ranked gene identified in our screen
  • Increased KPNB1 protein levels have been reported in several cancers, including cervical cancer (42), hepatocellular carcinoma (43), and glioma (44), suggesting KPNB1’s oncogenic potential in these tumor types
  • our findings suggest that KPNB1 might serve as a master regulator of cell cycle by regulating several cell cycle-related proteins, including p21, p27, and APC/C family members
  • higher and/or more-frequent doses of ivermectin than currently approved for humans are well tolerated in humans
  • none of the mice in this study treated with the effective dosage of ivermectin for in vivo anticancer therapy showed severe adverse event
  • we found that the combination of ivermectin and paclitaxel produces a stronger antitumor effect on EOC cell lines than either drug alone
  •  
    Ivermectin found to be pro-apoptotic for the epithelial ovarian cancer oncogene, KPNB1 in in Vivo study.  This effective anti-parasitic drug inhibits the KPNB1 oncogene.
Nathan Goodyear

18FDG-PET/CT for predicting the outcome in ER+/HER2- breast cancer patients: comparison... - 0 views

  • our study confirms that baseline PET parameters measured before neoadjuvant treatment have prognostic values in ER+/HER2- locally advanced breast cancer patients
  • It has been suggested that high baseline 18F-fluorodeoxyglucose (18FDG) uptake assessed by high standardized uptake value (SUV) could be associated with poor prognostic factors such as the high histological grade [2] as well as worse survival
  • several teams observed that the change in SUV values early during neoadjuvant treatment could be a good indicator of pathological response and potentially outcome
  • ...5 more annotations...
  • others studies suggested that baseline 18FDG uptake, which would avoid performing a second examination, could also be of interest to predict patient outcome, especially in ER+/HER2- BC
  • ER+/HER2- BC has less intense 18FDG uptake than some other phenotypes such as TN carcinoma
  • Patients with high baseline 18FDG tumor uptake are at higher risk of early recurrence
  • The 3-year EFS was 78.4% in patients with baseline tumor SUVmax > 8.3 (vs. 94.0% in those with SUVmax ≤ 8.3)
  • event-free survival (EFS)
  •  
    Study finds benefit of PET scan in prognosis in ER+/HER2- breast cancers.
Nathan Goodyear

Evaluation of FLT-PET-CT as an imaging biomarker of proliferation in primary breast can... - 0 views

  • We have demonstrated that the majority of patients have a sizeable reduction in SUVmax from a single cycle of NAC with a mean change of −32.3%
  • This study, however, failed to show any predictive markers of response after one cycle of chemotherapy
  • These data therefore suggest that the main utility of FLT-PET as an imaging biomarker in early breast cancer is pre-chemotherapy, as a marker of proliferation, rather than in predicting pathological response after chemotherapy
  • ...2 more annotations...
  • In terms of the histological proliferation biomarker Ki-67, we have shown a good correlation with FLT-PET pre-chemotherapy. The best predictive marker of response in terms of pCR was baseline Ki-67
  • Our study has shown that baseline Ki-67 and FLT SUVmax is well correlated in keeping with FLT-PETs status as a proliferation biomarker, although Ki-67 had a better predictive ability in terms of pathological outcome
  •  
    PET CT scan shown to be useful as a proliferation biomarker pre-chemo in breast cancer.
Nathan Goodyear

Growth Inhibition of Ovarian Tumor-Initiating Cells by Niclosamide | Molecular Cancer T... - 0 views

  • Ovarian cancer is the most lethal gynecologic malignancy and the fifth-most cause of overall cancer death of women in developed countries
  • An increasingly accepted cancer stem cell hypothesis regards tumors as caricatures of normal organs, possessing a hierarchy of cell types, at various stages of aberrant differentiation, descended from precursor tumor-initiating cells (TIC) cells that are highly resistant to conventional cytotoxics
  • Significant changes of gene expression in 2,928 genes were identified after niclosamide treatment for different time periods
  • ...14 more annotations...
  • uncoupling of mitochondrial oxidative phosphorylation is believed to be its anti-helminthic mechanism of action
  • we hypothesized that niclosamides antagonistic effects on OTICs could, in part, be due to its disruption of metabolism
  • Our results showed that genes participating in protein complexes of oxidative phosphorylation were downregulated
  • niclosamide treatment resulted in a more than 20% increase in reactive oxygen species (ROS) in cultured OTICs
  • niclosamide, which has proved to be safe and effective for the past 2 decades against numerous parasites, inhibited OTIC growth both in vitro and in vivo
  • niclosamide represses metabolic enzymes responsible for bioenergetics, biosynthesis, and redox regulation specifically in OTICs, presumably leading to mitochondrial intrinsic apoptosis pathways, loss of tumor stemness, and growth inhibition
  • Niclosamide is believed to inhibit mitochondrial oxidative phosphorylation
  • Niclosamide was reported to inactivate NF-κB, causing mitochondrial damage and the generation of ROS, leading to apoptosis of leukemic stem cells
  • niclosamide were identified in a screen for mTOR-signaling inhibitors
  • mTOR was reported to maintain stemness properties of HSCs by inhibiting mitochondrial biogenesis and ROS levels (39), implying that mTOR inhibitors (such as niclosamide) may interfere with mitochondria and various metabolic pathways in TICs via disruption of antioxidant responses
  • We observed Wnt hyperactivity in OTICs, in agreement with previous hypotheses of Wnt inhibitor effectiveness as an ovarian cancer therapy
  • niclosamide has now been independently identified in screens for Wnt inhibitors
  • downregulation of the Wnt/β-catenin target oncogenes survivin and c-Myc
  • ovarian carcinogenesis, the cell-to-cell signaling pathway Notch (8), were also suppressed by niclosamide (data not shown). These results agree with another recent niclosamide study in leukemia (49), and it has been widely hypothesized that disruption of Notch signaling may represent a highly effective therapy for ovarian and other solid tumors, via its essentiality to maintaining TIC stemness
  •  
    Niclosamide, common anti-parasitic medication, inhibits cellular metabolism and increases ROS; both of which provide powerful anti-proliferative, anti-cancer treatment mechanism in TICs. Powerful target therapy for cancer stem cells. Also shown to inhibit Wnt stimulated oncogenes survivin and c-Myc, disrupts Notch signaling, inactivates NF-kappaBeta, and inhibits mTOR-signaling.  This has been found in in vitro and in vivo studies.
Nathan Goodyear

Changes in the immune system during menopause and aging. - PubMed - NCBI - 0 views

  •  
    Menopause is associated with a decline in CD4 T and B cells and well as a decrease in NK cells.  This is a set up for disease, particularly cancer.
Nathan Goodyear

Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Agg... - 0 views

  • Our work suggests that protein misfolding and immune activation in neurodegenerative disorders are triggered through cross-seeding by exposure to exogenous microbial amyloids in the nose, mouth and gut.
  • Streptococcus mutans, Staphlococcus aureus, Salmonella enterica, Mycobacterium tuberculosis and others
  • Gene homologs encoding curli were recently determined also in four phyla: Bacteroidetes, Proteobacteria, Firmicutes, and Thermodesulfobacteria
  • ...8 more annotations...
  • changes in the gut microbiota induced by antibiotics alter neuroinflammation and amyloid deposition in a mouse model of AD
  • Our data suggest that amyloid proteins in the microbiota are involved in the origination and maintenance of neurodegenerative disease.
  • exposure to bacteria producing a functional extracellular amyloid protein enhances aggregation of AS in brain neurons in aged rats and in muscle cells in nematodes
  • AS aggregates seed aggregation of tau
  • involvement of the vagus nerve in PD
  • microgliosis, astrogliosis and enhanced expression of IL-6, TLR2 and TNF in the brain following curli exposure suggest the occurrence of an enhanced local sterile inflammatory response to AS in the brain.
  • the immune system in both AD and PD have now been extensively established
  • TLR2 activation through exposure to bacterial amyloid is pathogenic
  •  
    Gut bacteria may play crucial role in systemic inflammation that leads to Alzheimer's and Parkinson's disease.  These amyloid production bacteria trigger systemic inflammation that leads to microglia activation and amyloid in the brain.   More establishment of the gut-brain connection.  
Nathan Goodyear

Cortisol Exerts Bi-Phasic Regulation of Inflammation in Humans - 0 views

  • GCs induce increased cellular expression of receptors for several pro-inflammatory cytokines including interleukin (IL)-1 (Spriggs et al. 1990), IL-2 (Wiegers et al. 1995), IL-4 (Paterson et al. 1994), IL-6 (Snyers et al. 1990), and IFN-g (Strickland et al. 1986), as well as GM-CSF
  • GCs have also been shown to stimulate effector cell functions including phagocytosis by monocytes (van der Goes et al. 2000), effector cell proliferative responses (Spriggs et al. 1990), macrophage activation (Sorrells and Sapolsky 2010), and a delay of neutrophil apoptosis
  • a concentration- and time-dependent range of GC effects that are both pro- and anti-inflammatory
  • ...13 more annotations...
  • basal (diurnal) concentrations of cortisol do not exert an anti-inflammatory effect on several pro-and anti-inflammatory mediators of the human immune inflammatory response
  • withdrawal of cortisol activity in vivo did not lead to increased inflammatory responsiveness of immune effector cells
  • maximal suppression of inflammation was achieved by a stress-associated, but still physiologic, cortisol concentration. There was no greater anti-inflammatory effect at higher cortisol concentrations (Yeager et al. 2005) although IL-10 concentrations continued to increase with increasing cortisol concentrations as we and others have shown
  • acutely, physiological cortisol concentrations are anti-inflammatory and, as proposed, act to limit over expression of an inflammatory response that could lead to tissue damage
  • Acutely, cortisol has anti-inflammatory effects following a systemic inflammatory stimulus (Figure 4). However, a cortisol concentration that acts acutely to suppress systemic inflammation also has a delayed effect of augmenting the inflammatory response to subsequent, delayed stimulu
  • 1) GCs can exert pro-inflammatory effects on key inflammatory processes and, 2) GC regulation of inflammation can vary from anti- to a pro-inflammatory in a time-dependent manner
  • The immediate in vivo effect of both stress-induced and pharmacological GC concentrations is to suppress concurrent inflammation and protect the organism from an excessive or prolonged inflammatory response
  • GCs alone, in the absence of an inflammatory stimulus, up-regulate monocyte mRNA and/or receptors for several molecules that participate in pro-inflammatory signaling, as noted above and in the studies presented here.
  • In humans, as shown here, if in vivo GC concentrations are elevated concurrent with an inflammatory stimulus, anti-inflammatory effects are observed
  • In sharp contrast, with a time delay of 12 or more hours between an increased GC concentration and the onset of an inflammatory stimulus, enhancing effects on inflammation are observed. These effects have been shown to persist in humans for up to 6 days
  • GC-induced enhancement of inflammatory responses is maximal at an intermediate concentration, in our studies at a concentration that approximates that observed in vivo following a major systemic inflammatory stimulus
  • In addition to enhanced responses to LPS, recently identified pro-inflammatory effects of GCs also show enhanced localization of effector cells at inflammatory sites
  • we hypothesize that pre-exposure to stress-associated cortisol concentrations “prime” effector cells of the monocyte/macrophage lineage for an augmented pro-inflammatory response by; a) inducing preparative changes in key regulators of LPS signal transduction, and b) enhancing localization of inflammatory effector cells at potential sites of injury
  •  
    very interesting read on the effects of inflammation on cortisol and visa versa.
Nathan Goodyear

Press-pulse: a novel therapeutic strategy for the metabolic management of cancer | Nutr... - 0 views

  • A “press” disturbance was considered a chronic environmental stress on all organisms in an ecological community
  • “pulse” disturbances were considered acute events that disrupted biological communities to produce high mortality
  • Neoplasia involving dysregulated cell growth is the biological endpoint of the disease
  • ...84 more annotations...
  • Data from the American Cancer Society show that the rate of increase in cancer deaths/year (3.4%) was two-fold greater than the rate of increase in new cases/year (1.7%) from 2013 to 2017
  • cancer is predicted to overtake heart disease as the leading cause of death in Western societies
  • cancer can also be recognized as a metabolic disease.
  • glucose is first split into two molecules of pyruvate through the Embden–Meyerhof–Parnas glycolytic pathway in the cytosol
  • Aerobic fermentation, on the other hand, involves the production of lactic acid under normoxic conditions
  • persistent lactic acid production in the presence of adequate oxygen is indicative of abnormal respiration
  • Otto Warburg first proposed that all cancers arise from damage to cellular respiration
  • The Crabtree effect is an artifact of the in vitro environment and involves the glucose-induced suppression of respiration with a corresponding elevation of lactic acid production even under hyperoxic (pO2 = 120–160 mmHg) conditions associated with cell culture
  • the Warburg theory of insufficient aerobic respiration remains as the most credible explanation for the origin of tumor cells [2, 37, 51, 52, 53, 54, 55, 56, 57].
  • The main points of Warburg’s theory are; 1) insufficient respiration is the predisposing initiator of tumorigenesis and ultimately cancer, 2) energy through glycolysis gradually compensates for insufficient energy through respiration, 3) cancer cells continue to produce lactic acid in the presence of oxygen, and 4) respiratory insufficiency eventually becomes irreversible
  • Efraim Racker coined the term “Warburg effect”, which refers to the aerobic glycolysis that occurs in cancer cells
  • Warburg clearly demonstrated that aerobic fermentation (aerobic glycolysis) is an effect, and not the cause, of insufficient respiration
  • all tumor cells that have been examined to date contain abnormalities in the content or composition of cardiolipin
  • The evidence supporting Warburg’s original theory comes from a broad range of cancers and is now overwhelming
  • respiratory insufficiency, arising from any number mitochondrial defects, can contribute to the fermentation metabolism seen in tumor cells.
  • data from the nuclear and mitochondrial transfer experiments suggest that oncogene changes are effects, rather than causes, of tumorigenesis
  • Normal mitochondria can suppress tumorigenesis, whereas abnormal mitochondria can enhance tumorigenesis
  • In addition to glucose, cancer cells also rely heavily on glutamine for growth and survival
  • Glutamine is anapleurotic and can be rapidly metabolized to glutamate and then to α-ketoglutarate for entry into the TCA cycle
  • Glucose and glutamine act synergistically for driving rapid tumor cell growth
  • Glutamine metabolism can produce ATP from the TCA cycle under aerobic conditions
  • Amino acid fermentation can generate energy through TCA cycle substrate level phosphorylation under hypoxic conditions
  • Hif-1α stabilization enhances aerobic fermentation
  • targeting glucose and glutamine will deprive the microenvironment of fermentable fuels
  • Although Warburg’s hypothesis on the origin of cancer has created confusion and controversy [37, 38, 39, 40], his hypothesis has never been disproved
  • Warburg referred to the phenomenon of enhanced glycolysis in cancer cells as “aerobic fermentation” to highlight the abnormal production of lactic acid in the presence of oxygen
  • Emerging evidence indicates that macrophages, or their fusion hybridization with neoplastic stem cells, are the origin of metastatic cancer cells
  • Radiation therapy can enhance fusion hybridization that could increase risk for invasive and metastatic tumor cells
  • Kamphorst et al. in showing that pancreatic ductal adenocarcinoma cells could obtain glutamine under nutrient poor conditions through lysosomal digestion of extracellular proteins
  • It will therefore become necessary to also target lysosomal digestion, under reduced glucose and glutamine conditions, to effectively manage those invasive and metastatic cancers that express cannibalism and phagocytosis.
  • Previous studies in yeast and mammalian cells show that disruption of aerobic respiration can cause mutations (loss of heterozygosity, chromosome instability, and epigenetic modifications etc.) in the nuclear genome
  • The somatic mutations and genomic instability seen in tumor cells thus arise from a protracted reliance on fermentation energy metabolism and a disruption of redox balance through excess oxidative stress.
  • According to the mitochondrial metabolic theory of cancer, the large genomic heterogeneity seen in tumor cells arises as a consequence, rather than as a cause, of mitochondrial dysfunction
  • A therapeutic strategy targeting the metabolic abnormality common to most tumor cells should therefore be more effective in managing cancer than would a strategy targeting genetic mutations that vary widely between tumors of the same histological grade and even within the same tumor
  • Tumor cells are more fit than normal cells to survive in the hypoxic niche of the tumor microenvironment
  • Hypoxic adaptation of tumor cells allows for them to avoid apoptosis due to their metabolic reprograming following a gradual loss of respiratory function
  • The high rates of tumor cell glycolysis and glutaminolysis will also make them resistant to apoptosis, ROS, and chemotherapy drugs
  • Despite having high levels of ROS, glutamate-derived from glutamine contributes to glutathione production that can protect tumor cells from ROS
    • Nathan Goodyear
       
      reason to eliminate glutamine in cancer patients and even GSH with cancer patients
  • It is clear that adaptability to environmental stress is greater in normal cells than in tumor cells, as normal cells can transition from the metabolism of glucose to the metabolism of ketone bodies when glucose becomes limiting
  • Mitochondrial respiratory chain defects will prevent tumor cells from using ketone bodies for energy
  • glycolysis-dependent tumor cells are less adaptable to metabolic stress than are the normal cells. This vulnerability can be exploited for targeting tumor cell energy metabolism
  • In contrast to dietary energy reduction, radiation and toxic drugs can damage the microenvironment and transform normal cells into tumor cells while also creating tumor cells that become highly resistant to drugs and radiation
  • Drug-resistant tumor cells arise in large part from the damage to respiration in bystander pre-cancerous cells
  • Because energy generated through substrate level phosphorylation is greater in tumor cells than in normal cells, tumor cells are more dependent than normal cells on the availability of fermentable fuels (glucose and glutamine)
  • Ketone bodies and fats are non-fermentable fuels
  • Although some tumor cells might appear to oxidize ketone bodies by the presence of ketolytic enzymes [181], it is not clear if ketone bodies and fats can provide sufficient energy for cell viability in the absence of glucose and glutamine
  • Apoptosis under energy stress is greater in tumor cells than in normal cells
  • A calorie restricted ketogenic diet or dietary energy reduction creates chronic metabolic stress in the body
  • . This energy stress acts as a press disturbance
  • Drugs that target availability of glucose and glutamine would act as pulse disturbances
  • Hyperbaric oxygen therapy can also be considered another pulse disturbance
  • The KD can more effectively reduce glucose and elevate blood ketone bodies than can CR alone making the KD potentially more therapeutic against tumors than CR
  • Campbell showed that tumor growth in rats is greater under high protein (>20%) than under low protein content (<10%) in the diet
  • Protein amino acids can be metabolized to glucose through the Cori cycle
  • The fats in KDs used clinically also contain more medium chain triglycerides
  • Calorie restriction, fasting, and restricted KDs are anti-angiogenic, anti-inflammatory, and pro-apoptotic and thus can target and eliminate tumor cells through multiple mechanisms
  • Ketogenic diets can also spare muscle protein, enhance immunity, and delay cancer cachexia, which is a major problem in managing metastatic cancer
  • GKI values of 1.0 or below are considered therapeutic
  • The GKI can therefore serve as a biomarker to assess the therapeutic efficacy of various diets in a broad range of cancers.
  • It is important to remember that insulin drives glycolysis through stimulation of the pyruvate dehydrogenase complex
  • The water-soluble ketone bodies (D-β-hydroxybutyrate and acetoacetate) are produced largely in the liver from adipocyte-derived fatty acids and ketogenic dietary fat. Ketone bodies bypass glycolysis and directly enter the mitochondria for metabolism to acetyl-CoA
  • Due to mitochondrial defects, tumor cells cannot exploit the therapeutic benefits of burning ketone bodies as normal cells would
  • Therapeutic ketosis with racemic ketone esters can also make it feasible to safely sustain hypoglycemia for inducing metabolic stress on cancer cells
    • Nathan Goodyear
       
      Ketones are much more than energy adaptabilit, but actually are therapeutic.
  • ketone bodies can inhibit histone deacetylases (HDAC) [229]. HDAC inhibitors play a role in targeting the cancer epigenome
  • Therapeutic ketosis reduces circulating inflammatory markers, and ketones directly inhibit the NLRP3 inflammasome, an important pro-inflammatory pathway linked to carcinogenesis and an important target for cancer treatment response
  • Chronic psychological stress is known to promote tumorigenesis through elevations of blood glucose, glucocorticoids, catecholamines, and insulin-like growth factor (IGF-1)
  • In addition to calorie-restricted ketogenic diets, psychological stress management involving exercise, yoga, music etc. also act as press disturbances that can help reduce fatigue, depression, and anxiety in cancer patients and in animal models
  • Ketone supplementation has also been shown to reduce anxiety behavior in animal models
  • This physiological state also enhances the efficacy of chemotherapy and radiation therapy, while reducing the side effects
  • lower dosages of chemotherapeutic drugs can be used when administered together with calorie restriction or restricted ketogenic diets (KD-R)
  • Besides 2-DG, a range of other glycolysis inhibitors might also produce similar therapeutic effects when combined with the KD-R including 3-bromopyruvate, oxaloacetate, and lonidamine
    • Nathan Goodyear
       
      oxaloacetate is a glycolytic inhibitor, as is doxycycline, and IVC.
  • A synergistic interaction of the KD diet plus radiation was seen
  • It is important to recognize, however, that the radiotherapy used in glioma patients can damage the respiration of normal cells and increase availability of glutamine in the microenvironment, which can increase risk of tumor recurrence especially when used together with the steroid drug dexamethasone
  • Poff and colleagues demonstrated that hyperbaric oxygen therapy (HBOT) enhanced the ability of the KD to reduce tumor growth and metastasis
  • HBOT also increases oxidative stress and membrane lipid peroxidation of GBM cells in vitro
  • The effects of the KD and HBOT can be enhanced with administration of exogenous ketones, which further suppressed tumor growth and metastasis
  • Besides HBOT, intravenous vitamin C and dichloroacetate (DCA) can also be used with the KD to selectively increase oxidative stress in tumor cells
  • Recent evidence also shows that ketone supplementation may enhance or preserve overall physical and mental health
  • Some tumors use glucose as a prime fuel for growth, whereas other tumors use glutamine as a prime fuel [102, 186, 262, 263, 264]. Glutamine-dependent tumors are generally less detectable than glucose-dependent under FDG-PET imaging, but could be detected under glutamine-based PET imaging
  • GBM and use glutamine as a major fuel
  • Many of the current treatments used for cancer management are based on the view that cancer is a genetic disease
  • Emerging evidence indicates that cancer is a mitochondrial metabolic disease that depends on availability of fermentable fuels for tumor cell growth and survival
  • Glucose and glutamine are the most abundant fermentable fuels present in the circulation and in the tumor microenvironment
  • Low-carbohydrate, high fat-ketogenic diets coupled with glycolysis inhibitors will reduce metabolic flux through the glycolytic and pentose phosphate pathways needed for synthesis of ATP, lipids, glutathione, and nucleotides
  •  
    Cancer is a mitochondrial disease? So says the well published Dr Seyfried. Glucose and glutamine drive cancer growth.
trungtamnamkhoa

Pimples In The Penis - What Is The Cause? - 1 views

  •  
    The penis gets pimples, white or red items make men worried because they don't know the cause. In most of the causes of penile acne, the group of causes of sexually transmitted diseases is the most dangerous. Genital skin is very sensitive, especially in the penis. Only a small change can cause abnormal symptoms such as tumors, irritation, irritation and discomfort. Men need to understand the reasons for effective prevention and treatment. Group of allergy causes: Men with acne in the penis due to local allergies, for example, the penis skin has been exposed to "strange" substances from poor quality condoms. In addition, wearing underwear that is too tight, fabric material is not guaranteed or new clothes bought without washing well and many dust and dirt also cause irritation and penile pimples. Eating allergenic foods can also irritate the skin and, if unfortunately, the skin is as delicate as the "genital area".
trungtamnamkhoa

menhealthvn - Slashdot User - 1 views

  •  
    Male health is an important issue that directly affects the well-being of families and labor productivity in the whole society. Today, with the negative changes of the environment and work pressures, many diverse and complex male pathologies have arisen. However, while gynecological examinations are performed periodically by women, male medical examination is often not respected by men because of the subjectivity as well as reservations about psychology.
communicationmem

Heart Patient Support - 0 views

  •  
    My heart attack is a life changing event. I am always aware of this fact that when I am speaking to a loved one, it could be the last conversation that I have with them. My coronary arteriography present that I have three vessel diseases. Please support me for getting heart treatment.
Nathan Goodyear

Changes in neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios during chemoradia... - 0 views

  •  
    Increased NLR and PLR Associated with poor/worse prognosis.
Nathan Goodyear

Epithelial‐to‐mesenchymal transition (EMT) to sarcoma in recurrent lung adeno... - 0 views

  • facilitates the dissemination of cancer cells to distant organs. In addition to facilitating metastasis, EMT is thought to generate cancer stem cells (CSCs), which are generally resistant to apoptosis and to standard chemotherapeutic drugs and radiotherapy
  • IL‐6, which enhances TGF‐β‐induced EMT changes in NSCLC
  • aside from TGF‐β and Snail, several other signalling pathways including Notch, Wnt, and integrin are known to activate EMT through transcriptional repression of E‐cadherin
  • ...4 more annotations...
  • increasing evidence that treatment with chemotherapy or chemoradiotherapy can induce EMT in NSCLC which in turn is thought to generate CSCs which are generally resistant to such treatments
  • cisplatin has been shown to increase the release of Interleukin‐6 (IL‐6) and expression of transforming growth factor beta (TGF‐β)
  • EMT confers an invasive phenotype and
  • IL‐6 serves to block apoptosis in cells
  •  
    Chemotherapy causes EMT.
Nathan Goodyear

Hyperthermia as an immunotherapy strategy for cancer - 1 views

  • the notion of treating human cancers with heat dates back to the writings of Hippocrates
  • enhance the efficiency of standard cancer therapies, such as chemotherapy and radiation treatment
  • After antigen uptake at tumor sites, APCs have the ability to create a robust response by entering lymphoid compartments and programming lymphocytes
  • ...36 more annotations...
  • Hyperthermia differs fundamentally from fever in that it elevates the core body temperature without changing the physiological set point
  • hyperthermia is induced by increasing the heat load and/or inactivating heat dissipation
  • mor cells [2]. Although significant cell killing could be achieved by heating cells or tissues to temperatures > 42°C for 1 or more hours, the application, measurement and consistency of this temperature range within the setting of cancer clinical trials
  • mild temperature hyperthermia (ie, within the fever-range, 39–41°C)
    • Nathan Goodyear
       
      101.2 to 105.8
  • moderate hyperthermia (41°C)
    • Nathan Goodyear
       
      105.8 F
  • Hsps are a family of stress-induced proteins
  • they are key regulators of cellular protein activity, turnover and trafficking
  • Hsps ensure appropriate post-translational protein folding, and are able to refold denatured proteins, or mark irreversibly damaged proteins for destruction
  • the ability of fever-range hyperthermia to induce reactive immunity against tumor antigens through DCs and NK-cells is likely mediated by Hsps
  • thermotolerance
  • Hsps support the malignant phenotype of cancer cells by not only affecting the cells’ survival, but also participating in angiogenesis, invasion, metastasis and immortalization mechanisms
  • Hsps released from stressed or dying cells activate dendritic cells (DCs), transforming them into mature APCs
  • In theory, fever-range hyperthermia may take advantage of tumor cell Hsps by inducing their release from tumor cells and augmenting DC priming against tumor antigens
  • In several models of hyperthermia, heat-treated tumors exhibited improved DC priming and generation of systemic immunity to tumor cell
  • hyperthermia alone can enhance antigen display by tumor cells, thus rendering them even more susceptible to programmed immune clearance
  • Fever-range hyperthermia may also induce Hsps
  • Hsps may exert an adjuvant effect by bolstering MHC class II and co-stimulatory molecule expression by DCs
  • thermal ablation of liver tumors in particular has demonstrated an ability to potentiate immune responses [57, 58] and elicit robust T-cell infiltrates at ablation sites
  • specific Hsp, Hsp70, directly inhibits apoptosis pathways in cancer cells, as demonstrated in human pancreatic, prostate and gastric cancer cells
  • Cross-priming is the ability of extracellular Hsps complexed to tumor peptides to be internalized and presented in the context of MHC class I molecules on APCs, thus allowing potent priming of CTLs against tumor antigens
  • It has been reported that Hsps are generated from necrotic tumor cell lysates, but not from tumor cells undergoing apoptosis
  • tumor cells exposed to hyperthermia in the heat shock range (42°C for 4h) prior to lysing, DC activation and cross-priming were significantly enhanced with the application of heat
  • Due to the ability of Hsps to activate DCs directly by chaperoning tumor antigens upon their release [28], it is possible that both local and regional immune stimulation can be achieved with hyperthermia.
  • support the use of hyperthermia as an inducer of Hsps to serve as ‘danger signals’, activating antitumor immune responses
  • whole-body hyperthermia not only augments immune responses, but also stimulates the migration of skin-derived DCs to draining lymph nodes
    • Nathan Goodyear
       
      This allows for the activation of lymphocytes by the activated dendritic cells.
  • suggest a valuable role of hyperthermia in DC cancer vaccine strategies
  • In mice treated with fever-range whole-body hyperthermia, tumor growth was significantly inhibited and NK-cell infiltration increased
    • Nathan Goodyear
       
      Hyperthermia increased NK cell activation, proliferation, and infiltration, which equals increased cytotoxicity.
  • exposure to fever-range hyperthermia resulted in improved endogenous NK-cell cytotoxicity to several cancer types
  • improved activation and function of DCs and NK cells following hyperthermia
  • Hyperthermia increases the expression ICAM-1 a key adhesion molecule,
  • The combined effects of hyperthermia on lymphoid tissue endothelium and lymphocytes can promote immune surveillance and increase the probability of naive lymphocytes leaving the circulation and encountering their cognate antigen displayed by DCs in lymphoid organs.
  • In independent clinical studies, whole-body hyperthermia resulted in a transient decrease in circulating lymphocytes in patients with advanced cancer [12, 94, 99, 100], a finding which mirrored observations in animal models in which lymphocyte entry into lymph noeds was increased following hyperthermia treatment [93]. Enhanced recruitment of lymphocytes to lymphoid tissues may be exploited in the treatment of malignancies.
  • The initial tumor antigen presentation and initiation of clonal expansion of CTLs transpires in the lymph nodes and cannot take place outside this specialized compartment
  • the ability of DCs present in the lymph nodes to stimulate an anti-tumor immune response is critical
  • hyperthermia has been shown to improve immune surveillance by T-cell
  • and to increase DC trafficking to lymph nodes
  •  
    Great review of hyperthermia.
Nathan Goodyear

Lifestyle changes in women with polycystic ovary syndrome. - PubMed - NCBI - 0 views

  •  
    Cochran review of 6 studies of only 164 women found lifestyle interventions improved body composition, mostly fat loss, decreased the hyperandrogen status and improved insulin resistance in women with PCOS.
Nathan Goodyear

Treatment of Men for "Low Testosterone": A Systematic Review - 0 views

  • Of 47 studies that assessed sexual function or satisfaction, 23 studies reported beneficial effects of testosterone treatment for at least 1 measure of sexual function or satisfaction,[6, 26, 35, 37, 40, 43–60] and 24 studies did not show testosterone-associated improvements in any sexual function endpoint
  • Of 31 studies that evaluated erectile function, 15 found no improvement with testosterone therapy
  • Twelve studies included men with ED; 8 found no benefit of testosterone over placebo
  • ...2 more annotations...
  • Of 23 studies that specifically reported changes in libido, 13 found that testosterone treatment increased libido,[26, 35, 37, 45, 46, 54, 56, 60, 63, 65, 70, 77, 79] eight found no effect,
  • Eleven studies used the Aging Males’ Symptoms scale, which includes 3 questions on libido and sexual function. Five studies found no difference between testosterone and placebo on total scores,[26, 54, 57, 72, 76] and 4 studies found a benefit of testosterone
  •  
    A systemic review of Testosterone benefit in men stirs the pot.  I can't say that I agree with the majority of their conclusions.  What I do agree with them on is that the majority of men on Testosterone therapy likely don't need it and are simply using Testosterone as a drug.
Nathan Goodyear

Alzheimer's Disease Clinical and Research Update for Health Care Practitioners - 0 views

  • Alpha GPC, phosphatidylserine, Huperzine A, and choline show promise as nutraceutical agents for enhancing cognitive performance and slowing cognitive decline
  • Alpha GPC, also known as L-Alpha Glycerylphosphorylcholine, a naturally occurring form of choline, acts as a parasympathomimetic acetylcholine precursor and has shown promise in improving cognitive symptoms related to AD, vascular dementia, and multi-infarct dementia
  • Phosphatidylserine is a widely abundant anionic phospholipid in the human body and has been shown to improve age-related cognitive changes
  • ...2 more annotations...
  • Huperzine A (a natural cholinesterase inhibitor) has been linked to improved memory performance in elderly people with benign forgetfulness, as well as patients with AD and vascular dementia
  • Cholinesterase inhibitors have been shown to have neuroprotective properties in patients with mild [37] as well as moderate-to-advanced AD
  •  
    good review of treatment for Alzheimer's, both prescription and natural.
Nathan Goodyear

Crescent pyramid and drop-set systems do not promote greater strength gains, muscle hyp... - 0 views

  •  
    no training benefit with pyramid and drop-set workouts compared to traditional resistance training.  The key is repeitition, proper technique and just doing it.
Nathan Goodyear

Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle: Cell Metabolism - 0 views

  • our results provide evidence to suggest that acute exercise induces gene-specific DNA hypomethylation in human skeletal muscle
  • Our results suggest that DNA methylation is a component of the exercise-induced effect on expression of these genes.
  • Caffeine exposure decreased promoter methylation of Pgc-1α, Tfam, Mef2a, Cs, and Pdk4
  • ...4 more annotations...
  • the effect of exercise on DNA methylation in human skeletal muscle and provide evidence that acute exercise alters promoter methylation of exercise-responsive genes in a dose-dependent manner
  • DNA methylation was unaltered 48 hr after a 3-week exercise training program, whereas RNA expression of PGC-1α and TFAM promoters was elevated (data not shown), further suggesting that DNA hypomethylation is a transient mechanism involved in mRNA synthesis
  • Our findings that ionomycin, AICAR, or ROS production increased mRNA expression without altering promoter methylation may support the notion that DNA methylation does not exclusively control exercise-induced gene expression
  • acute exercise leads to transient changes in DNA methylation in adult skeletal muscle
  •  
    Small study finds acute exercise is associated with epigenetic alteration of muscle through methylation.  This study found a hypomethylation of the genes PGC-1alpha, PDK4, and PPAR-delta with a respondent increase in expression.  The methylation activity was in the promoter region of these genes.
« First ‹ Previous 381 - 400 of 440 Next › Last »
Showing 20 items per page