Skip to main content

Home/ Dr. Goodyear/ Group items tagged Prevotella

Rss Feed Group items tagged

Nathan Goodyear

PLOS ONE: Microbial Dysbiosis in Colorectal Cancer (CRC) Patients - 0 views

  • differences in the colon microbiota in individuals with colon cancer versus those with a normal colonoscopy
  • qPCR revealed significant elevation of the Bacteroides/Prevotella population in cancer patients that appeared to be linked with elevated IL17 producing cells in the mucosa of individuals with cancer.
  • Bacteroides genus populations and more specifically those of Bacteroides fragilis, have recently been shown to produce a metalloprotease in colon cancer patients, but not in controls [12] suggesting this species sub population might favor carcinogenesis
  • ...3 more annotations...
  • It is noteworthy that among the many mechanisms that may mediate associations between microbiota and human health [21]–[22], pro-inflammatory and immune cell activation in colon mucosa are of great importance in relation to malignancy
  • B. fragilis has been shown to induce mucosal regulatory T-cell responses in the intestine involving TH17 cell recruitment in experimental models
  • the elevations of Bacteroides in the stool and/or IL17 immunoreactive cells in the normal mucosa appear to be promising sensitive markers
  •  
    A relationship between dysbiosis and colon cancer appears to be present.  Particularly an increase in Bacteroidetes and Prevotella species were found in those with colon cancer versus those without.  An inflammatory up regulation of IL-17 appears to be involved.  Whether this is a cause or effect is yet to be determined, but the presence of elevated Bacteroidetes species with increased IL17 could be used as sensitive biomarkers.
Nathan Goodyear

Diet, Microbiota and Immune System in Type 1 Diabetes Development and Evolution - 0 views

  •  
    great review article on the relationship between gut dysbiosis and type I diabetes--particularly the bacteroidetes and Veillonella species; in contrast, Prevotella and Akkermansia special protects and maintains a healthy gut epithelium.
Nathan Goodyear

Delivery mode shapes the acquisition and structure of the initial microbiota across mul... - 0 views

  •  
    Study finds infants born vaginally have gut flora similar to mother's vaginal flora--Lactobacillus, Prevotella, or Sneathia species.  In contrast, those born via C/S have gut flora similar to that on the skin surface--staphylococcus, corynebacterium...
Nathan Goodyear

Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Dis... - 0 views

  • The gut microbiota participates in the body’s metabolism by affecting energy balance, glucose metabolism, and low-grade inflammation associated with obesity and related metabolic disorders
  • Firmicutes and Bacteroidetes represent the two largest phyla in the human and mouse microbiota and a shift in the ratio of these phyla has been associated with many disease conditions, including obesity
  • In obese humans, there is decreased abundance of Bacteroidetes compared to lean individuals
  • ...21 more annotations...
  • weight loss in obese individuals results in an increase in the abundance of Bacteroidetes
  • there is conflicting evidence on the composition of the obese microbiota phenotype with regards to Bacteroidetes and Firmicutes ratios
  • Bifidobacteria spp. from the phyla Actinobacteria, has been shown to be depleted in both obese mice and human subjects
  • While it is not yet clear which specific microbes are inducing or preventing obesity, evidence suggests that the microbiota is a factor.
  • targeted manipulation of the microbiota results in divergent metabolic outcomes depending on the composition of the diet
  • The microbiota has been linked to insulin resistance or type 2 diabetes (T2D) via metabolic syndrome and indeed the microbiota of individuals with T2D is also characterized by an increased Bacteroidetes/Firmicutes ratio, as well as an increase in Bacillus and Lactobacillus spp
  • It was also observed that the ratio of Bacteriodes-Prevotella to C. coccoides-E. rectale positively correlated with glucose levels but did not correlate with body mass index [80]. This suggests that the microbiota may influence T2D in conjunction with or independently of obesity
  • In humans, high-fat Western-style diets fed to individuals over one month can induce a 71% increase in plasma levels of endotoxins, suggesting that endotoxemia may develop in individuals with GI barrier dyfunction connected to dysbiosis
  • LPS increases macrophage infiltration essential for systemic inflammation preceding insulin resistance, LPS alone does not impair glucose metabolism
  • early treatment of dysbiosis may slow down or prevent the epidemic of metabolic diseases and hence the corresponding lethal cardiovascular consequences
  • increased Firmicutes and decreased Bacteroidetes, which is the microbial profile found in lean phenotypes, along with an increase in Bifidobacteria spp. and Lactobacillus spp
  • mouse and rat models of T1D have been shown to have microbiota marked by decreased diversity and decreased Lactobacillus spp., as well as a decrease in the Firmicutes/Bacteroidetes ratio
  • microbial antigens through the innate immune system are involved in T1D progression
  • The microbiota appears to be essential in maintaining the Th17/Treg cell balance in intestinal tissues, mesenteric and pancreatic lymph nodes, and in developing insulitis, although progression to overt diabetes has not been shown to be controlled by the microbiota
  • There is evidence that dietary and microbial antigens independently influence T1D
  • Lactobacillus johnsonii N6.2 protects BB-rats from T1D by mediating intestinal barrier function and inflammation [101,102] and a combination probiotic VSL#3 has been shown to attenuate insulitis and diabetes in NOD mice
  • breast fed infants have higher levels of Bifidobacteria spp. while formula fed infants have higher levels of Bacteroides spp., as well as increased Clostridium coccoides and Lactobacillus spp
  • the composition of the gut microbiota strongly correlates with diet
  • In mice fed a diet high in fat, there are many key gut population changes, such as the absence of gut barrier-protecting Bifidobacteria spp
  • diet has a dominating role in shaping gut microbiota and changing key populations may transform healthy gut microbiota into a disease-inducing entity
  • “Western” diet, which is high in sugar and fat, causes dysbiosis which affects both host GI tract metabolism and immune homeostasis
  •  
    Nice discussion of how diet, induces gut bacterial change, that leads to metabolic endotoxemia and disease.
1 - 5 of 5
Showing 20 items per page