Skip to main content

Home/ Dr. Goodyear/ Group items tagged pH

Rss Feed Group items tagged

Nathan Goodyear

The Potential Role of Systemic Buffers in Reducing Intratumoral Extracellular pH and Ac... - 0 views

  •  
    Great diagram of the pH in/around solid tumors. Cancer exists in an obvious hypoxic environment which favors the HIF-1alpha which favors lactate production which drops the pH in the tumor extracellular environment effecting chemoresistance, radioresistance, angiogenesis, invasion, aggressiveness, metastasis, immune evasion...
Nathan Goodyear

Enhancement of chemotherapy by manipulation of tumour pH | British Journal of Cancer - 0 views

  •  
    Study from 1999 confirms the extracellular acid pH increases resistance to chemotherapy in in vivo study
Nathan Goodyear

Frontiers | Importance of Iron Complexation for Fenton-Mediated Hydroxyl Radical Produc... - 0 views

  •  
    Acidic pH required for OH and Fe+3 production. Higher ph, more basic, likely results in other products.
Nathan Goodyear

Manipulating tumor acidification as a cancer treatment strategy. - 0 views

  •  
    Manipulation of the tumor pH bed is possible.
Nathan Goodyear

Bicarbonate Increases Tumor pH and Inhibits Spontaneous Metastases - 0 views

  •  
    NaHCO3 inhibits metastasis of solid tumor.
Nathan Goodyear

Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immun... - 0 views

  •  
    Acidic pH in TME favors cancer growth and spread immunologically.
Nathan Goodyear

Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer... - 0 views

  •  
    The acidic pH of the TME induces M2 polarization.
Nathan Goodyear

The Ketogenic Diet and Sport: A Possible Marriage? : Exercise and Sport Sciences Reviews - 0 views

  • It is important to note that, although the blood level of glucose drops, it still remains at a physiological level (23), which is maintained through gluconeogenesis involving glucogenic amino acids and also glycerol released from triglycerides
  • “physiological ketosis” where KB levels may rise to 7 to 8 mmol L-1 (but without any pH change). In “pathological diabetic ketoacidosis,” on the other hand, ketonemia can exceed 20 mmol L-1 and also cause lowering of blood pH
  • in the initial phase of KD, about 16% of glucose comes from glycerol (released from triglyceride hydrolysis) and the bulk (60–65 g) from proteins via gluconeogenesis (proteins may be of either dietary or endogenous origin
  • ...5 more annotations...
  • the protein supply consumed during a KD “preserves,” as demonstrated, lean body mass
  • The importance of glycerol as a glucose source increases progressively during ketosis; in fact, glycerol passes from supplying 16% of total glucose to an average of 60% after many days (>7 d) of complete fasting (from 38% in lean individual to 79% in the obese).
  • The possible reasons for the effectiveness of KD for weight loss may be listed as follows, in order of evidence, strongest first: Figure 3Image Tools 1. Appetite reduction: protein satiety, effects on appetite-related hormones such as ghrelin, and possibly a sort of direct appetite-blocking effect of KB 2. Reduced lipogenesis and increased fat oxidation 3. A reduction in respiratory quotient may indicate a greater metabolic efficiency in fat oxidation 4. A thermic effect of proteins and increased energy usage by gluconeogenesis
  • all data regarding biochemical and molecular mechanisms suggest that it is very difficult to increase muscle mass during a KD; use of which really should be limited to the few days immediately before competition in bodybuilding.
  • a long-term KD can interfere with some muscle hypertrophy mechanisms and this could be counterproductive if the aim of the athlete is to gain muscle mass
  •  
    Great read on the ketogenic  and its application to sports/training...
Nathan Goodyear

Cellular pH Gradient in Tumor versus Normal Tissue: Potential Exploitation for the Trea... - 0 views

  •  
    Cancer has an acid bed compared to alkaline in health cell environment.
Nathan Goodyear

Bicarbonate and dichloroacetate: Evaluating pH altering therapies in a mouse model for ... - 0 views

  •  
    Tumor Microenvironment is hypoxia and acid which negates effects of therapies such as DCA. Alkalinization of the tumor micronenvironment is a means to open the tumor to the effects of therapies such as DCA.
Nathan Goodyear

Comparisons of normal saline and lactated Ringer's resuscitation on hemodynamics, metab... - 0 views

  • NS contains 154 mM Na+ and Cl-, with an average pH of 5.0 and osmolarity of 308 mOsm/L.
  • LR solution has an average pH of 6.5, is hypo-osmolar (272 mOsm/L), and has similar electrolytes (130 mM Na+, 109 mM Cl-, 28 mM lactate, etc.) to plasma
  • hyperchloremic acidosis
  • ...26 more annotations...
  • LR’s acid base balance is superior to that of NS’s
  • There were no significant differences between LR and NS groups in fibrinogen concentrations or platelet count
  • Total protein dropped
  • no significant differences in Hct (Table  1) or total protein between LR and NS groups
  • Bicarbonate HCO3- levels were decreased by hemorrhage but returned to pre-hemorrhage values by 3 h after LR resuscitation, whereas no return was observed with NS resuscitation
  • Na+ was increased after NS resuscitation
  • No changes in Na+ or K+ were observed
  • K+ did not change initially after NS resuscitation but was elevated at 6 h afterwards
  • Ca++ was similarly decreased
  • Cl- was elevated for 6 h after NS resuscitation, with no changes shown after LR resuscitation
  • PT was similarly prolonged by resuscitation with LR (from 11.2 ± 0.2 sec at baseline to 12.1 ± 0.2 sec at 6 h) and NS
  • Plasma aPTT was also similarly prolonged by resuscitation with LR (from 17.1 ± 0.5 sec baseline to 20.1 ± 1.2 sec at 6 h) or NS
  • NS resuscitation resulted in better oxygen delivery and oxygen delivery-to-oxygen demand ratio as an index of oxygen debt
  • NS had better tissue perfusion and oxygen metabolism than LR
  • LR resuscitation returned BE and bicarbonate to pre-hemorrhage levels within 3 h, but no return of BE or bicarbonate was observed for 6 hr with NS resuscitation
  • current blood bank guidelines state that LR should not be mixed with blood to prevent the risk of clot formation from calcium included in LR
  • LR resuscitation should not be given with blood through the same iv-line and crystalloids should be avoided in patients with blood transfusion
  • PT and aPTT were prolonged for 6 h after hemorrhage and resuscitation, suggesting a hypocoagulable states
  • potential thrombotic risk from LR resuscitation is unlikely.
  • we suspected that the blood pressure after NS resuscitation would be lower than that of LR due to its vasodilator effects
  • NS required a larger resuscitation volume and was associated with poor acid base status and elevated serum potassium in this model
  • NS required 50% more volume and was associated with a higher cardiac output and lower peripheral resistance, as compared to LR resuscitation
  • These differences are possibly due to the vasodilator effects from NS
  • an elevation of K+ was observed at 6 h post NS resuscitation, while no change of K+ was observed after LR resuscitation
  • The mechanism for the increase of K+ from NS is not fully known
  • NS is associated with vasodilator effects and the risks of metabolic acidosis and hyperkalemia
  •  
    LR vs NS crystalloid.
tramadolorder

Buy Tramadol 100 mg Online | Order Tramadol Without Prescription - 0 views

  •  
    Buy Cheap Tramadol Online for sale with Cash on Delivery from the reputed pharmacy. Tramadol for sale, no prescription for buy Tramadol online with overnight shipping. Buy Tramadol Online now Contact Info Address: New York, NY Ph: (+1) 3473055444 Email : onlinecarehelpline@gmail.com website - https://www.youronlinerx.com
tramadolorder

Soma 350mg (carisoprodol) | Buy carisoprodol online COD | Soma for sale - 0 views

  •  
    Soma 350mg (carisoprodol) | Buy carisoprodol online COD | Soma for sale Buy Soma 350mg COD for muscle relaxation now, buy carisoprodol online in cheap price. Order soma 350mg online in bulk and get great offers and various shipping methods. Contact Info Address: New York, NY Ph: (+1) 347-305-5444 Email ID: onlinecarehelpline@gmail.com website - https://www.youronlinerx.com/
Nathan Goodyear

Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde... - 0 views

  • Hydroxyl radicals cause oxidative damage to cells because they unspecifically attack biomolecules [22] located less than a few nanometres from its site of generation and are involved in cellular disorders such as neurodegeneration [23, 24], cardiovascular disease [25], and cancer [26, 27].
  • It is generally assumed that in biological systems is formed through redox cycling by Fenton reaction, where free iron (Fe2+) reacts with hydrogen peroxide (H2O2) and the Haber-Weiss reaction that results in the production of Fe2+ when superoxide reacts with ferric iron (Fe3+)
  • other transition-metal including Cu, Ni, Co, and V can be responsible for formation in living cells
  • ...20 more annotations...
  • The hydroperoxyl radical () plays an important role in the chemistry of lipid peroxidation
  • The is a much stronger oxidant than superoxide anion-radical
  • Lipid peroxidation can be described generally as a process under which oxidants such as free radicals or nonradical species attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs) that involve hydrogen abstraction from a carbon, with oxygen insertion resulting in lipid peroxyl radicals and hydroperoxides as described previously
  • under medium or high lipid peroxidation rates (toxic conditions) the extent of oxidative damage overwhelms repair capacity, and the cells induce apoptosis or necrosis programmed cell death
  • The overall process of lipid peroxidation consists of three steps: initiation, propagation, and termination
  • Once lipid peroxidation is initiated, a propagation of chain reactions will take place until termination products are produced.
  • The main primary products of lipid peroxidation are lipid hydroperoxides (LOOH)
  • Among the many different aldehydes which can be formed as secondary products during lipid peroxidation, malondialdehyde (MDA), propanal, hexanal, and 4-hydroxynonenal (4-HNE) have been extensively studied
  • MDA has been widely used for many years as a convenient biomarker for lipid peroxidation of omega-3 and omega-6 fatty acids because of its facile reaction with thiobarbituric acid (TBA)
  • MDA is one of the most popular and reliable markers that determine oxidative stress in clinical situations [53], and due to MDA’s high reactivity and toxicity underlying the fact that this molecule is very relevant to biomedical research community
  • 4-HNE is considered as “second toxic messengers of free radicals,” and also as “one of the most physiologically active lipid peroxides,” “one of major generators of oxidative stress,” “a chemotactic aldehydic end-product of lipid peroxidation,” and a “major lipid peroxidation product”
  • MDA is an end-product generated by decomposition of arachidonic acid and larger PUFAs
  • Identifying in vivo MDA production and its role in biology is important as indicated by the extensive literature on the compound (over 15 800 articles in the PubMed database using the keyword “malondialdehyde lipid peroxidation” in December 2013)
  • MDA reactivity is pH-dependent
  • When pH decreases MDA exists as beta-hydroxyacrolein and its reactivity increases
  • MAA adducts are shown to be highly immunogenic [177–181]. MDA adducts are biologically important because they can participate in secondary deleterious reactions (e.g., crosslinking) by promoting intramolecular or intermolecular protein/DNA crosslinking that may induce profound alteration in the biochemical properties of biomolecules and accumulate during aging and in chronic diseases
  • MDA is an important contributor to DNA damage and mutation
  • This MDA-induced DNA alteration may contribute significantly to cancer and other genetic diseases.
  • Dietary intake of certain antioxidants such as vitamins was associated with reduced levels of markers of DNA oxidation (M1dG and 8-oxodG) measured in peripheral white blood cells of healthy subjects, which could contribute to the protective role of vitamins on cancer risk
  • 4-HNE is an extraordinarily reactive compound
  •  
    Great review of lipid peroxidation
fitspresso

LeanBiome™ (Official) | Get Save UpTo $540 Today Only! - 0 views

  •  
    LeanBiome™ (Official) | Get Save UpTo $540 Today Only! usleanbiome.com LeanBiome™ Hurry Up! Offer Expires in: 00 HOUR 29 MINUTE 59 SECOND LeanBiome Attention! Get Special 84% Discount Today Faster fat burning and weight loss Healthy cholesterol and sugar levels Higher energy levels Regular price: $129 Only for: 39$ What Is LeanBiome? LeanBiome Lean for Good is a weight loss dietary supplement derived from scientifically researched ingredients and comprehensively developed to help people achieve sustainable weight control. The formula comes in a capsule format that is easy to take and is made with natural ingredients from plants and other sources to achieve its goals. The main ingredient in LeanBiome is piperine, which has been found to affect the body's ability to absorb micronutrients and other compounds more effectively. LeanBiome is a dietary supplement that claims to help weight management. It contains 100% natural ingredients that support healthy weight loss. It does not interfere with any natural process making it safe for use. It ranks among the top weight loss supplements that claim to provide a permanent solution. LeanBiome is made by a company named Lean for Good. It is made with natural and research-backed ingredients that help you lose excess fat without hassles. It is sold in capsule form. The company assures the composition is GMO, gluten, and soy-free. As for manufacturing standards, you need not fret. The company makes the supplement in a facility certified by the FDA. How Does LeanBiome Work? The starting period of the LeanBiome program includes a detoxification process that effectively removes any accumulated ree radicals, toxins, fand oxidative stress. This cleansing enables improved blood circulation, setting the stage for the body to initiate its own fat-burning mechanisms. To enhance metabolic activity, introducing the lean bacteria contained in LeanBiome to your gut microbiome is a beneficial approach. This activation triggers r
Nathan Goodyear

Progesterone metabolites in breast cancer - 1 views

  • P metabolites produced within breast tissues might be independently active hormones functioning as cancer-promoting or -inhibiting regulatory agents
  • these P metabolites function as independent pro-or anti-cancer autocrine/paracrine hormones that regulate cell proliferation, adhesion, apoptosis and cytoskeletal, and other cell status molecules via novel receptors located in the cell membrane and intrinsically linked to cell signaling pathways
  • only a fraction of all breast cancer patients respond to this estrogen-based therapy and the response is only temporary
  • ...30 more annotations...
  • P serves as the precursor for the major steroid hormones (androgens, estrogens, corticosteroids) produced by the gonadal and adrenal cortical tissues.
  • 5α-pregnane, 5β-pregnane, and 4-pregnene metabolites of P
  • These P-metabolizing enzymes included 5α-reductase, 5β-reductase, 3α-hydroxysteroid oxido-reductase (3α-HSO), 3β-HSO, 20α-HSO, 20β-HSO, 6α(β)-, 11β-, 17-, and 21-hydroxylase, and C17–20-lyase
  • Reduction of P to 5α-pregnanes is catalyzed by 5α-reductase and the direct 5α-reduced metabolite of P is 5α-pregnane-3,20-dione (5αP). The 5α-reductase reaction is irreversible
  • The two 4-pregnenes resulting from direct P conversion are 4-pregnen-3α-ol-20-one (3αHP) and 4-pregnen-20α-ol-3-one (20αHP), catalyzed by the actions of 3α-HSO and 20α-HSO respectively
  • the P-metabolizing enzyme activities identified in human breast tissues and cell lines were: 5α-reductase, 3α-HSO, 3β-HSO, 20α-HSO, and 6α-hydroxylase
  • In normal breast tissue, conversion to 4-pregnenes greatly exceeded the conversion to 5α-pregnanes, whereas in tumorous tissue, conversion to 5α-pregnanes greatly exceeded that to 4-pregnenes
  • The results indicated that P 5α-reductase activity is significantly higher, whereas P 3α-HSO and 20α-HSO activities are significantly lower in tumor than in normal tissues
  • he results showed that production of 5α-pregnanes was higher and that of 4-pregnenes was lower in tumorigenic (e.g. MCF-7) than in nontumorigenic (e.g. MCF-10A) cells (Fig. 3c⇑), while differences in ER/P status did not appear to play a role
  • The 5α-pregnane-to-4-pregnene ratios were 7- to 20-fold higher in the tumorigenic than in the nontumorigenic cell lines
  • altered direction in P metabolism, and hence in metabolite ratios, was due to significantly elevated 5α-reductase and depressed 3α- and 20α-HSO activities in breast tumor tissues and tumorigenic cells. It appeared, therefore, that changes in P-metabolizing enzyme activities might be related to the shift toward mammary cell tumorigenicity and neoplasia
  • In vivo, changes in enzyme activity can result from changes in levels of the enzyme due to changes in expression of the mRNA coding for the enzyme, or from changes in the milieu in which the enzyme operates (such as temperature and pH, and concentrations of cofactors, substrates, products, competitors, ions, phospholipids, and other molecules)
  • Overall, the enzyme activity and expression studies strongly suggest that 5α-reductase stimulation and 3α- and 20α-HSO suppression are associated with the transition from normalcy to cancer of the breast
  • The level of expression of 5α-reductase is up-regulated by estradiol and P in the uterus (Minjarez et al. 2001) and by 5α-dihydrotestosterone (DHT) in the prostate
  • 3αHP inhibited whereas 5αP-stimulated proliferation
  • Stimulation in cell numbers was also observed when cells were treated with other 5α-pregnanes, such as 5α-pregnan-3α-ol-20-one, 5α-pregnan-20α-ol-3-one, and 5α-pregnane-3α,20α-diol, whereas other 4-pregnenes such as 20α-HP and 4-pregnene-3α,20α-diol resulted in suppression of cell proliferation
  • Stimulation of cell proliferation with 5αP and inhibition with 3αHP were also observed in all other breast cell lines examined, whether ER/P-negative (MCF-10A, MDA-MB-231) or ER/P-positive (T47D, ZR-75-1) and whether requiring estrogen for tumorigenicity (MCF-7, T47D) or not (MDA-MB-231), or whether they are nontumorigenic (
  • αHP resulted in significant increases in apoptosis and decreases in mitosis, leading to significant decreases in total cell numbers. In contrast, treatment with 5αP resulted in decreases in apoptosis and increases in mitosis.
  • The opposing actions of 5αP and 3αHP on both cell anchorage and proliferation strengthen the hypothesis that the direction of P metabolism in vivo toward higher 5α-pregnane and lower 4-pregnene concentrations could promote breast neoplasia and lead to malignancy.
  • he effects on proliferation and adhesion were not due to P, but due to the 5α-reduced metabolites
  • The studies showed that binding of 5αP or 3αHP occurs in the plasma membrane fractions, but not in the nuclear or cytosolic compartments
  • separate high-specificity, high-affinity, low- capacity receptors for 5αP and 3αHP that are distinct from each other and from the well-studied nuclear/cytosolic P, estrogen, and androgen and corticosteroid receptors
  • The studies thus provided the first demonstration of the existence of specific P metabolite receptors
  • the receptor results suggest that the putative tumorigenic actions of 5αP may be significantly augmented by the estradiol-induced increases in 5αP binding and decreases in 3αHP binding.
  • Estradiol and 5αP resulted in significant dose-dependent increases, whereas 3αHP and 20αHP each resulted in dose-dependent decreases in total ER
  • In combination, estradiol + 5αP or 3αHP + 20αHP resulted in additive increases or decreases respectively in ER numbers.
  • The data suggest that the action of 5αP on breast cancer cells involves modulation of the MAPK signaling pathway
  • current evidence does not appear to support the notion that increased 5α-reductase activity/ expression might significantly alter androgen influences on breast tumor growth.
  • both testosterone and DHT inhibit cell growth more or less to the same extent
  • Note that 5α-reductase reaction is not reversible
  •  
    Fantastic read on the effects of progesterone metabolism on tumor and cancer growth.  Tumorigenesis is not just about the hormone, hormone balance, but about the metabolism of hormones.  This is why premarin is so carcinogenic: it is primarily metabolized by the 4-OH estrone pathway.
Nathan Goodyear

Multicentre study of l-alpha-glyceryl-ph... [Drugs Aging. 1993 Mar-Apr] - PubMed - NCBI - 0 views

  •  
    alpha-GPC and to a lesser degree acetyl-l-carnitine improved dementia in multi-center trial.
Nathan Goodyear

BMC Cancer | Full text | A lactate shuttle system between tumour and stromal cells is a... - 0 views

  • Under hypoxic conditions, tumour cells primarily use glycolysis for energy, producing lactate, which is expelled to the tumour microenvironment, allowing tumours to continue their glycolytic activity
  • Sonveaux et al. showed that lactate, which is generally considered a waste product, is preferred over glucose by oxidative tumour cells as their primary energy source
  • MCT4 is a low-affinity transporter, which is abundant in highly glycolytic muscle cells and is one of the many target genes of hypoxia-inducible factor 1 alpha (HIF-1α)
  • ...8 more annotations...
  • Other targets of HIF-1α include glucose transporter-1 (GLUT-1), the main transporter involved in glucose uptake [9,10]; lactate dehydrogenase V (LDHV), which is responsible for the conversion of pyruvate into lactate; pyruvate dehydrogenase kinase isozyme 1 (PDK1), which is responsible for the phosphorylation and consequent inactivation of pyruvate dehydrogenase (PDH); and carbonic anhydrase IX (CAIX), a hypoxia-related protein involved in pH regulation [11]. Alpha-methylacyl-CoA racemase (AMACR), pristanoyl-CoA oxidase (ACOX-3) and D-bifunctional protein (DBP), are also important fatty acid oxidation-related proteins in prostate cancer
  • the essential role played by the cross-talk between stroma and epithelium in carcinogenesis and prostate cancer progression has been increasingly recognised
  • strong membranous expression of MCT1 was consistently observed in cancer cells, suggesting a role for MCT1 in the transport of lactate into tumour cells from the acidic extracellular matrix, suggesting that lactate might be used as a fuel by oxidative cancer cells.
  • Our hypothesis is in agreement with those of Fiaschi et al.[17], who describe the metabolic reprogramming of CAFs towards the Warburg phenotype as a result of contact with prostate cancer cells
  • Using in vitro studies, they showed lactate production and efflux by de novo expressed MCT4 in CAFs and also demonstrated that, upon contact with CAFs, prostate cancer cells were reprogrammed towards aerobic metabolism, with an increase in lactate uptake via the lactate transporter MCT1.
  • pharmacological inhibition of MCT1-mediated lactate uptake dramatically affected PCa cell survival and tumour outgrowth
  • In this model, “energy transfer” or “metabolic coupling” between the tumour stroma and epithelial cancer cells fuels tumour growth and metastasis via oxidative mitochondrial metabolism in anabolic cancer cells
  • the concomitant expression of MCT1 in tumour cells and MCT4 in fibroblasts in the same tissue is clinically significant, and associated with poor prognosis.
  •  
    Study confirms the importance of the crosstalk between cancer cells and CAFs via MCTs in prostate cancer.
Nathan Goodyear

Procaine and Procaine-Base-Infusion: A Review of the Safety and Fields of Application a... - 0 views

  •  
    Procaine helpful in the alkalinization of the tumor Microenvironmenta.
Nathan Goodyear

Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapy - 1 views

  • inhibition of mitochondrial pyruvate dehydrogenase kinase
  • inhibition of aerobic glycolysis (the Warburg effect) and activation of mitochondrial potassium ion channels
  • angiogenesis blockade
  • ...5 more annotations...
  • changes in expression of HIF1-α
  • alteration of pH regulators V-ATPase and MCT1, and other cell survival regulators such as PUMA, GLUT1, Bcl2 and p53
  • DCA as a cancer stabilizing agent
  • A protocol of natural medications was developed to address the dose-limiting neurologic toxicity, in collaboration with a naturopathic physician (Andrews). The oral DCA regimen that was developed included three natural medications acetyl L-carnitine[29-31], R-alpha lipoic acid[32-34] and benfotiamine[35-37], for the primary purpose of neuropathy prevention
  • measurable benefits from DCA therapy in 60%-70% of cases
  •  
    Good review of dichloracetate or DCA in antitumor activity.  DCA has been shown to have numerous anticancer properties.
1 - 20 of 29 Next ›
Showing 20 items per page