Skip to main content

Home/ Dr. Goodyear/ Group items tagged HSD

Rss Feed Group items tagged

Nathan Goodyear

Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisone shuttle. - 0 views

  • These results suggest that cortisol acts as a potent mineralocorticoid in 11 beta-OHSD deficiency
  • major site for the oxidation of cortisol to cortisone is the kidney
  • congenital deficiency of 11 beta-OHSD results in high intrarenal cortisol levels which then act on renal type I mineralocorticoid receptors
  • ...1 more annotation...
  • deficiency of 11 beta-OHSD results in high intrarenal cortisol concentrations that then bind to the type I receptor.
  •  
    mechanism of how cortisol acts as a mineralcorticoid in those with dysfunctional 11-beta HSD activity.
Nathan Goodyear

11beta-hydroxysteroid dehydrogenase type 1 an... [Front Horm Res. 2008] - PubMed - NCBI - 0 views

  • Adipose-selective 11beta -HSD1 transgenic mice exhibited elevated intra-adipose and portal, but not systemic corticosterone levels, abdominal obesity, hyperglycaemia, insulin resistance, dyslipidaemia and hypertension
  • transgenic overexpression of 11beta -HSD1 in liver yielded an attenuated metabolic syndrome with mild insulin resistance, dyslipidaemia, hypertension and fatty liver, but not obesity or glucose intolerance
  •  
    11-betaHSD1 expression and effect is site specific.
Nathan Goodyear

An endocrine pathway in the prostate, ERβ, AR, 5α-androstane-3β,17β-diol, and... - 0 views

  • Although the prostate is an androgen-dependent tissue, estrogens influence both normal functions and pathological changes in this gland
  • This dual action may be due to the existence of two estrogen receptors, ERα and ERβ
  • ERα and ERβ have similar affinities for estradiol-17β
  • ...6 more annotations...
  • In this study we have shown that regulation of the levels of 3βAdiol by CYP7B1 is a key factor in regulation of prostatic growth
  • We provide evidence that proliferating cells in the prostate epithelium have elevated levels of AR and that AR protein but not mRNA levels are regulated by ERβ and its ligand 3βAdiol in the prostate epithelium.
  • because inhibition of 5α-reductase causes accumulation of testosterone and removal of ERβ action increases the level of AR in the prostate, the overall effect of Finasteride would be to favor proliferation of the prostate epithelium
  • studies show that ERβ tends to be lost in advanced prostate cancer.
  • DHEA is converted in the body to 5-androstene-3β,17β-diol, which is also a ligand for estrogen receptors (25, 39) and a substrate for CYP7B1
  • At the peak of proliferation, the proliferating epithelial cells in the ventral prostate expressed high levels of CYP7B1 but had no detectable ERβ, whereas in nonproliferating cells the level of ERβ was high and that of CYP7B1 was low.
  •  
    3-beta androstanediola, a product of 3alpha-HSD from DHT binds to ER beta and down regulates AR in prostate cancer.  This study proposes that the mechanism is via CYP7B1.  CYP7B1 inactivates 3-beta androstanediol.  Interesting, because 3-beta androstanediol is considered "inactive" when compared to 3-alpha androstanediol and its interaction with ER alpha.  
Nathan Goodyear

Effects of Peroxisome Proliferator-Activated Receptor-α and -γ Agonists on 11... - 0 views

  •  
    PPAR alpha and/or PPAR gamma does not down regulate 11Beta-HSD1.
Nathan Goodyear

Increased whole-body and sustained liver cortisol r... [Diabetes. 2011] - PubMed - NCBI - 0 views

  •  
    Adipose 11Beta-HSD1 activity is increased in obese individuals with type II DM.  
Nathan Goodyear

Dietary Macronutrient Content Alters Cortisol Metabolism Independently of Body Weight C... - 0 views

  •  
    Extra-adrenal cortisol production is increased by 11-Beta-HSD1 via low Carb diet.  This is counter to that seen in mice studies.  The fat content of the diet could explain this.  This study looked at men.
Nathan Goodyear

Resistance training restores muscle sex steroid hormone steroidogenesis in older men - 0 views

  •  
    I like this study.  So many men, and women for that matter, focus on cardio for health and weight loss.  In men, low Testosterone is associated with aging as is weight.  This inverse relationship leads to the sarcopenic (belly, manboobs, and thin arms/legs) obesity so prevalent in older men today.  This study found that older men do have lower levels of enzymes and androgens from muscle biopsies as compared to younger men.  A 12 week resistance training regimen of only knee flexion and extension (simple) resulted in increased 3-beta-hydroxysteroid dehydrogenase and 17-beta-hydroxysteroid dehydrogenase.  
Nathan Goodyear

http://joe.endocrinology-journals.org/content/170/2/413.full.pdf - 0 views

  •  
    Leptin shown to inhibit steroid hormone synthesis in the gonads via inhibition of 17beta-HSD.  This is in addition to other reports of inhibition of 17,20 lyase, adrenal cortisol inhibition, inhibition of CRF, and inhibition of LH/FSH.
Nathan Goodyear

Tissue-Specific Increases in 11β-Hydroxysteroid Dehydrogenase Type 1 in Norma... - 0 views

  •  
    11 beta HSD type 1 increases in menopause in normal weight women.  This may explain some of the metabolism changes seen in women post-menopause.
Nathan Goodyear

Liver X Receptors Downregulate 11β-Hydroxysteroid Dehydrogenase Type 1 Expres... - 0 views

  •  
    11beta-HSD type 1 is predominantly expressed in liver and adipose tissue.
Nathan Goodyear

Immunohistochemical localization of ... [J Clin Endocrinol Metab. 1998] - PubMed - NCBI - 0 views

  •  
    11beta-HSD type I is highly expressed in liver, adrenal glands, ovaries, and adipose tissue in human immunohistochemical analysis.
Nathan Goodyear

11Beta hydroxysteroid dehydrogenase ty... [Clin Endocrinol (Oxf). 2006] - PubMed - NCBI - 0 views

  •  
    11beta-HSD type I dominantly expressed in muscle.
Nathan Goodyear

JCI - Reduced activity of 11β-hydroxysteroid dehydrogenase in patients with c... - 0 views

  •  
    good discussion of 11beta-HSD in cortisol metabolism
Nathan Goodyear

Overtraining Syndrome - 0 views

  • Alterations in the HPA and hypothalamic-pituitary-gonadal axes with a resultant decrease in testosterone:cortisol ratios have been implicated in OTS. Proinflammatory cytokines are potent activators of the HPA system, which cause release of corticotropin-releasing hormone, adrenocorticotropic hormone, and cortisol. These cytokines suppress testosterone through central inhibition
  • Some have suggested that a decreased testosterone:cortisol ratio can be diagnostic of NFO and/or OTS. However, the ratio represents the physiologic strain of training rather than the athlete’s maladaption to that stress
  • Cortisol (catabolic and anti-inflammatory) is converted to inactive cortisone by 11β-HSD2
  • ...2 more annotations...
  • A prospective study found a clinically significant increase in overnight urinary cortisol:cortisone ratio during a high training load period in triathletes, who subsequently underperformed and reported fatigue
  • It is proposed that cytokines may inhibit 11β-HSD2 activity and result in relative increases in cortisol and, hence, catabolism
  •  
    Overtraining syndrome described.
Nathan Goodyear

Association of Hypertension and Hypokalemia with Cushing's Syndrome Caused by Ectopic A... - 0 views

  • cortisol may act as a mineralocorticoid when in excess, perhaps by saturating the 11β-hydroxysteroid-dehydrogenase (11β-HSD2 enzyme) that inactivates cortisol at the renal tubule
  • high cortisol levels may be the principal cause of hypokalemic alkalosis
  •  
    high cortisol, whether exogenous or endogenous, can have a mineral corticoid effect and resultant low potassium.
Nathan Goodyear

More evidence intratumoral DHT synthesis drives castration-resistant prostate cancer Wi... - 0 views

  •  
    Mouse model shows that intratumor conversion of DHEA to DHT stimulates tumor growth in prostate cancer model.
Nathan Goodyear

Expression of 3beta-hydroxysteroid d... [Breast Cancer Res Treat. 1998] - PubMed - NCBI - 0 views

  •  
    Study finds that breast cancer cells can produce endogenous progesterone from pregnenolone via 3-beta-hydroxysteroid dehyrdogenase.
Nathan Goodyear

Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy - 0 views

  • Additional studies have similarly found that prostate tissue levels of DHT in PCa patients treated with ADT therapy before prostatectomy declined by only ∼75% versus declines of ∼95% in serum levels
  • In a recent study in healthy men, treatment for 1 month with a GnRH antagonist to suppress testicular androgen synthesis caused a 94% decline in serum testosterone, but only a 70–80% decline in prostate tissue testosterone and DHT
  • progression to CRPC was associated with increased intratumoral accumulation or synthesis of testosterone.
  • ...9 more annotations...
  • the intraprostatic synthesis of testosterone from adrenal-derived precursors likely accounts for the relatively high testosterone levels in prostate after ADT
  • In addition, AR activity in these cells is likely further enhanced by multiple mechanisms that sensitize AR to low levels of androgens
  • higher affinity ligand DHT (approximately eightfold higher affinity
  • type 2 5α-reductase (SRD5A2) being the major enzyme in prostate
  • reduce DHT to 5α-androstane-3α,17β-diol (3α-androstanediol; Ji et al. 2003, Rizner et al. 2003), which is then glucuronidated to form 3α-androstanediol glucuronide by the enzymes UDP glycosyltransferase 2, B15 (UGT2B15) or UGT2B17
  • DHT in prostate is inactivated by the enzyme AKR1C2, which is also termed 3α-hydroxysteroid dehydrogenase type 3 (3α-HSD type 3
    • Nathan Goodyear
       
      The metabolite 3-alpha androstanediol is NOT inactive as this author states.  This DHT metabolite actually can stimulate  ER alpha receptors in the prostate.
  • AKR1C1, is also expressed in prostate. However, in contrast to AKR1C2, it converts DHT primarily to 5α-androstane-3β,17β-diol (3β-androstanediol; Steckelbroeck et al. 2004), which is a potential endogenous ligand for the estrogen receptor β
  • Significantly, intraprostatic testosterone levels were not substantially reduced relative to controls with normal serum androgen levels, although DHT levels were reduced to 18% of controls
  • testosterone levels in many of the CRPC samples were actually increased relative to control tissues (Montgomery et al. 2008). While DHT levels were less markedly increased, this may have reflected DHT catabolism
  •  
    This article discusses the failure of androgen deprivation therapy and prostate cancer.  This failure is quite common.  The authors point to alpha-DHT as the primary mechanism through AR stimulation.  However, we know that DHT metabolites also stimulate estrogen receptors.
Nathan Goodyear

Testosterone and the Cardiovascular System: A Comprehensive Review of the Clinical Lite... - 0 views

  • Low endogenous bioavailable testosterone levels have been shown to be associated with higher rates of all‐cause and cardiovascular‐related mortality.39,41,46–47 Patients suffering from CAD,13–18 CHF,137 T2DM,25–26 and obesity27–28
  • have all been shown to have lower levels of endogenous testosterone compared with those in healthy controls. In addition, the severity of CAD15,17,29–30 and CHF137 correlates with the degree of testosterone deficiency
  • In patients with CHF, testosterone replacement therapy has been shown to significantly improve exercise tolerance while having no effect on LVEF
  • ...66 more annotations...
  • testosterone therapy causes a shift in the skeletal muscle of CHF patients toward a higher concentration of type I muscle fibers
  • Testosterone replacement therapy has also been shown to improve the homeostatic model of insulin resistance and hemoglobin A1c in diabetics26,68–69 and to lower the BMI in obese patients.
  • Lower levels of endogenous testosterone have been associated with longer duration of the QTc interval
  • testosterone replacement has been shown to shorten the QTc interval
  • negative correlation has been demonstrated between endogenous testosterone levels and IMT of the carotid arteries, abdominal aorta, and thoracic aorta
  • These findings suggest that men with lower levels of endogenous testosterone may be at a higher risk of developing atherosclerosis.
  • Current guidelines from the Endocrine Society make no recommendations on whether patients with heart disease should be screened for hypogonadism and do not recommend supplementing patients with heart disease to improve survival.
  • The Massachusetts Male Aging Study also projects ≈481 000 new cases of hypogonadism annually in US men within the same age group
  • since 1993 prescriptions for testosterone, regardless of the formulation, have increased nearly 500%
  • Testosterone levels are lower in patients with chronic illnesses such as end‐stage renal disease, human immunodeficiency virus, chronic obstructive pulmonary disease, type 2 diabetes mellitus (T2DM), obesity, and several genetic conditions such as Klinefelter syndrome
  • A growing body of evidence suggests that men with lower levels of endogenous testosterone are more prone to develop CAD during their lifetimes
  • There are 2 major potential confounding factors that the older studies generally failed to account for. These factors are the subfraction of testosterone used to perform the analysis and the method used to account for subclinical CAD.
  • The biologically inactive form of testosterone is tightly bound to SHBG and is therefore unable to bind to androgen receptors
  • The biologically inactive fraction of testosterone comprises nearly 68% of the total testosterone in human serum
  • The biologically active subfraction of testosterone, also referred to as bioavailable testosterone, is either loosely bound to albumin or circulates freely in the blood, the latter referred to as free testosterone
  • It is estimated that ≈30% of total serum testosterone is bound to albumin, whereas the remaining 1% to 3% circulates as free testosterone
  • it can be argued that using the biologically active form of testosterone to evaluate the association with CAD will produce the most reliable results
  • English et al14 found statistically significant lower levels of bioavailable testosterone, free testosterone, and free androgen index in patients with catheterization‐proven CAD compared with controls with normal coronary arteries
  • patients with catheterization‐proven CAD had statistically significant lower levels of bioavailable testosterone
  • In conclusion, existing evidence suggests that men with CAD have lower levels of endogenous testosterone,13–18 and more specifically lower levels of bioavailable testosterone
  • low testosterone levels are associated with risk factors for CAD such as T2DM25–26 and obesity
  • In a meta‐analysis of these 7 population‐based studies, Araujo et al41 showed a trend toward increased cardiovascular mortality associated with lower levels of total testosterone, but statistical significance was not achieved (RR, 1.25
  • the authors showed that a decrease of 2.1 standard deviations in levels of total testosterone was associated with a 25% increase in the risk of cardiovascular mortality
  • the relative risk of all‐cause mortality in men with lower levels of total testosterone was calculated to be 1.35
  • higher risk of cardiovascular mortality is associated with lower levels of bioavailable testosterone
  • Existing evidence seems to suggest that lower levels of endogenous testosterone are associated with higher rates of all‐cause mortality and cardiovascular mortality
  • studies have shown that lower levels of endogenous bioavailable testosterone are associated with higher rates of all‐cause and cardiovascular mortality
  • It may be possible that using bioavailable testosterone to perform mortality analysis will yield more accurate results because it prevents the biologically inactive subfraction of testosterone from playing a potential confounding role in the analysis
  • The earliest published material on this matter dates to the late 1930s
  • the concept that testosterone replacement therapy improves angina has yet to be proven wrong
  • In more recent studies, 3 randomized, placebo‐controlled trials demonstrated that administration of testosterone improves myocardial ischemia in men with CAD
  • The improvement in myocardial ischemia was shown to occur in response to both acute and chronic testosterone therapy and seemed to be independent of whether an intravenous or transdermal formulation of testosterone was used.
  • testosterone had no effect on endothelial nitric oxide activity
  • There is growing evidence from in vivo animal models and in vitro models that testosterone induces coronary vasodilation by modulating the activity of ion channels, such as potassium and calcium channels, on the surface of vascular smooth muscle cells
  • Experimental studies suggest that the most likely mechanism of action for testosterone on vascular smooth muscle cells is via modulation of action of non‐ATP‐sensitive potassium ion channels, calcium‐activated potassium ion channels, voltage‐sensitive potassium ion channels, and finally L‐type calcium ion channels
  • Corona et al confirmed those results by demonstrating that not only total testosterone levels are lower among diabetics, but also the levels of free testosterone and SHBG are lower in diabetic patients
  • Laaksonen et al65 followed 702 Finnish men for 11 years and demonstrated that men in the lowest quartile of total testosterone, free testosterone, and SHBG were more likely to develop T2DM and metabolic syndrome.
  • Vikan et al followed 1454 Swedish men for 11 years and discovered that men in the highest quartile of total testosterone were significantly less likely to develop T2DM
  • authors demonstrated a statistically significant increase in the incidence of T2DM in subjects receiving gonadotropin‐releasing hormone antagonist therapy. In addition, a significant increase in the rate of myocardial infarction, stroke, sudden cardiac death, and development of cardiovascular disease was noted in patients receiving antiandrogen therapy.67
  • Several authors have demonstrated that the administration of testosterone in diabetic men improves the homeostatic model of insulin resistance, hemoglobin A1c, and fasting plasma glucose
  • Existing evidence strongly suggests that the levels of total and free testosterone are lower among diabetic patients compared with those in nondiabetics
  • insulin seems to be acting as a stimulant for the hypothalamus to secret gonadotropin‐releasing hormone, which consequently results in increased testosterone production. It can be argued that decreased stimulation of the hypothalamus in diabetics secondary to insulin deficiency could result in hypogonadotropic hypogonadism
  • BMI has been shown to be inversely associated with testosterone levels
  • This interaction may be a result of the promotion of lipolysis in abdominal adipose tissue by testosterone, which may in turn cause reduced abdominal adiposity. On the other hand, given that adipose tissue has a higher concentration of the enzyme aromatase, it could be that increased adipose tissue results in more testosterone being converted to estrogen, thereby causing hypogonadism. Third, increased abdominal obesity may cause reduced testosterone secretion by negatively affecting the hypothalamus‐pituitary‐testicular axis. Finally, testosterone may be the key factor in activating the enzyme 11‐hydroxysteroid dehydrogenase in adipose tissue, which transforms glucocorticoids into their inactive form.
  • increasing age may alter the association between testosterone and CRP. Another possible explanation for the association between testosterone level and CRP is central obesity and waist circumference
  • Bai et al have provided convincing evidence that testosterone might be able to shorten the QTc interval by augmenting the activity of slowly activating delayed rectifier potassium channels while simultaneously slowing the activity of L‐type calcium channels
  • consistent evidence that supplemental testosterone shortens the QTc interval.
  • Intima‐media thickness (IMT) of the carotid artery is considered a marker for preclinical atherosclerosis
  • Studies have shown that levels of endogenous testosterone are inversely associated with IMT of the carotid artery,126–128,32,129–130 as well as both the thoracic134 and the abdominal aorta
  • 1 study has demonstrated that lower levels of free testosterone are associated with accelerated progression of carotid artery IMT
  • another study has reported that decreased levels of total and bioavailable testosterone are associated with progression of atherosclerosis in the abdominal aorta
  • These findings suggest that normal physiologic testosterone levels may help to protect men from the development of atherosclerosis
  • Czesla et al successfully demonstrated that the muscle specimens that were exposed to metenolone had a significant shift in their composition toward type I muscle fibers
  • Type I muscle fibers, also known as slow‐twitch or oxidative fibers, are associated with enhanced strength and physical capability
  • It has been shown that those with advanced CHF have a higher percentage of type II muscle fibers, based on muscle biopsy
  • Studies have shown that men with CHF suffer from reduced levels of total and free testosterone.137 It has also been shown that reduced testosterone levels in men with CHF portends a poor prognosis and is associated with increased CHF mortality.138 Reduced testosterone has also been shown to correlate negatively with exercise capacity in CHF patients.
  • Testosterone replacement therapy has been shown to significantly improve exercise capacity, without affecting LVEF
  • the results of the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not cause an increase in the rate of adverse cardiovascular events
  • Data from 3 meta‐analyses seem to contradict the commonly held belief that testosterone administration may increase the risk of developing prostate cancer
  • One meta‐analysis reported an increase in all prostate‐related adverse events with testosterone administration.146 However, when each prostate‐related event, including prostate cancer and a rise in PSA, was analyzed separately, no differences were observed between the testosterone group and the placebo group
  • the existing data from the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not increase the risk of adverse cardiovascular events
  • the authors correctly point out the weaknesses of their study which include retrospective study design and lack of randomization, small sample size at extremes of follow‐up, lack of outcome validation by chart review and poor generalizability of the results given that only male veterans with CAD were included in this study
    • Nathan Goodyear
       
      The authors here present Total Testosterone as a "confounding" value
    • Nathan Goodyear
       
      This would be HSD-II
  • the studies that failed to find an association between testosterone and CRP used an older population group
  • low testosterone may influence the severity of CAD by adversely affecting the mediators of the inflammatory response such as high‐sensitivity C‐reactive protein, interleukin‐6, and tumor necrosis factor–α
  •  
    Good review of Testosterone and CHD.  Low T is associated with increased all cause mortality and cardiovascular mortality, CAD, CHF, type II diabetes, obesity, increased IMT,  increased severity of CAD and CHF.  Testosterone replacement in men with low T has been shown to improve exercise tolerance in CHF, improve insulin resistance, improve HgbA1c and lower BMI in the obese.
Nathan Goodyear

Hypertension and the cortisol-cortis... [J Clin Endocrinol Metab. 2003] - PubMed - NCBI - 0 views

  •  
    Abstract only available.  Cortisol-cortisone shuttle play a role in hypertension.  Those with 11betaHSD type II defects will have elevated blood pressure due to increase in mineralcorticoids.
‹ Previous 21 - 40 of 40
Showing 20 items per page