Skip to main content

Home/ Dr. Goodyear/ Group items tagged As

Rss Feed Group items tagged

umar111

Computer Science: Computer hardware - 0 views

  •  
    Computer Science Tuesday, April 25, 2023 Computer hardware Computer hardware is the physical components that make up a computer system. It includes everything from the central processing unit (CPU) to the monitor, keyboard, and mouse. Understanding the different types of hardware and how they work together is essential for anyone who works with computers. In this article, we will explore the various components of computer hardware, including internal and external components, and the peripherals that connect to them. We will also discuss the importance of hardware maintenance, the latest advancements in computer technology, and factors to consider when choosing the right hardware for your needs. Whether you are a computer technician, a gamer, or simply someone who uses a computer for everyday tasks, this article will help you better understand the world of computer hardware. Introduction to Computer Hardware Computer hardware refers to the physical components that make up a computer system. It includes everything from the processor and memory to input/output devices such as the keyboard and monitor. In this article, we will explore the different types of computer hardware and their functions. What is Computer Hardware Computer hardware refers to the physical components of a computer system. It includes all the components that can be touched, seen, and used to interact with a computer, such as the monitor, keyboard, and mouse. Hardware is different from computer software, which refers to the programs and applications that run on a computer system. History of Computer Hardware The history of computer hardware dates back to the 1820s when Charles Babbage, an English mathematician, and inventor, designed the first analytical engine, which was considered to be the first mechanical computer. With time, more complex electronic computers were developed, including the first Intel microprocessor in 1971. Since then, computer hardware has continued to evolve, becoming
fitspresso

https://www.thefastleanpro.us/ - 0 views

  •  
    Fast Lean Pro™ (official) | weight lose Formula thefastleanpro.us · by Fast Lean Pro Fast Lean Pro Only $49/Bottle Limited Time Offer! Fast Lean Pro Special Deal + Special 51% Discount Save $300 + 180 Days Money Back Guarantee FastLeanPro The #1 Solution To natural metabolism booster helps you lose weight quickly without starving yourself. Fast Lean Pro is a natural powder supplement for weight loss that has recently been developed by Japanese scientists. Regular Price: $99/per bottle Only for: $49/per bottle What Is Fast Lean Pro? Fast Lean Pro is a powdered dietary powdery supplement designed to aid in weight loss. It contains a unique combination of ingredients that are believed to activate the body's "fasting switch" to optimize results. This product focuses not only on weight loss but also on promoting cellular rejuvenation, fasting, and a healthy metabolism. The concept behind Fast Lean Pro is that incorporating fasting into one's lifestyle can lead to positive outcomes irrespective of individual food choices and eating habits. To comprehend the mechanism of the Fast Lean Pro process, it is necessary to delve into its specific details. One of the few weight loss pills on the market that contains Fibersol is Fast Lean Pro. This safe, specialized fiber adds bulk to its weight when combined with water, curbing your appetite before it throws off your meal plan. If you're trying to lose weight or curb your appetite, Fast Lean Pro can help. Supporting substances such as niacin and chromium contribute to this. The body can further benefit from these nutrients, such as through improved metabolic regulation. Fast lean Pro is non-GMO, vegan friendly, and contains no artificial ingredients or stimulants. Fast Lean Pro is a weight loss product that promotes the body's natural self-feeding process. The body naturally removes old, damaged cells through a process known as autophagy to encourage cell regeneration and repair. Recent studies by a group
wheelchairindia9

Karma Vip 515 - 0 views

  •  
    Wheelchair with comfortble reclining back headrest. This wheelchair allows the user to obtain a more comfortable position, equally for those who are unable to sit at 90 degrees, but need to lie back. Options include elevating legrests and cushioning. This type of Wheelchair is a superb light weight aluminium total care chair with all the actions one would wish. All fully adjustable, tilt in space, reclining back, multi positional headrest,elevating legrests and full pressure cushioning. The reclining deluxe manual wheelchair. This wheelchair has all the features one would need in a wheelchair, fully adjustable arms, legrests, reclining back and pop off wheels. To remove the wheels simply press the button in the centre of the wheel and slide them off. Ideal for those who need to recline in the wheelchair as the back rest on this wheelchair can be adjusted to any position. With cushions, elevating legrests and other options, this wheelchair can be configured to meet most needs. This chair does not have tilt in space mechanism or pressure care cushioning, for this must look to the tilt in space chair. Comfort and positioning tilt-in-space wheelchair which is durable, modern looking and comfortable. It offers adjustable seat height and depth, back height, length adjustable armpads and infinite recline and tilt. The multifunction tilt in space wheelchair focuses heavily on the need of each individual user which is why it has many adjustments in one frame to make sure it can alter to cater individual requirements. One of the main features of this chair is its tilt in space feature, which allows a step less adjustment of the backrest and the seat angle. This is easily operated from the push handle and can be quickly adjusted when needed. The design of the backrest and seating on the wheelchair helps ensure comfort and support for the user. Wheelchair comes with elevating leg rests fitted as standard which again are step less and easily adjusted. There is also the o
Nathan Goodyear

Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxid... - 0 views

  • reducing oxidative stress with powerful antioxidants, is an important strategy for cancer prevention, as it would suppress one of the key early initiating steps where DNA damage and tumor-stroma metabolic-coupling begins. This would prevent cancer cells from acting as metabolic “parasites
  • Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the “reverse Warburg effect.
  • Then, oxidative stress, in cancer-associated fibroblasts, triggers the activation of two main transcription factors, NFκB and HIF-1α, leading to the onset of inflammation, autophagy, mitophagy and aerobic glycolysis in the tumor microenvironment
  • ...38 more annotations...
  • oxidative stress and ROS, produced in cancer-associated fibroblasts, has a “bystander effect” on adjacent cancer cells, leading to DNA damage, genomic instability and aneuploidy, which appears to be driving tumor-stroma co-evolution
  • tumor cells produce and secrete hydrogen peroxide, thereby “fertilizing” the tumor microenvironment and driving the “reverse Warburg effect.”
  • This type of stromal metabolism then produces high-energy nutrients (lactate, ketones and glutamine), as well as recycled chemical building blocks (nucleotides, amino acids, fatty acids), to literally “feed” cancer cells
  • loss of stromal caveolin (Cav-1) is sufficient to drive mitochondrial dysfunction with increased glucose uptake in fibroblasts, mimicking the glycolytic phenotype of cancer-associated fibroblasts.
  • oxidative stress initiated in tumor cells is transferred to cancer-associated fibroblasts.
  • Then, cancer-associated fibroblasts show quantitative reductions in mitochondrial activity and compensatory increases in glucose uptake, as well as high ROS production
  • These findings may explain the prognostic value of a loss of stromal Cav-1 as a marker of a “lethal” tumor microenvironment
  • aerobic glycolysis takes place in cancer-associated fibroblasts, rather than in tumor cells, as previously suspected.
  • our results may also explain the “field effect” in cancer biology,5 as hydrogen peroxide secreted by cancer cells, and the propagation of ROS production, from cancer cells to fibroblasts, would create an increasing “mutagenic field” of ROS production, due to the resulting DNA damage
  • Interruption of this process, by addition of catalase (an enzyme that detoxifies hydrogen peroxide) to the tissue culture media, blocks ROS activity in cancer cells and leads to apoptotic cell death in cancer cells
  • In this new paradigm, cancer cells induce oxidative stress in neighboring cancer-associated fibroblasts
  • cancer-associated fibroblasts have the largest increases in glucose uptake
  • cancer cells secrete hydrogen peroxide, which induces ROS production in cancer-associated fibroblasts
  • Then, oxidative stress in cancer-associated fibroblast leads to decreases in functional mitochondrial activity, and a corresponding increase in glucose uptake, to fuel aerobic glycolysis
  • cancer cells show significant increases in mitochondrial activity, and decreases in glucose uptake
  • fibroblasts and cancer cells in co-culture become metabolically coupled, resulting in the development of a “symbiotic” or “parasitic” relationship.
  • cancer-associated fibroblasts undergo aerobic glycolysis (producing lactate), while cancer cells use oxidative mitochondrial metabolism.
  • We have previously shown that oxidative stress in cancer-associated fibroblasts drives a loss of stromal Cav-1, due to its destruction via autophagy/lysosomal degradation
  • a loss of stromal Cav-1 is sufficient to induce further oxidative stress, DNA damage and autophagy, essentially mimicking pseudo-hypoxia and driving mitochondrial dysfunction
  • loss of stromal Cav-1 is a powerful biomarker for identifying breast cancer patients with early tumor recurrence, lymph-node metastasis, drug-resistance and poor clinical outcome
  • this type of metabolism (aerobic glycolysis and autophagy in the tumor stroma) is characteristic of a lethal tumor micro-environment, as it fuels anabolic growth in cancer cells, via the production of high-energy nutrients (such as lactate, ketones and glutamine) and other chemical building blocks
  • the upstream tumor-initiating event appears to be the secretion of hydrogen peroxide
  • one such enzymatically-active protein anti-oxidant that may be of therapeutic use is catalase, as it detoxifies hydrogen peroxide to water
  • numerous studies show that “catalase therapy” in pre-clinical animal models is indeed sufficient to almost completely block tumor recurrence and metastasis
  • by eliminating oxidative stress in cancer cells and the tumor microenvironment,55 we may be able to effectively cut off the tumor's fuel supply, by blocking stromal autophagy and aerobic glycolysis
  • breast cancer patients show systemic evidence of increased oxidative stress and a decreased anti-oxidant defense, which increases with aging and tumor progression.68–70 Chemotherapy and radiation therapy then promote further oxidative stress.69 Unfortunately, “sub-lethal” doses of oxidative stress during cancer therapy may contribute to tumor recurrence and metastasis, via the activation of myofibroblasts.
  • a loss of stromal Cav-1 is associated with the increased expression of gene profiles associated with normal aging, oxidative stress, DNA damage, HIF1/hypoxia, NFκB/inflammation, glycolysis and mitochondrial dysfunction
  • cancer-associated fibroblasts show the largest increases in glucose uptake, while cancer cells show corresponding decreases in glucose uptake, under identical co-culture conditions
  • Thus, increased PET glucose avidity may actually be a surrogate marker for a loss of stromal Cav-1 in human tumors, allowing the rapid detection of a lethal tumor microenvironment.
  • it appears that astrocytes are actually the cell type responsible for the glucose avidity.
  • In the brain, astrocytes are glycolytic and undergo aerobic glycolysis. Thus, astrocytes take up and metabolically process glucose to lactate.7
  • Then, lactate is secreted via a mono-carboxylate transporter, namely MCT4. As a consequence, neurons use lactate as their preferred energy substrate
  • both astrocytes and cancer-associated fibroblasts express MCT4 (which extrudes lactate) and MCT4 is upregulated by oxidative stress in stromal fibroblasts.34
  • In accordance with the idea that cancer-associated fibroblasts take up the bulk of glucose, PET glucose avidity is also now routinely used to measure the extent of fibrosis in a number of human diseases, including interstitial pulmonary fibrosis, postsurgical scars, keloids, arthritis and a variety of collagen-vascular diseases.
  • PET glucose avidity and elevated serum inflammatory markers both correlate with poor prognosis in breast cancers.
  • PET signal over-estimates the actual anatomical size of the tumor, consistent with the idea that PET glucose avidity is really measuring fibrosis and inflammation in the tumor microenvironment.
  • human breast and lung cancer patients can be positively identified by examining their exhaled breath for the presence of hydrogen peroxide.
  • tumor cell production of hydrogen peroxide drives NFκB-activation in adjacent normal cells in culture6 and during metastasis,103 directly implicating the use of antioxidants, NFκB-inhibitors and anti-inflammatory agents, in the treatment of aggressive human cancers.
  •  
    Good description of the communication between cancer cells and fibroblasts.  This theory is termed the "reverse Warburg effect".
Nathan Goodyear

How We Read Oncologic FDG PET/CT | Cancer Imaging | Full Text - 0 views

  • In early PET literature focusing on analysis of solitary pulmonary nodules, some researchers defined malignancy based on a SUVmax threshold of greater than 2.5
  • We contend that SUV analysis has virtually no role in this setting.
  • tumours grow as spheres, whereas inflammatory processes are typically linear
  • ...35 more annotations...
  • Far more important than the SUVmax is the pattern rather than intensity of metabolic abnormality and the correlative CT findings
  • Descriptively, we define SUV < 5 as “low intensity”, 5–10 as “moderate”, 10–15 as “intense” and >15 as “very intense”
  • Evolving literature suggests that intensity of uptake is an independent prognostic factor and in some tumour subtypes superior to histopathologic characterisation.
  • aerobic glycolysis
  • Our practice of thresholding the grey and colour scale to liver as detailed above results in similar image intensity to a fixed upper SUV threshold of 8 to 10
  • The advantage of using the liver as a reference tissue is also aided by this organ having rather low variability in metabolic activity
  • When the liver is abnormal and cannot be used as a reference organ, we use the default SUV setting of an upper SUV threshold of 8
  • One of the most challenging aspects of oncologic FDG PET/CT review, however, is to recognise all the patterns of metabolic activity that are not malignant and which consequently confound interpretation
  • Many benign and inflammatory processes are also associated with high glycolytic activity
  • Future articles in the “How I Read” series will address the specific details of reading PET/CT in various cancers
  • The intensity of uptake in metastases usually parallels that in the primary site of disease
  • For example, discordant low-grade activity in an enlarged lymph node in the setting of intense uptake in the primary tumour suggests it is unlikely malignant and more likely inflammatory or reactive
  • By CT criteria the enlarged node is ‘pathologic’ but the discordantly low metabolic signature further characterises this is as non-malignant since such a node is not subject to partial volume effects and therefore the intensity of uptake should be similar to the primary site
  • The exception is when the lymph node is centrally necrotic as a small rim of viable tumour is subject to partial volume effects with expectant lower intensity of uptake; integrating the CT morphology is therefore critical to reaching an accurate interpretation
  • Small nodes that are visualised on PET are conversely much more likely to be metastatic as such nodes are subject to partial volume effects.
  • The exception to this rule is tumours with a propensity for tumour heterogeneity at different sites
  • The combination of FDG and a more specific tracer, which visualises the well-differentiated disease can be very useful to characterise this phenomenon
  • “metabolic signature”
  • For the majority of malignant processes, the intensity of metabolic abnormality correlates with degree of aggressiveness or proliferative rate.
  • a negative PET/CT study in a patient with biopsy proven malignancy would be considered false-negative
  • Warburg effect
  • There, however, are a significant minority of tumours that utilise substrates other glucose such as glutamine or fatty acids as a source of the carbon atoms required for growth and proliferation
  • This includes a subset of diffuse gastric adenocarcinomas, signet cell colonic adenocarcinomas and some sarcomas, particularly liposarcoma
  • There may be a role for other radiotracers such as fluorothymidine (FLT) or amino acid substrates in this setting.
  • Some tumours harbour mutations that result in defective aerobic mitochondrial energy metabolism, effectively simulating the Warburg effect
  • patients with hereditary paraganglioma and pheochromocytoma highlight this phenomenon
  • These have intense uptake on FDG PET/CT despite often having low proliferative rate.
  • Uterine fibroids, hepatic adenomas, fibroadenomas of the breast and desmoid tumours are benign or relatively benign lesions that can have quite high FDG-avidity.
  • Metabolic activity switches off rapidly following initiation of therapy
  • Common examples where patients have commenced active therapy but the referrer is requesting “staging” includes hormonal therapy (eg. tamoxifen) in breast cancer, oral capecitabine in colorectal cancer or high dose steroids in Hodgkin’s lymphoma
  • It is therefore critical to perform PET staging before commencement of anti-tumour therapy
  • The potential advantage of routine diagnostic CT is improved anatomic localisation and definition
  • Without intravenous contrast, additional identification of typical oncologic complications such as pulmonary embolism or venous thrombosis cannot be identified
  • If the study is performed as an “interim” restaging study after commencement of therapy but before completion, in order to reach a valid or clinically useful conclusion findings must be interpreted in the context of known changes that occur at a specific timing and type of therapy
  • The most well studied use of interim PET is in Hodgkin’s lymphoma where repeat PET after two cycles of ABVD-chemotherapy provides powerful prognostic information and may improve outcomes by enabling early change of management
  •  
    good read on the PET/CT scan reading.  They mention that tumors are spheres and inflammation is linear, yet inflammation coexists with cancer; hard to simply delineate these on simple terms. I do agree aon the metabolic signature of the PET/CT scan
Nathan Goodyear

Press-pulse: a novel therapeutic strategy for the metabolic management of cancer | Nutr... - 0 views

  • A “press” disturbance was considered a chronic environmental stress on all organisms in an ecological community
  • “pulse” disturbances were considered acute events that disrupted biological communities to produce high mortality
  • Neoplasia involving dysregulated cell growth is the biological endpoint of the disease
  • ...84 more annotations...
  • Data from the American Cancer Society show that the rate of increase in cancer deaths/year (3.4%) was two-fold greater than the rate of increase in new cases/year (1.7%) from 2013 to 2017
  • cancer is predicted to overtake heart disease as the leading cause of death in Western societies
  • cancer can also be recognized as a metabolic disease.
  • glucose is first split into two molecules of pyruvate through the Embden–Meyerhof–Parnas glycolytic pathway in the cytosol
  • Aerobic fermentation, on the other hand, involves the production of lactic acid under normoxic conditions
  • persistent lactic acid production in the presence of adequate oxygen is indicative of abnormal respiration
  • Otto Warburg first proposed that all cancers arise from damage to cellular respiration
  • The Crabtree effect is an artifact of the in vitro environment and involves the glucose-induced suppression of respiration with a corresponding elevation of lactic acid production even under hyperoxic (pO2 = 120–160 mmHg) conditions associated with cell culture
  • the Warburg theory of insufficient aerobic respiration remains as the most credible explanation for the origin of tumor cells [2, 37, 51, 52, 53, 54, 55, 56, 57].
  • The main points of Warburg’s theory are; 1) insufficient respiration is the predisposing initiator of tumorigenesis and ultimately cancer, 2) energy through glycolysis gradually compensates for insufficient energy through respiration, 3) cancer cells continue to produce lactic acid in the presence of oxygen, and 4) respiratory insufficiency eventually becomes irreversible
  • Efraim Racker coined the term “Warburg effect”, which refers to the aerobic glycolysis that occurs in cancer cells
  • Warburg clearly demonstrated that aerobic fermentation (aerobic glycolysis) is an effect, and not the cause, of insufficient respiration
  • all tumor cells that have been examined to date contain abnormalities in the content or composition of cardiolipin
  • The evidence supporting Warburg’s original theory comes from a broad range of cancers and is now overwhelming
  • respiratory insufficiency, arising from any number mitochondrial defects, can contribute to the fermentation metabolism seen in tumor cells.
  • data from the nuclear and mitochondrial transfer experiments suggest that oncogene changes are effects, rather than causes, of tumorigenesis
  • Normal mitochondria can suppress tumorigenesis, whereas abnormal mitochondria can enhance tumorigenesis
  • In addition to glucose, cancer cells also rely heavily on glutamine for growth and survival
  • Glutamine is anapleurotic and can be rapidly metabolized to glutamate and then to α-ketoglutarate for entry into the TCA cycle
  • Glucose and glutamine act synergistically for driving rapid tumor cell growth
  • Glutamine metabolism can produce ATP from the TCA cycle under aerobic conditions
  • Amino acid fermentation can generate energy through TCA cycle substrate level phosphorylation under hypoxic conditions
  • Hif-1α stabilization enhances aerobic fermentation
  • targeting glucose and glutamine will deprive the microenvironment of fermentable fuels
  • Although Warburg’s hypothesis on the origin of cancer has created confusion and controversy [37, 38, 39, 40], his hypothesis has never been disproved
  • Warburg referred to the phenomenon of enhanced glycolysis in cancer cells as “aerobic fermentation” to highlight the abnormal production of lactic acid in the presence of oxygen
  • Emerging evidence indicates that macrophages, or their fusion hybridization with neoplastic stem cells, are the origin of metastatic cancer cells
  • Radiation therapy can enhance fusion hybridization that could increase risk for invasive and metastatic tumor cells
  • Kamphorst et al. in showing that pancreatic ductal adenocarcinoma cells could obtain glutamine under nutrient poor conditions through lysosomal digestion of extracellular proteins
  • It will therefore become necessary to also target lysosomal digestion, under reduced glucose and glutamine conditions, to effectively manage those invasive and metastatic cancers that express cannibalism and phagocytosis.
  • Previous studies in yeast and mammalian cells show that disruption of aerobic respiration can cause mutations (loss of heterozygosity, chromosome instability, and epigenetic modifications etc.) in the nuclear genome
  • The somatic mutations and genomic instability seen in tumor cells thus arise from a protracted reliance on fermentation energy metabolism and a disruption of redox balance through excess oxidative stress.
  • According to the mitochondrial metabolic theory of cancer, the large genomic heterogeneity seen in tumor cells arises as a consequence, rather than as a cause, of mitochondrial dysfunction
  • A therapeutic strategy targeting the metabolic abnormality common to most tumor cells should therefore be more effective in managing cancer than would a strategy targeting genetic mutations that vary widely between tumors of the same histological grade and even within the same tumor
  • Tumor cells are more fit than normal cells to survive in the hypoxic niche of the tumor microenvironment
  • Hypoxic adaptation of tumor cells allows for them to avoid apoptosis due to their metabolic reprograming following a gradual loss of respiratory function
  • The high rates of tumor cell glycolysis and glutaminolysis will also make them resistant to apoptosis, ROS, and chemotherapy drugs
  • Despite having high levels of ROS, glutamate-derived from glutamine contributes to glutathione production that can protect tumor cells from ROS
    • Nathan Goodyear
       
      reason to eliminate glutamine in cancer patients and even GSH with cancer patients
  • It is clear that adaptability to environmental stress is greater in normal cells than in tumor cells, as normal cells can transition from the metabolism of glucose to the metabolism of ketone bodies when glucose becomes limiting
  • Mitochondrial respiratory chain defects will prevent tumor cells from using ketone bodies for energy
  • glycolysis-dependent tumor cells are less adaptable to metabolic stress than are the normal cells. This vulnerability can be exploited for targeting tumor cell energy metabolism
  • In contrast to dietary energy reduction, radiation and toxic drugs can damage the microenvironment and transform normal cells into tumor cells while also creating tumor cells that become highly resistant to drugs and radiation
  • Drug-resistant tumor cells arise in large part from the damage to respiration in bystander pre-cancerous cells
  • Because energy generated through substrate level phosphorylation is greater in tumor cells than in normal cells, tumor cells are more dependent than normal cells on the availability of fermentable fuels (glucose and glutamine)
  • Ketone bodies and fats are non-fermentable fuels
  • Although some tumor cells might appear to oxidize ketone bodies by the presence of ketolytic enzymes [181], it is not clear if ketone bodies and fats can provide sufficient energy for cell viability in the absence of glucose and glutamine
  • Apoptosis under energy stress is greater in tumor cells than in normal cells
  • A calorie restricted ketogenic diet or dietary energy reduction creates chronic metabolic stress in the body
  • . This energy stress acts as a press disturbance
  • Drugs that target availability of glucose and glutamine would act as pulse disturbances
  • Hyperbaric oxygen therapy can also be considered another pulse disturbance
  • The KD can more effectively reduce glucose and elevate blood ketone bodies than can CR alone making the KD potentially more therapeutic against tumors than CR
  • Campbell showed that tumor growth in rats is greater under high protein (>20%) than under low protein content (<10%) in the diet
  • Protein amino acids can be metabolized to glucose through the Cori cycle
  • The fats in KDs used clinically also contain more medium chain triglycerides
  • Calorie restriction, fasting, and restricted KDs are anti-angiogenic, anti-inflammatory, and pro-apoptotic and thus can target and eliminate tumor cells through multiple mechanisms
  • Ketogenic diets can also spare muscle protein, enhance immunity, and delay cancer cachexia, which is a major problem in managing metastatic cancer
  • GKI values of 1.0 or below are considered therapeutic
  • The GKI can therefore serve as a biomarker to assess the therapeutic efficacy of various diets in a broad range of cancers.
  • It is important to remember that insulin drives glycolysis through stimulation of the pyruvate dehydrogenase complex
  • The water-soluble ketone bodies (D-β-hydroxybutyrate and acetoacetate) are produced largely in the liver from adipocyte-derived fatty acids and ketogenic dietary fat. Ketone bodies bypass glycolysis and directly enter the mitochondria for metabolism to acetyl-CoA
  • Due to mitochondrial defects, tumor cells cannot exploit the therapeutic benefits of burning ketone bodies as normal cells would
  • Therapeutic ketosis with racemic ketone esters can also make it feasible to safely sustain hypoglycemia for inducing metabolic stress on cancer cells
    • Nathan Goodyear
       
      Ketones are much more than energy adaptabilit, but actually are therapeutic.
  • ketone bodies can inhibit histone deacetylases (HDAC) [229]. HDAC inhibitors play a role in targeting the cancer epigenome
  • Therapeutic ketosis reduces circulating inflammatory markers, and ketones directly inhibit the NLRP3 inflammasome, an important pro-inflammatory pathway linked to carcinogenesis and an important target for cancer treatment response
  • Chronic psychological stress is known to promote tumorigenesis through elevations of blood glucose, glucocorticoids, catecholamines, and insulin-like growth factor (IGF-1)
  • In addition to calorie-restricted ketogenic diets, psychological stress management involving exercise, yoga, music etc. also act as press disturbances that can help reduce fatigue, depression, and anxiety in cancer patients and in animal models
  • Ketone supplementation has also been shown to reduce anxiety behavior in animal models
  • This physiological state also enhances the efficacy of chemotherapy and radiation therapy, while reducing the side effects
  • lower dosages of chemotherapeutic drugs can be used when administered together with calorie restriction or restricted ketogenic diets (KD-R)
  • Besides 2-DG, a range of other glycolysis inhibitors might also produce similar therapeutic effects when combined with the KD-R including 3-bromopyruvate, oxaloacetate, and lonidamine
    • Nathan Goodyear
       
      oxaloacetate is a glycolytic inhibitor, as is doxycycline, and IVC.
  • A synergistic interaction of the KD diet plus radiation was seen
  • It is important to recognize, however, that the radiotherapy used in glioma patients can damage the respiration of normal cells and increase availability of glutamine in the microenvironment, which can increase risk of tumor recurrence especially when used together with the steroid drug dexamethasone
  • Poff and colleagues demonstrated that hyperbaric oxygen therapy (HBOT) enhanced the ability of the KD to reduce tumor growth and metastasis
  • HBOT also increases oxidative stress and membrane lipid peroxidation of GBM cells in vitro
  • The effects of the KD and HBOT can be enhanced with administration of exogenous ketones, which further suppressed tumor growth and metastasis
  • Besides HBOT, intravenous vitamin C and dichloroacetate (DCA) can also be used with the KD to selectively increase oxidative stress in tumor cells
  • Recent evidence also shows that ketone supplementation may enhance or preserve overall physical and mental health
  • Some tumors use glucose as a prime fuel for growth, whereas other tumors use glutamine as a prime fuel [102, 186, 262, 263, 264]. Glutamine-dependent tumors are generally less detectable than glucose-dependent under FDG-PET imaging, but could be detected under glutamine-based PET imaging
  • GBM and use glutamine as a major fuel
  • Many of the current treatments used for cancer management are based on the view that cancer is a genetic disease
  • Emerging evidence indicates that cancer is a mitochondrial metabolic disease that depends on availability of fermentable fuels for tumor cell growth and survival
  • Glucose and glutamine are the most abundant fermentable fuels present in the circulation and in the tumor microenvironment
  • Low-carbohydrate, high fat-ketogenic diets coupled with glycolysis inhibitors will reduce metabolic flux through the glycolytic and pentose phosphate pathways needed for synthesis of ATP, lipids, glutathione, and nucleotides
  •  
    Cancer is a mitochondrial disease? So says the well published Dr Seyfried. Glucose and glutamine drive cancer growth.
Nathan Goodyear

Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer... - 0 views

  • More than half of cancer patients are treated with IR at some point during their treatment
  • fractionation schedule is the delivery of 1.8–2.0 Gy per day, five days per week
  • Nuclear DNA is the primary target of IR; it causes DNA damage (genotoxic stress) by direct DNA ionization
  • ...121 more annotations...
  • IR also indirectly induces DNA damage by stimulating reactive oxygen species (ROS) production
  • IR is known to induce EMT in vitro
  • p53 is activated in response to IR-induced DNA damage
  • IR paradoxically also promotes tumour recurrence and metastasis
  • DNA double-strand breaks (DSBs)
  • cancer cells undergoing EMT acquire invasive and metastatic properties
  • changes in the tumour microenvironment (TME)
  • IR seems to induce EMT and CSC phenotypes by regulating cellular metabolism
  • EMT, stemness, and oncogenic metabolism are known to be associated with resistance to radiotherapy and chemotherapy
  • Hanahan and Weinberg proposed ten hallmarks of cancer that alter cell physiology to enhance malignant growth: 1) sustained proliferation, 2) evasion of growth suppression, 3) cell death resistance, 4) replicative immortality, 5) evasion of immune destruction, 6) tumour-promoting inflammation, 7) activation of invasion and metastasis, 8) induction of angiogenesis, 9) genome instability, and 10) alteration of metabolism
  • EMT is a developmental process that plays critical roles in embryogenesis, wound healing, and organ fibrosis
  • IR is known to induce stemness and metabolic alterations in cancer cells
  • transforming growth factor-β [TGF-β], epidermal growth factor [EGF]) and their associated signalling proteins (Wnt, Notch, Hedgehog, nuclear-factor kappa B [NF-κB], extracellular signal-regulated kinase [ERK], and phosphatidylinositol 3-kinase [PI3K]/Akt
  • activate EMT-inducing transcription factors, including Snail/Slug, ZEB1/δEF1, ZEB2/SIP1, Twist1/2, and E12/E47
  • Loss of E-cadherin is considered a hallmark of EMT
  • IR has been shown to induce EMT to enhance the motility and invasiveness of several cancer cells, including those of breast, lung, and liver cancer, and glioma cells
  • IR may increase metastasis in both the primary tumour site and in normal tissues under some circumstance
  • sublethal doses of IR have been shown to enhance the migratory and invasive behaviours of glioma cells
  • ROS are known to play an important role in IR-induced EMT
  • High levels of ROS trigger cell death by causing irreversible damage to cellular components such as proteins, nucleic acids, and lipids, whereas low levels of ROS have been shown to promote tumour progression—including tumour growth, invasion, and metastasis
  • hypoxia-inducible factor-1 (HIF-1) is involved in IR-induced EMT
  • Treatment with the N-acetylcysteine (NAC), a general ROS scavenger, prevents IR-induced EMT, adhesive affinity, and invasion of breast cancer cells
    • Nathan Goodyear
       
      NAC for all patients receiving radiation therapy
  • Snail has been shown to play a crucial role in IR-induced EMT, migration, and invasion
  • IR activates the p38 MAPK pathway, which contributes to the induction of Snail expression to promote EMT and invasion
  • NF-κB signalling that promotes cell migration
  • ROS promote EMT to allow cancer cells to avoid hostile environments
  • HIF-1 is a heterodimer composed of an oxygen-sensitive α subunit and a constitutively expressed β subunit.
  • Under normoxia, HIF-1α is rapidly degraded, whereas hypoxia induces stabilisation and accumulation of HIF-1α
  • levels of HIF-1α mRNA are enhanced by activation of the PI3K/Akt/mammalian target of rapamycin (mTOR)
  • IR is known to increase stabilisation and nuclear accumulation of HIF-1α, since hypoxia is a major condition for HIF-1 activation
  • IR induces vascular damage that causes hypoxia
  • ROS is implicated in IR-induced HIF-1 activation
  • IR causes the reoxygenation of hypoxic cancer cells to increase ROS production, which leads to the stabilisation and nuclear accumulation of HIF-1
  • IR increases glucose availability under reoxygenated conditions that promote HIF-1α translation by activating the Akt/mTOR pathway
  • The stabilised HIF-1α then translocates to the nucleus, dimerizes with HIF-1β, and increases gene expression— including the expression of essential EMT regulators such as Snail—to induce EMT, migration, and invasion
  • TGF-β signalling has been shown to play a crucial role in IR-induced EMT
  • AP-1 transcription factor is involved in IR-induced TGF-β1 expression
  • Wnt/β-catenin signalling is also implicated in IR-induced EMT
  • Notch signalling is known to be involved in IR-induced EMT
  • IR also increases Notch-1 expression [99]. Notch-1 is known to induce EMT by upregulating Snail
  • PAI-1 signalling is also implicated in IR-induced Akt activation that increases Snail levels to induce EMT
  • EGFR activation is known to be associated with IR-induced EMT, cell migration, and invasion by activating two downstream pathways: PI3K/Akt and Raf/MEK/ERK
  • ROS and RNS are also implicated in IR-induced EGFR activation
  • IR has also been shown to activate Hedgehog (Hh) signalling to induce EMT
  • IR has been shown to induce Akt activation through several signalling pathways (EGFR, C-X-C chemokine receptor type 4 [CXCR4]/C-X-C motif chemokine 12 [CXCL12], plasminogen activator inhibitor 1 [PAI-1]) and upstream regulators (Bmi1, PTEN) that promote EMT and invasion
  • CSCs possess a capacity for self-renewal, and they can persistently proliferate to initiate tumours upon serial transplantation, thus enabling them to maintain the whole tumour
  • Conventional cancer treatments kill most cancer cells, but CSCs survive due to their resistance to therapy, eventually leading to tumour relapse and metastasis
  • identification of CSCs, three types of markers are utilised: cell surface molecules, transcription factors, and signalling pathway molecules
  • CSCs express distinct and specific surface markers; commonly used ones are CD24, CD34, CD38, CD44, CD90, CD133, and ALDH
  • Transcription factors, including Oct4, Sox2, Nanog, c-Myc, and Klf4,
  • signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, platelet-derived growth factor receptor (PDGFR), and JAK/STAT
  • microRNAs (miRNAs), including let-7, miR-22, miR-34a, miR-128, the miR-200 family, and miR-451
  • Non-CSCs can be reprogrammed to become CSCs by epigenetic and genetic changes
  • EMT-inducing transcription factors, such as Snail, ZEB1, and Twist1, are known to confer CSC properties
  • Signalling pathways involved in EMT, including those of TGF-β, Wnt, and Notch, have been shown to play important roles in inducing the CSC phenotype
  • TGF-β1 not only increases EMT markers (Slug, Twist1, β-catenin, N-cadherin), but also upregulates CSC markers (Oct4, Sox2, Nanog, Klf4) in breast and lung cancer cells
  • some CSC subpopulations arise independently of EMT
  • IR has been shown to induce the CSC phenotype in many cancers, including breast, lung, and prostate cancers, as well as melanoma
  • Genotoxic stress due to IR or chemotherapy promotes a CSC-like phenotype by increasing ROS production
  • IR has been shown to induce reprogramming of differentiated cancer cells into CSCs
  • In prostate cancer patients, radiotherapy increases the CD44+ cell population that exhibit CSC properties
  • IR also induces the re-expression of stem cell regulators, such as Sox2, Oct4, Nanog, and Klf4, to promote stemness in cancer cells
  • EMT-inducing transcription factors and signalling pathways, including Snail, STAT3, Notch signalling, the PI3K/Akt pathway, and the MAPK cascade, have been shown to play important roles in IR-induced CSC properties
  • STAT3 directly binds to the Snail promoter and increases Snail transcription, which induces the EMT and CSC phenotypes, in cisplatin-selected resistant cells
  • Other oncogenic metabolic pathways, including glutamine metabolism, the pentose phosphate pathway (PPP), and synthesis of fatty acids and cholesterol, are also enhanced in many cancers
  • metabolic reprogramming
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • metabolic reprogramming
  • tumour cells exhibit high mitochondrial metabolism as well as aerobic glycolysis
  • occurring within the same tumour
  • CSCs can be highly glycolytic-dependent or oxidative phosphorylation (OXPHOS)-dependen
  • mitochondrial function is crucial for maintaining CSC functionality
  • cancer cells depend on mitochondrial metabolism and increase mitochondrial production of ROS that cause pseudo-hypoxia
  • HIF-1 then enhances glycolysis
  • CAFs have defective mitochondria that lead to the cells exhibiting the Warburg effect; the cells take up glucose, and then secrete lactate to 'feed' adjacent cancer cells
  • lactate transporter, monocarboxylate transporter (MCT)
  • nutrient microenvironment
  • Epithelial cancer cells express MCT1, while CAFs express MCT4. MCT4-positive, hypoxic CAFs secrete lactate by aerobic glycolysis, and MCT1-expressing epithelial cancer cells then uptake and use that lactate as a substrate for the tricarboxylic acid (TCA) cycle
  • MCT4-positive cancer cells depend on glycolysis and then efflux lactate, while MCT1-positive cells uptake lactate and rely on OXPHOS
  • metabolic heterogeneity induces a lactate shuttle between hypoxic/glycolytic cells and oxidative/aerobic tumour cells
  • bulk tumour cells exhibit a glycolytic phenotype, with increased conversion of glucose to lactate (and enhanced lactate efflux through MCT4), CSC subsets depend on oxidative phosphorylation; most of the glucose entering the cells is converted to pyruvate to fuel the TCA cycle and the electron transport chain (ETC), thereby increasing mitochondrial ROS production
  • the major fraction of glucose is directed into the pentose phosphate pathway, to produce redox power through the generation of NADPH and ROS scavengers
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • regulatory molecules involved in EMT and CSCs, including Snail, Dlx-2, HIF-1, STAT3, TGF-β, Wnt, and Akt, are implicated in the metabolic reprogramming of cancer cells
  • HIF-1 induces the expression of glycolytic enzymes, including the glucose transporter GLUT, hexokinase, lactate dehydrogenase (LDH), and MCT, resulting in the glycolytic switch
  • HIF-1 represses the expression of pyruvate dehydrogenase kinase (PDK), which inhibits pyruvate dehydrogenase (PDH), thereby inhibiting mitochondrial activity
  • STAT3 has been implicated in EMT-induced metabolic changes as well
  • TGF-β and Wnt play important roles in the metabolic alteration of cancer cells
  • Akt is also implicated in the glycolytic switch and in promoting cancer cell invasiveness
  • EMT, invasion, metastasis, and stemness
  • pyruvate kinase M2 (PKM2), LDH, and pyruvate carboxylase (PC), are implicated in the induction of the EMT and CSC phenotypes
  • decreased activity of PKM2 is known to promote an overall shift in metabolism to aerobic glycolysis
  • LDH catalyses the bidirectional conversion of lactate to pyruvate
  • High levels of LDHA are positively correlated with the expression of EMT and CSC markers
  • IR has been shown to induce metabolic changes in cancer cells
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR also elevates MCT1 expression that exports lactate into the extracellular environment, leading to acidification of the tumour microenvironment
  • IR increases intracellular glucose, glucose 6-phosphate, fructose, and products of pyruvate (lactate and alanine), suggesting a role for IR in the upregulation of cytosolic aerobic glycolysis
  • Lactate can activate latent TGF-
  • lactate stimulates cell migration and enhances secretion of hyaluronan from CAF that promote tumour metastasis
  • promote tumour survival, growth, invasion, and metastasis; enhance the stiffness of the ECM; contribute to angiogenesis; and induce inflammation by releasing several growth factors and cytokines (TGF-β, VEGF, hepatocyte growth factor [HGF], PDGF, and stromal cell-derived factor 1 [SDF1]), as well as MMP
  • tumours recruit the host tissue’s blood vessel network to perform four mechanisms: angiogenesis (formation of new vessels), vasculogenesis (de novo formation of blood vessels from endothelial precursor cells), co-option, and modification of existing vessels within tissues.
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • intrinsic immunogenicity or induce tolerance
  • cancer immunoediting’
  • three phases: 1) elimination, 2) equilibrium, and 3) escape.
  • The third phase, tumour escape, is mediated by antigen loss, immunosuppressive cells (TAM, MDSCs, and regulatory T cells), and immunosuppressive cytokines (TGF-β and IL-10).
  • IR can elicit various changes in the TME, such as CAF activity-mediated ECM remodelling and fibrosis, cycling hypoxia, and an inflammatory response
  • IR activates CAFs to promote the release of growth factors and ECM modulators, including TGF-β and MMP
  • TGF-β directly influences tumour cells and CAFs, promotes tumour immune escape, and activates HIF-1 signalling
    • Nathan Goodyear
       
      And now the receipts
  • MMPs degrade ECM that facilitates angiogenesis, tumour cell invasion, and metastasis
    • Nathan Goodyear
       
      Receipts and mechanisms
  • IR also promotes MMP-2/9 activation in cancer cells to promote EMT, invasion, and metastasis
  • IR-induced Snail increases MMP-2 expression to promote EMT
  • Radiotherapy has the paradoxical side-effect of increasing tumour aggressiveness
  • IR promotes ROS production in cancer cells, which may induce the activation of oncogenes and the inactivation of tumour suppressors, which further promote oncogenic metabolism
  • Metabolic alterations
  • oncogenic metabolism
  • elicit various changes in the TME
  • Although IR activates an antitumour immune response, this signalling is frequently suppressed by tumour escape mechanisms
  •  
    Important review article.
Nathan Goodyear

Oncotarget | NADH autofluorescence, a new metabolic biomarker for cancer stem cells: Id... - 0 views

  • Vitamin C was ~10 times more potent than 2-DG for the targeting of CSCs
  • Cancer stem-like cells (CSCs) are thought to be the root cause of chemotherapy-resistance and radio-resistance
  • ultimately leading to treatment failure in patients with advanced disease [1-3]. They have been directly implicated mechanistically in tumor recurrence and metastasis, resulting in poor patient survival
  • ...26 more annotations...
  • mitochondrial biogenesis may be a key driver of the CSC phenotype
  • Our results indicate that increased mitochondrial oxidative stress and high NADH levels are both key characteristics of the CSC metabolic phenotype
  • high levels of NAD(P)H auto-fluorescence are known to be a surrogate marker for mitochondrial “power”, high OXPHOS capacity and increased ATP production
  • CSCs may be strictly dependent on NAD(P)H to maintain their enhanced mitochondrial function
  • an intact NAD+ salvage pathway is strictly required for mammosphere formation, supporting our results using NAD(P)H auto-fluorescence, which enriched CSC activity by more than 5-fold.
  • Since glycolysis is especially critical for maintaining the TCA cycle, OXPHOS and overall mitochondrial function, we next assessed the effects of known glycolytic inhibitors
  • we show that two other natural products that function as effective glycolysis inhibitors, also inhibited mammosphere formation. More specifically, vitamin C (ascorbic acid), which induces oxidative stress and inhibits the activity of GAPDH (a key glycolytic enzyme) [17], also inhibited mammosphere formation, with an IC-50 of 1 mM (Figure 7B). Therefore, vitamin C was ~10 times more potent than 2-DG at targeting CSC propagation
  • silibinin (the major active constituent of silymarin, an extract of milk thistle seeds) [18], which specifically functions as an inhibitor of glucose uptake, blocked mammosphere formation, with an IC-50 between 200 and 400 µM
  • caffeic acid phenyl ester (CAPE), a key component of honey-bee propolis, has potent anti-cancer properties
  • Propolis has a strong history of medicinal use, dating back more than 2,000 years
  • Because of it aromatic ring structure (Figure 8), we speculated that CAPE might function as a potent inhibitor of oxidative mitochondrial metabolism
  • CAPE quantitatively inhibits the mitochondrial oxygen consumption rate (OCR) and, in turn, induces the onset of aerobic glycolysis (ECAR)
  • CAPE shows a clear selectivity for targeting CSCs and adherent cancer cells, relative to normal fibroblasts.
  • CAPE functions as a “natural” mitochondrial OXPHOS inhibitor, that preferentially targets the CSC sub-population. This could explain CAPE’s known anti-cancer properties
  • Our data directly shows that a small fraction of the total cell population, characterized by increased PGC1α activity, high mitochondrial ROS/H2O2 and high NADH levels, has the ability to survive and grow under anchorage-independent conditions, driving mammosphere formation
  • We highlight the utility of certain natural products, such as Silibinin, Vitamin C and CAPE, that could be used to therapeutically target CSCs. Silibinin is the major active component of silymarin, which is an extract prepared from milk thistle seeds.
  • high NADH is a property that is conserved between normal and cancerous stem cells
  • Previous studies have also shown that when non-CSCs and CSCs are both fed mitochondrial fuels (such as L-lactate or ketone bodies), that CSCs quantitatively produce more NADH in response to this stimulus
  • CSCs may be strictly dependent on NADH to maintain their enhanced mitochondrial function
  • The Noble Prize winner, Linus Pauling, was among the first to describe and clinically test the efficacy of Vitamin C, as a relatively non-toxic anti-cancer agent
  • Vitamin C has two mechanisms of action. First, it is a potent pro-oxidant, that actively depletes the reduced glutathione pool, leading to cellular oxidative stress and apoptosis in cancer cells. Moreover, it also behaves as an inhibitor of glycolysis, by targeting the activity of GAPDH, a key glycolytic enzyme.
  • Here, we show that Vitamin C can also be used to target the CSC population, as it is an inhibitor of energy metabolism that feeds into the mitochondrial TCA cycle and OXPHOS
  • Vitamin C may prove to be promising agent for new clinical trials, aimed at testing its ability to reduce CSC activity in cancer patients, as an add-on to more conventional therapies, to prevent tumor recurrence, further disease progression and metastasis
  • Interestingly, a breast cancer based clinical study has already shown that the use of Vitamin C, concurrent with or within 6 months of chemotherapy, significantly reduces both tumor recurrence and patient mortality
  • CAPE quantitatively reduces mitochondrial oxygen consumption (OCR), while inducing a reactive increase in glycolysis (ECAR). As such, it potently inhibits mammosphere formation with an IC-50 of ~2.5 µM. Similarly, it also significantly inhibits cell migration
  • we also demonstrate that 7 different inhibitors of key energetic pathways can be used to effectively block CSC propagation, including three natural products (silibinin, ascorbic acid and CAPE). Future studies will be necessary to test their potential for clinical benefit in cancer patients.
  •  
    The future of cancer therapy is cancer stem cells.  Study finds that Vitamin C, silymarin, and bee propolis blocks mitochondrial energy pathways in cancer stem cells.  Vitamin C is a known glycolytic inhbitor. Vitamin C was found to inhibit glycolysis via GAPDH targeting to inhibit the energy pathways of the mitochondria in CSCs.  The authors propse that Vitamin C can be used as add on therapies for conventional therapies to specifically attack the CSCs and their contribution to recrurence, treatment resistance, and metastasis potential all in addition to the ability of vitamin C to reduce the side effects of chemotherapy.
Nathan Goodyear

Testosterone: a vascular hormone in health and disease - 0 views

  • Testosterone has beneficial effects on several cardiovascular risk factors, which include cholesterol, endothelial dysfunction and inflammation
  • In clinical studies, acute and chronic testosterone administration increases coronary artery diameter and flow, improves cardiac ischaemia and symptoms in men with chronic stable angina and reduces peripheral vascular resistance in chronic heart failure.
  • testosterone is an L-calcium channel blocker and induces potassium channel activation in vascular smooth muscle cells
  • ...54 more annotations...
  • Animal studies have consistently demonstrated that testosterone is atheroprotective, whereas testosterone deficiency promotes the early stages of atherogenesis
  • there is no compelling evidence that testosterone replacement to levels within the normal healthy range contributes adversely to the pathogenesis of CVD (Carson & Rosano 2011) or prostate cancer (Morgentaler & Schulman 2009)
  • bidirectional effect between decreased testosterone concentrations and disease pathology exists as concomitant cardiovascular risk factors (including inflammation, obesity and insulin resistance) are known to reduce testosterone levels and that testosterone confers beneficial effects on these cardiovascular risk factors
  • Achieving a normal physiological testosterone concentration through the administration of testosterone replacement therapy (TRT) has been shown to improve risk factors for atherosclerosis including reducing central adiposity and insulin resistance and improving lipid profiles (in particular, lowering cholesterol), clotting and inflammatory profiles and vascular function
  • It is well known that impaired erectile function and CVD are closely related in that ED can be the first clinical manifestation of atherosclerosis often preceding a cardiovascular event by 3–5 years
  • no decrease in the response (i.e. no tachyphylaxis) of testosterone and that patient benefit persists in the long term.
  • free testosterone levels within the physiological range, has been shown to result in a marked increase in both flow- and nitroglycerin-mediated brachial artery vasodilation in men with CAD
  • Clinical studies, however, have revealed either small reductions of 2–3 mm in diastolic pressure or no significant effects when testosterone is replaced within normal physiological limits in humans
  • Endothelium-independent mechanisms of testosterone are considered to occur primarily via the inhibition of voltage-operated Ca2+ channels (VOCCs) and/or activation of K+ channels (KCs) on smooth muscle cells (SMCs)
  • Testosterone shares the same molecular binding site as nifedipine
  • Testosterone increases the expression of endothelial nitric oxide synthase (eNOS) and enhances nitric oxide (NO) production
  • Testosterone also inhibited the Ca2+ influx response to PGF2α
  • one of the major actions of testosterone is on NO and its signalling pathways
  • In addition to direct effects on NOS expression, testosterone may also affect phosphodiesterase type 5 (PDE5 (PDE5A)) gene expression, an enzyme controlling the degradation of cGMP, which acts as a vasodilatory second messenger
  • the significance of the action of testosterone on VSMC apoptosis and proliferation in atherosclerosis is difficult to delineate and may be dependent upon the stage of plaque development
  • Several human studies have shown that carotid IMT (CIMT) and aortic calcification negatively correlate with serum testosterone
  • t long-term testosterone treatment reduced CIMT in men with low testosterone levels and angina
  • neither intracellular nor membrane-associated ARs are required for the rapid vasodilator effect
  • acute responses appear to be AR independent, long-term AR-mediated effects on the vasculature have also been described, primarily in the context of vascular tone regulation via the modulation of gene transcription
  • Testosterone and DHT increased the expression of eNOS in HUVECs
  • oestrogens have been shown to activate eNOS and stimulate NO production in an ERα-dependent manner
  • Several studies, however, have demonstrated that the vasodilatory actions of testosterone are not reduced by aromatase inhibition
  • non-aromatisable DHT elicited similar vasodilation to testosterone treatment in arterial smooth muscle
  • increased endothelial NOS (eNOS) expression and phosphorylation were observed in testosterone- and DHT-treated human umbilical vein endothelial cells
  • Androgen deprivation leads to a reduction in neuronal NOS expression associated with a decrease of intracavernosal pressure in penile arteries during erection, an effect that is promptly reversed by androgen replacement therapy
  • Observational evidence suggests that several pro-inflammatory cytokines (including interleukin 1β (IL1β), IL6, tumour necrosis factor α (TNFα), and highly sensitive CRP) and serum testosterone levels are inversely associated in patients with CAD, T2DM and/or hypogonadism
  • patients with the highest IL1β concentrations had lower endogenous testosterone levels
  • TRT has been reported to significantly reduce TNFα and elevate the circulating anti-inflammatory IL10 in hypogonadal men with CVD
  • testosterone treatment to normalise levels in hypogonadal men with the MetS resulted in a significant reduction in the circulating CRP, IL1β and TNFα, with a trend towards lower IL6 compared with placebo
  • parenteral testosterone undecanoate, CRP decreased significantly in hypogonadal elderly men
  • Higher levels of serum adiponectin have been shown to lower cardiovascular risk
  • Research suggests that the expression of VCAM-1, as induced by pro-inflammatory cytokines such as TNFα or interferon γ (IFNγ (IFNG)) in endothelial cells, can be attenuated by treatment with testosterone
  • Testosterone also inhibits the production of pro-inflammatory cytokines such as IL6, IL1β and TNFα in a range of cell types including human endothelial cells
  • decreased inflammatory response to TNFα and lipopolysaccharide (LPS) in human endothelial cells when treated with DHT
  • The key to unravelling the link between testosterone and its role in atherosclerosis may lay in the understanding of testosterone signalling and the cross-talk between receptors and intracellular events that result in pro- and/or anti-inflammatory actions in athero-sensitive cells.
  • testosterone functions through the AR to modulate adhesion molecule expression
  • pre-treatment with DHT reduced the cytokine-stimulated inflammatory response
  • DHT inhibited NFκB activation
  • DHT could inhibit an LPS-induced upregulation of MCP1
  • Both NFκB and AR act at the transcriptional level and have been experimentally found to be antagonistic to each other
  • As the AR and NFκB are mutual antagonists, their interaction and influence on functions can be bidirectional, with inflammatory agents that activate NFκB interfering with normal androgen signalling as well as the AR interrupting NFκB inflammatory transcription
  • prolonged exposure of vascular cells to the inflammatory activation of NFκB associated with atherosclerosis may reduce or alter any potentially protective effects of testosterone
  • DHT and IFNγ also modulate each other's signalling through interaction at the transcriptional level, suggesting that androgens down-regulate IFN-induced genes
  • (Simoncini et al. 2000a,b). Norata et al. (2010) suggest that part of the testosterone-mediated atheroprotective effects could depend on ER activation mediated by the testosterone/DHT 3β-derivative, 3β-Adiol
  • TNFα-induced induction of ICAM-1, VCAM-1 and E-selectin as well as MCP1 and IL6 was significantly reduced by a pre-incubation with 3β-Adiol in HUVECs
  • 3β-Adiol also reduced LPS-induced gene expression of IL6, TNFα, cyclooxygenase 2 (COX2 (PTGS2)), CD40, CX3CR1, plasminogen activator inhibitor-1, MMP9, resistin, pentraxin-3 and MCP1 in the monocytic cell line U937 (Norata et al. 2010)
  • This study suggests that testosterone metabolites, other than those generated through aromatisation, could exert anti-inflammatory effects that are mediated by ER activation.
  • The authors suggest that DHT differentially effects COX2 levels under physiological and pathophysiological conditions in human coronary artery smooth muscle cells and via AR-dependent and -independent mechanisms influenced by the physiological state of the cell
  • There are, however, a number of systematic meta-analyses of clinical trials of TRT that have not demonstrated an increased risk of adverse cardiovascular events or mortality
  • The TOM trial, which was designed to investigate the effect of TRT on frailty in elderly men, was terminated prematurely as a result of an increased incidence of cardiovascular-related events after 6 months in the treatment arm
  • trials of TRT in men with either chronic stable angina or chronic cardiac failure have also found no increase in either cardiovascular events or mortality in studies up to 12 months
  • Evidence may therefore suggest that low testosterone levels and testosterone levels above the normal range have an adverse effect on CVD, whereas testosterone levels titrated to within the mid- to upper-normal range have at least a neutral effect or, taking into account the knowledge of the beneficial effects of testosterone on a series of cardiovascular risk factors, there may possibly be a cardioprotective action
  • The effect of testosterone on human vascular function is a complex issue and may be dependent upon the underlying androgen and/or disease status.
  • the majority of studies suggest that testosterone may display both acute and chronic vasodilatory effects upon various vascular beds at both physiological and supraphysiological concentrations and via endothelium-dependent and -independent mechanisms
  •  
    Good deep look into the testosterone and CVD link.
Nathan Goodyear

Progesterone metabolites regulate induction, growth, and suppression of estrogen- and p... - 0 views

  • in vitro studies had shown that the progesterone metabolites, 5α-dihydroprogesterone (5αP) and 3α-dihydroprogesterone (3αHP), respectively, exhibit procancer and anticancer effects on receptor-negative human breast cell lines
  • Onset and growth of ER/PR-negative human breast cell tumors were significantly stimulated by 5αP and inhibited by 3αHP
  • When both hormones were applied simultaneously, the stimulatory effects of 5αP were abrogated by the inhibitory effects of 3αHP and vice versa
  • ...31 more annotations...
  • Treatment with 3αHP subsequent to 5αP-induced tumor initiation resulted in suppression of further tumorigenesis and regression of existing tumors
  • Tumorigenesis of ER/PR-negative breast cells is significantly enhanced by 5αP and suppressed by 3αHP, the outcome depending on the relative concentrations of these two hormones in the microenvironment in the breast regions
  • The findings show that the production of 5αP greatly exceeds that of 3αHP in ER/PR-negative tumors and that treatment with 3αHP can effectively block tumorigenesis and cause existing tumors to regress
  • hypothesis that a high 3αHP-to-5αP concentration ratio in the microenvironment may foster normalcy in noncancerous breast regions.
  • a large proportion (about 30% to 60%) of breast tumors are ER and/or PR negative
  • about 90% of normal proliferating breast epithelial cells are receptor negative
  • Our previous in vitro studies had shown that breast tissues and cell lines readily convert progesterone to 5α-pregnanes, such as 5αP, and delta-4-pregnenes, such as 3αHP (Figure ​(Figure1),1), and that tumorous breast tissues [15] and tumorigenic breast cell lines [16] produce higher levels of 5αP and lower levels of 3αHP than do normal breast tissues and nontumorigenic cell lines
  • The progesterone metabolism studies suggested that increases in 5αP and decreases in 3αHP production accompany the shift toward breast cell neoplasia and tumorigenicity
  • In vitro studies on five different human breast cell lines showed that cell proliferation and detachment are significantly increased by 5αP and decreased by 3αHP
  • the prevailing theory of hormonal regulation of breast cancer, as well as hormone-based therapies, revolves around estrogen and/or progesterone and ER/PR-positive breast cells and tumors.
  • Not only do these "receptor-negative" breast cancers fail to benefit from current hormonal therapies, but they also generally exhibit more-aggressive biologic behaviors and poorer prognosis than the receptor-positive ones
  • The results of the studies reported here show for the first time that the progesterone metabolites, 5αP and 3αHP, act as hormones that regulate ER/PR-negative breast tumor formation, growth, and regression
  • The onset of the ER/PR-negative human breast cell tumors in mice was considerably accelerated, and the growth significantly stimulated, by just one or two applications of 5αP
  • In contrast, 3αHP retarded onset of tumor formation, suppressed tumor growth, and inhibited or regressed existing 5αP-induced tumors
  • When both hormones were administered simultaneously, the effects of one were abrogated by the effects of the other.
  • The 5αPR and 3αHPR (which are associated with the plasma membranes of both ER/PR-positive [19] and ER/PR-negative [29] cells) are distinct from each other and from known ER, PR, androgen, and corticosteroid receptors, and lack affinity for other steroids, such as progesterone, estrogen, androgens, corticosteroids, and other progesterone metabolites
  • Levels of 5αPR are upregulated by 5αP itself and estradiol, and downregulated by 3αHP in both ER/PR-positive and -negative cells
  • ndications are that 5αP acts via the surface receptor-linked mitogen-activated protein kinase (MAPK; Erk1/2) pathway; 5αP significantly stimulates activation of Erk1/2 [30], increases the Bcl-2/Bax expression ratio [18] and actin depolymerization [31], and decreases expression of actin and adhesion plaque-associated vinculin [31], resulting in decreased apoptosis and increased mitosis and cell detachment
  • 3αHP appears to suppress protein kinase C (PKC), phospholipase C (PLC), Ca2+ mobilization (unpublished observations), and the Bcl-2/Bax expression ratio [18], and increases expression of the cell-cycle inhibitor p21 [18], resulting in increased apoptosis and decreased proliferation and detachment of breast cell lines.
  • serum from mice with tumors had significantly more 5αP than 3αHP
  • the tumors, which on average had about threefold higher concentrations of 5αP than the respective sera, and >10-fold higher 5αP than 3αHP levels
  • Previous in vitro metabolism studies showed that human breast tumor tissues convert significantly more progesterone to 5α-pregnanes like 5αP and less to 4-pregnenes like 3αHP than do paired normal (nontumorous) tissues
  • Similar differences in progesterone metabolism and enzyme gene expressions were observed between tumorigenic and nontumorigenic breast cell lines
  • breast carcinomas are able to synthesize progesterone
  • The current findings, along with the previous in vitro studies, suggest that the relative concentrations of 5αP and 3αHP in the breast microenvironment constitute important autocrine/paracrine determinants not only for tumorigenesis but also for potential regression of tumors and the maintenance of normalcy of ER/PR-negative breast cells/tissues.
  • Evidence presented here shows that a high concentration of 5αP, relative to 3αHP in the microenvironment, promotes initiation and growth of tumors, whereas a higher concentration of 3αHP, relative to 5αP, suppresses tumorigenesis and promotes normalcy
  • 5α-reductase and 5αPR levels are upregulated by 5αP
  • in the 3αHP-treated mice, the elevated 3αHP levels, relative to 5αP, in the microenvironment could have opposed progression to xenograft neoplasia by its inherent anticancer actions and the suppression of 5αP synthesis and 5αPR expression
  • the opposing actions of the progesterone metabolites also appear to exert some control over the estrogen-regulated effects on breast cancer by their ability to modulate ER numbers in ER-positive cells
  • because both ER/PR-negative and ER/PR-positive, as well as normal and tumorigenic human breast cell lines, have been shown to respond to 5αP and 3αHP in vitro, it is suggested that these endogenously produced progesterone metabolites may also play regulatory hormonal roles in ER/PR-positive breast cancers, as well as in the maintenance of normalcy in nontumorous breast tissues.
  • The in vivo data provide further evidence that progesterone metabolites, such as 5αP and 3αHP, deserve to be considered as active hormones in their own right, rather than inactive waste products
  •  
    Progesterone metabolites and breast cancer
Nathan Goodyear

Inflammatory cause of metabolic syndrome via brain stress and NF-κB - 0 views

  • Mechanistic studies further showed that such metabolic inflammation is related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect under prolonged nutritional excess
  • intracellular stress-inflammation process for metabolic syndrome has been established in the central nervous system (CNS) and particularly in the hypothalamus
  • the CNS and the comprised hypothalamus are known to govern various metabolic activities of the body including appetite control, energy expenditure, carbohydrate and lipid metabolism, and blood pressure homeostasis
  • ...56 more annotations...
  • Reactive oxygen species (ROS) refer to a class of radical or non-radical oxygen-containing molecules that have high oxidative reactivity with lipids, proteins, and nucleic acids
  • a large measure of intracellular ROS comes from the leakage of mitochondrial electron transport chain (ETC)
  • Another major source of intracellular ROS is the intentional generation of superoxides by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
  • there are other ROS-producing enzymes such as cyclooxygenases, lipoxygenases, xanthine oxidase, and cytochrome p450 enzymes, which are involved with specific metabolic processes
  • To counteract the toxic effects of molecular oxidation by ROS, cells are equipped with a battery of antioxidant enzymes such as superoxide dismutases, catalase, peroxiredoxins, sulfiredoxin, and aldehyde dehydrogenases
  • intracellular oxidative stress has been indicated to contribute to metabolic syndrome and related diseases, including T2D [72; 73], CVDs [74-76], neurodegenerative diseases [69; 77-80], and cancers
  • intracellular oxidative stress is highly associated with the development of neurodegenerative diseases [69] and brain aging
  • dietary obesity was found to induce NADPH oxidase-associated oxidative stress in rat brain
  • mitochondrial dysfunction in hypothalamic proopiomelanocortin (POMC) neurons causes central glucose sensing impairment
  • Endoplasmic reticulum (ER) is the cellular organelle responsible for protein synthesis, maturation, and trafficking to secretory pathways
  • unfolded protein response (UPR) machinery
  • ER stress has been associated to obesity, insulin resistance, T2D, CVDs, cancers, and neurodegenerative diseases
  • brain ER stress underlies neurodegenerative diseases
  • under environmental stress such as nutrient deprivation or hypoxia, autophagy is strongly induced to breakdown macromolecules into reusable amino acids and fatty acids for survival
  • intact autophagy function is required for the hypothalamus to properly control metabolic and energy homeostasis, while hypothalamic autophagy defect leads to the development of metabolic syndrome such as obesity and insulin resistance
  • prolonged oxidative stress or ER stress has been shown to impair autophagy function in disease milieu of cancer or aging
  • TLRs are an important class of membrane-bound pattern recognition receptors in classical innate immune defense
  • Most hypothalamic cell types including neurons and glia cells express TLRs
  • overnutrition constitutes an environmental stimulus that can activate TLR pathways to mediate the development of metabolic syndrome related disorders such as obesity, insulin resistance, T2D, and atherosclerotic CVDs
  • Isoforms TLR1, 2, 4, and 6 may be particularly pertinent to pathogenic signaling induced by lipid overnutrition
  • hypothalamic TLR4 and downstream inflammatory signaling are activated in response to central lipid excess via direct intra-brain lipid administration or HFD-feeding
  • overnutrition-induced metabolic derangements such as central leptin resistance, systemic insulin resistance, and weight gain
  • these evidences based on brain TLR signaling further support the notion that CNS is the primary site for overnutrition to cause the development of metabolic syndrome.
  • circulating cytokines can limitedly travel to the hypothalamus through the leaky blood-brain barrier around the mediobasal hypothalamus to activate hypothalamic cytokine receptors
  • significant evidences have been recently documented demonstrating the role of cytokine receptor pathways in the development of metabolic syndrome components
  • entral administration of TNF-α at low doses faithfully replicated the effects of central metabolic inflammation in enhancing eating, decreasing energy expenditure [158;159], and causing obesity-related hypertension
  • Resistin, an adipocyte-derived proinflammatory cytokine, has been found to promote hepatic insulin resistance through its central actions
  • both TLR pathways and cytokine receptor pathways are involved in central inflammatory mechanism of metabolic syndrome and related diseases.
  • In quiescent state, NF-κB resides in the cytoplasm in an inactive form due to inhibitory binding by IκBα protein
  • IKKβ activation via receptor-mediated pathway, leading to IκBα phosphorylation and degradation and subsequent release of NF-κB activity
  • Research in the past decade has found that activation of IKKβ/NF-κB proinflammatory pathway in metabolic tissues is a prominent feature of various metabolic disorders related to overnutrition
  • it happens in metabolic tissues, it is mainly associated with overnutrition-induced metabolic derangements, and most importantly, it is relatively low-grade and chronic
  • this paradigm of IKKβ/NF-κB-mediated metabolic inflammation has been identified in the CNS – particularly the comprised hypothalamus, which primarily accounts for to the development of overnutrition-induced metabolic syndrome and related disorders such as obesity, insulin resistance, T2D, and obesity-related hypertension
  • evidences have pointed to intracellular oxidative stress and mitochondrial dysfunction as upstream events that mediate hypothalamic NF-κB activation in a receptor-independent manner under overnutrition
  • In the context of metabolic syndrome, oxidative stress-related NF-κB activation in metabolic tissues or vascular systems has been implicated in a broad range of metabolic syndrome-related diseases, such as diabetes, atherosclerosis, cardiac infarct, stroke, cancer, and aging
  • intracellular oxidative stress seems to be a likely pathogenic link that bridges overnutrition with NF-κB activation leading to central metabolic dysregulation
  • overnutrition is an environmental inducer for intracellular oxidative stress regardless of tissues involved
  • excessive nutrients, when transported into cells, directly increase mitochondrial oxidative workload, which causes increased production of ROS by mitochondrial ETC
  • oxidative stress has been shown to activate NF-κB pathway in neurons or glial cells in several types of metabolic syndrome-related neural diseases, such as stroke [185], neurodegenerative diseases [186-188], and brain aging
  • central nutrient excess (e.g., glucose or lipids) has been shown to activate NF-κB in the hypothalamus [34-37] to account for overnutrition-induced central metabolic dysregulations
  • overnutrition can present the cell with a metabolic overload that exceeds the physiological adaptive range of UPR, resulting in the development of ER stress and systemic metabolic disorders
  • chronic ER stress in peripheral metabolic tissues such as adipocytes, liver, muscle, and pancreatic cells is a salient feature of overnutrition-related diseases
  • recent literature supports a model that brain ER stress and NF-κB activation reciprocally promote each other in the development of central metabolic dysregulations
  • when intracellular stresses remain unresolved, prolonged autophagy upregulation progresses into autophagy defect
  • autophagy defect can induce NF-κB-mediated inflammation in association with the development of cancer or inflammatory diseases (e.g., Crohn's disease)
  • The connection between autophagy defect and proinflammatory activation of NF-κB pathway can also be inferred in metabolic syndrome, since both autophagy defect [126-133;200] and NF-κB activation [20-33] are implicated in the development of overnutrition-related metabolic diseases
  • Both TLR pathway and cytokine receptor pathways are closely related to IKKβ/NF-κB signaling in the central pathogenesis of metabolic syndrome
  • Overnutrition, especially in the form of HFD feeding, was shown to activate TLR4 signaling and downstream IKKβ/NF-κB pathway
  • TLR4 activation leads to MyD88-dependent NF-κB activation in early phase and MyD88-indepdnent MAPK/JNK pathway in late phase
  • these studies point to NF-κB as an immediate signaling effector for TLR4 activation in central inflammatory response
  • TLR4 activation has been shown to induce intracellular ER stress to indirectly cause metabolic inflammation in the hypothalamus
  • central TLR4-NF-κB pathway may represent one of the early receptor-mediated events in overnutrition-induced central inflammation.
  • cytokines and their receptors are both upstream activating components and downstream transcriptional targets of NF-κB activation
  • central administration of TNF-α at low dose can mimic the effect of obesity-related inflammatory milieu to activate IKKβ/NF-κB proinflammatory pathways, furthering the development of overeating, energy expenditure decrease, and weight gain
  • the physiological effects of IKKβ/NF-κB activation seem to be cell type-dependent, i.e., IKKβ/NF-κB activation in hypothalamic agouti-related protein (AGRP) neurons primarily leads to the development of energy imbalance and obesity [34]; while in hypothalamic POMC neurons, it primarily results in the development of hypertension and glucose intolerance
  • the hypothalamus, is the central regulator of energy and body weight balance [
  •  
    Great article chronicles the biochemistry of "over nutrition" and inflammation through NF-kappaB activation and its impact on the brain.
Nathan Goodyear

Testosterone and the Cardiovascular System: A Comprehensive Review of the Clinical Lite... - 0 views

  • Low endogenous bioavailable testosterone levels have been shown to be associated with higher rates of all‐cause and cardiovascular‐related mortality.39,41,46–47 Patients suffering from CAD,13–18 CHF,137 T2DM,25–26 and obesity27–28
  • have all been shown to have lower levels of endogenous testosterone compared with those in healthy controls. In addition, the severity of CAD15,17,29–30 and CHF137 correlates with the degree of testosterone deficiency
  • In patients with CHF, testosterone replacement therapy has been shown to significantly improve exercise tolerance while having no effect on LVEF
  • ...66 more annotations...
  • testosterone therapy causes a shift in the skeletal muscle of CHF patients toward a higher concentration of type I muscle fibers
  • Testosterone replacement therapy has also been shown to improve the homeostatic model of insulin resistance and hemoglobin A1c in diabetics26,68–69 and to lower the BMI in obese patients.
  • Lower levels of endogenous testosterone have been associated with longer duration of the QTc interval
  • testosterone replacement has been shown to shorten the QTc interval
  • negative correlation has been demonstrated between endogenous testosterone levels and IMT of the carotid arteries, abdominal aorta, and thoracic aorta
  • These findings suggest that men with lower levels of endogenous testosterone may be at a higher risk of developing atherosclerosis.
  • Current guidelines from the Endocrine Society make no recommendations on whether patients with heart disease should be screened for hypogonadism and do not recommend supplementing patients with heart disease to improve survival.
  • The Massachusetts Male Aging Study also projects ≈481 000 new cases of hypogonadism annually in US men within the same age group
  • since 1993 prescriptions for testosterone, regardless of the formulation, have increased nearly 500%
  • Testosterone levels are lower in patients with chronic illnesses such as end‐stage renal disease, human immunodeficiency virus, chronic obstructive pulmonary disease, type 2 diabetes mellitus (T2DM), obesity, and several genetic conditions such as Klinefelter syndrome
  • A growing body of evidence suggests that men with lower levels of endogenous testosterone are more prone to develop CAD during their lifetimes
  • There are 2 major potential confounding factors that the older studies generally failed to account for. These factors are the subfraction of testosterone used to perform the analysis and the method used to account for subclinical CAD.
  • The biologically inactive form of testosterone is tightly bound to SHBG and is therefore unable to bind to androgen receptors
  • The biologically inactive fraction of testosterone comprises nearly 68% of the total testosterone in human serum
  • The biologically active subfraction of testosterone, also referred to as bioavailable testosterone, is either loosely bound to albumin or circulates freely in the blood, the latter referred to as free testosterone
  • It is estimated that ≈30% of total serum testosterone is bound to albumin, whereas the remaining 1% to 3% circulates as free testosterone
  • it can be argued that using the biologically active form of testosterone to evaluate the association with CAD will produce the most reliable results
  • English et al14 found statistically significant lower levels of bioavailable testosterone, free testosterone, and free androgen index in patients with catheterization‐proven CAD compared with controls with normal coronary arteries
  • patients with catheterization‐proven CAD had statistically significant lower levels of bioavailable testosterone
  • In conclusion, existing evidence suggests that men with CAD have lower levels of endogenous testosterone,13–18 and more specifically lower levels of bioavailable testosterone
  • low testosterone levels are associated with risk factors for CAD such as T2DM25–26 and obesity
  • In a meta‐analysis of these 7 population‐based studies, Araujo et al41 showed a trend toward increased cardiovascular mortality associated with lower levels of total testosterone, but statistical significance was not achieved (RR, 1.25
  • the authors showed that a decrease of 2.1 standard deviations in levels of total testosterone was associated with a 25% increase in the risk of cardiovascular mortality
  • the relative risk of all‐cause mortality in men with lower levels of total testosterone was calculated to be 1.35
  • higher risk of cardiovascular mortality is associated with lower levels of bioavailable testosterone
  • Existing evidence seems to suggest that lower levels of endogenous testosterone are associated with higher rates of all‐cause mortality and cardiovascular mortality
  • studies have shown that lower levels of endogenous bioavailable testosterone are associated with higher rates of all‐cause and cardiovascular mortality
  • It may be possible that using bioavailable testosterone to perform mortality analysis will yield more accurate results because it prevents the biologically inactive subfraction of testosterone from playing a potential confounding role in the analysis
  • The earliest published material on this matter dates to the late 1930s
  • the concept that testosterone replacement therapy improves angina has yet to be proven wrong
  • In more recent studies, 3 randomized, placebo‐controlled trials demonstrated that administration of testosterone improves myocardial ischemia in men with CAD
  • The improvement in myocardial ischemia was shown to occur in response to both acute and chronic testosterone therapy and seemed to be independent of whether an intravenous or transdermal formulation of testosterone was used.
  • testosterone had no effect on endothelial nitric oxide activity
  • There is growing evidence from in vivo animal models and in vitro models that testosterone induces coronary vasodilation by modulating the activity of ion channels, such as potassium and calcium channels, on the surface of vascular smooth muscle cells
  • Experimental studies suggest that the most likely mechanism of action for testosterone on vascular smooth muscle cells is via modulation of action of non‐ATP‐sensitive potassium ion channels, calcium‐activated potassium ion channels, voltage‐sensitive potassium ion channels, and finally L‐type calcium ion channels
  • Corona et al confirmed those results by demonstrating that not only total testosterone levels are lower among diabetics, but also the levels of free testosterone and SHBG are lower in diabetic patients
  • Laaksonen et al65 followed 702 Finnish men for 11 years and demonstrated that men in the lowest quartile of total testosterone, free testosterone, and SHBG were more likely to develop T2DM and metabolic syndrome.
  • Vikan et al followed 1454 Swedish men for 11 years and discovered that men in the highest quartile of total testosterone were significantly less likely to develop T2DM
  • authors demonstrated a statistically significant increase in the incidence of T2DM in subjects receiving gonadotropin‐releasing hormone antagonist therapy. In addition, a significant increase in the rate of myocardial infarction, stroke, sudden cardiac death, and development of cardiovascular disease was noted in patients receiving antiandrogen therapy.67
  • Several authors have demonstrated that the administration of testosterone in diabetic men improves the homeostatic model of insulin resistance, hemoglobin A1c, and fasting plasma glucose
  • Existing evidence strongly suggests that the levels of total and free testosterone are lower among diabetic patients compared with those in nondiabetics
  • insulin seems to be acting as a stimulant for the hypothalamus to secret gonadotropin‐releasing hormone, which consequently results in increased testosterone production. It can be argued that decreased stimulation of the hypothalamus in diabetics secondary to insulin deficiency could result in hypogonadotropic hypogonadism
  • BMI has been shown to be inversely associated with testosterone levels
  • This interaction may be a result of the promotion of lipolysis in abdominal adipose tissue by testosterone, which may in turn cause reduced abdominal adiposity. On the other hand, given that adipose tissue has a higher concentration of the enzyme aromatase, it could be that increased adipose tissue results in more testosterone being converted to estrogen, thereby causing hypogonadism. Third, increased abdominal obesity may cause reduced testosterone secretion by negatively affecting the hypothalamus‐pituitary‐testicular axis. Finally, testosterone may be the key factor in activating the enzyme 11‐hydroxysteroid dehydrogenase in adipose tissue, which transforms glucocorticoids into their inactive form.
  • increasing age may alter the association between testosterone and CRP. Another possible explanation for the association between testosterone level and CRP is central obesity and waist circumference
  • Bai et al have provided convincing evidence that testosterone might be able to shorten the QTc interval by augmenting the activity of slowly activating delayed rectifier potassium channels while simultaneously slowing the activity of L‐type calcium channels
  • consistent evidence that supplemental testosterone shortens the QTc interval.
  • Intima‐media thickness (IMT) of the carotid artery is considered a marker for preclinical atherosclerosis
  • Studies have shown that levels of endogenous testosterone are inversely associated with IMT of the carotid artery,126–128,32,129–130 as well as both the thoracic134 and the abdominal aorta
  • 1 study has demonstrated that lower levels of free testosterone are associated with accelerated progression of carotid artery IMT
  • another study has reported that decreased levels of total and bioavailable testosterone are associated with progression of atherosclerosis in the abdominal aorta
  • These findings suggest that normal physiologic testosterone levels may help to protect men from the development of atherosclerosis
  • Czesla et al successfully demonstrated that the muscle specimens that were exposed to metenolone had a significant shift in their composition toward type I muscle fibers
  • Type I muscle fibers, also known as slow‐twitch or oxidative fibers, are associated with enhanced strength and physical capability
  • It has been shown that those with advanced CHF have a higher percentage of type II muscle fibers, based on muscle biopsy
  • Studies have shown that men with CHF suffer from reduced levels of total and free testosterone.137 It has also been shown that reduced testosterone levels in men with CHF portends a poor prognosis and is associated with increased CHF mortality.138 Reduced testosterone has also been shown to correlate negatively with exercise capacity in CHF patients.
  • Testosterone replacement therapy has been shown to significantly improve exercise capacity, without affecting LVEF
  • the results of the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not cause an increase in the rate of adverse cardiovascular events
  • Data from 3 meta‐analyses seem to contradict the commonly held belief that testosterone administration may increase the risk of developing prostate cancer
  • One meta‐analysis reported an increase in all prostate‐related adverse events with testosterone administration.146 However, when each prostate‐related event, including prostate cancer and a rise in PSA, was analyzed separately, no differences were observed between the testosterone group and the placebo group
  • the existing data from the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not increase the risk of adverse cardiovascular events
  • the authors correctly point out the weaknesses of their study which include retrospective study design and lack of randomization, small sample size at extremes of follow‐up, lack of outcome validation by chart review and poor generalizability of the results given that only male veterans with CAD were included in this study
    • Nathan Goodyear
       
      The authors here present Total Testosterone as a "confounding" value
    • Nathan Goodyear
       
      This would be HSD-II
  • the studies that failed to find an association between testosterone and CRP used an older population group
  • low testosterone may influence the severity of CAD by adversely affecting the mediators of the inflammatory response such as high‐sensitivity C‐reactive protein, interleukin‐6, and tumor necrosis factor–α
  •  
    Good review of Testosterone and CHD.  Low T is associated with increased all cause mortality and cardiovascular mortality, CAD, CHF, type II diabetes, obesity, increased IMT,  increased severity of CAD and CHF.  Testosterone replacement in men with low T has been shown to improve exercise tolerance in CHF, improve insulin resistance, improve HgbA1c and lower BMI in the obese.
Nathan Goodyear

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a p... - 0 views

  • Taken together, these data indicate that ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H2O2, and that blood can be a delivery system of the pro-drug to tissues.
  • These findings give plausibility to i.v. ascorbic acid in cancer treatment, and have unexpected implications for treatment of infections where H2O2 may be beneficial
  • pharmacologic concentrations of ascorbate killed cancer but not normal cells, that cell death was dependent only on extracellular but not intracellular ascorbate, and that killing was dependent on extracellular hydrogen peroxide (H2O2) formation with ascorbate radical as an intermediate
  • ...48 more annotations...
  • Our data show that ascorbic acid selectively killed cancer but not normal cells, using concentrations that could only be achieved by i.v. administration
  • Ascorbate-mediated cell death was due to protein-dependent extracellular H2O2 generation, via ascorbate radical formation from ascorbate as the electron donor. Like glucose, when ascorbate is infused i.v., the resulting pharmacologic concentrations should distribute rapidly in the extracellular water space (42). We showed that such pharmacologic ascorbate concentrations in media, as a surrogate for extracellular fluid, generated ascorbate radical and H2O2. In contrast, the same pharmacologic ascorbate concentrations in whole blood generated little detectable ascorbate radical and no detectable H2O2. These findings can be accounted for by efficient and redundant H2O2 catabolic pathways in whole blood (e.g., catalase and glutathione peroxidase) relative to those in media or extracellular fluid
  • ascorbic acid administered i.v. in pharmacologic concentrations may serve as a pro-drug for H2O2 delivery to the extracellular milieu
  • H2O2 generated in blood is normally removed by catalase and glutathione peroxidase within red blood cells, with internal glutathione providing reducing equivalents
  • The electron source for glutathione is NADPH from the pentose shunt, via glucose-6-phosphate dehydrogenase. If activity of this enzyme is diminished, the predicted outcome is impaired H2O2 removal causing intravascular hemolysis, the observed clinical finding.
    • Nathan Goodyear
       
      The mechansism here is inadequate recycling of GSH due to lack of G6PD, build up of intracellular H2O2 and RBC lysis--hemolysis.
  • Only recently has it been understood that the discordant clinical findings can be explained by previously unrecognized fundamental pharmacokinetics properties of ascorbate
  • Intracellular transport of ascorbate is tightly controlled in relation to extracellular concentration
  • Intravenous ascorbate infusion is expected to drastically change extracellular but not intracellular concentrations
  • For i.v. ascorbate to be clinically useful in killing cancer cells, pharmacologic but not physiologic extracellular concentrations should be effective, independent of intracellular ascorbate concentrations.
    • Nathan Goodyear
       
      accumulation of extracellular vitamin C is the effect.
  • It is unknown why ascorbate, via H2O2, killed some cancer cells but not normal cells.
  • There was no correlation with ascorbate-induced cell death and glutathione, catalase activity, or glutathione peroxidase activity.
  • H2O2, as the product of pharmacologic ascorbate concentrations, has potential therapeutic uses in addition to cancer treatment, especially in infections
  • Neutrophils generate H2O2 from superoxide,
  • i.v. ascorbate is effective in some viral infections
  • H2O2 is toxic to hepatitis C
  • Use of ascorbate as an H2O2-delivery system against sensitive pathogens, viral or bacterial, has substantial clinical implications that deserve rapid exploration.
  • Recent pharmacokinetics studies in men and women show that 10 g of ascorbate given i.v. is expected to produce plasma concentrations of nearly 6 mM, which are >25-fold higher than those concentrations from the same oral dose
  • As much as a 70-fold difference in plasma concentrations is expected between oral and i.v. administration,
  • Complementary and alternative medicine practitioners worldwide currently use ascorbate i.v. in some patients, in part because there is no apparent harm
  • Human Burkitt's lymphoma cells
  • We first investigated whether ascorbate in pharmacologic concentrations selectively affected the survival of cancer cells by studying nine cancer cell lines
  • Clinical pharmacokinetics analyses show that pharmacologic concentrations of plasma ascorbate, from 0.3 to 15 mM, are achievable only from i.v. administration
  • plasma ascorbate concentrations from maximum possible oral doses cannot exceed 0.22 mM because of limited intestinal absorption
  • For five of the nine cancer cell lines, ascorbate concentrations causing a 50% decrease in cell survival (EC50 values) were less than 5 mM, a concentration easily achievable from i.v. infusion
  • All tested normal cells were insensitive to 20 mM ascorbate.
    • Nathan Goodyear
       
      meaning safe.
  • Lymphoma cells were selected because of their sensitivity to ascorbate
  • As ascorbate concentration increased, the pattern of death changed from apoptosis to pyknosis/necrosis, a pattern suggestive of H2O2-mediated cell death
  • Apoptosis occurred by 6 h after exposure, and cell death by pyknosis was ≈90% at 14 h after exposure
    • Nathan Goodyear
       
      work continued beyond the IVC therapy itself
  • In contrast to lymphoma cells, there was little or no killing of normal lymphocytes and monocytes by ascorbate
  • Ascorbate is transported into cells as such by sodium-dependent transporters, whereas dehydroascorbic acid is transported into cells by glucose transporters and then immediately reduced internally to ascorbate
  • Whether or not intracellular ascorbate was preloaded, extracellular ascorbate induced the same amount and type of death.
  • extracellular ascorbate in pharmacologic concentrations mediates death of lymphoma cells by apoptosis and pyknosis/necrosis, independently of intracellular ascorbate.
  • H2O2 as the effector species mediating pharmacologic ascorbate-induced cell death
  • Superoxide dismutase was not protective
  • Because these data implicated H2O2 in cell killing, we added H2O2 to lymphoma cells and studied death patterns using nuclear staining (19, 28). The death patterns found with exogenous H2O2 exposure were similar to those found with ascorbate
  • For both ascorbate and H2O2, death changed from apoptosis to pyknosis/necrosis as concentrations increased
  • Sensitivity to direct exposure to H2O2 was greater in lymphoma cells compared with normal lymphocytes and normal monocytes
  • There was no association between the EC50 for ascorbate-mediated cell death and intracellular glutathione concentrations, catalase activity, or glutathione peroxidase activity
  • H2O2 generation was dependent on time, ascorbate concentration, and the presence of trace amounts of serum in media
  • ascorbate radical is a surrogate marker for H2O2 formation.
  • whatever H2O2 is generated should be removed by glutathione peroxidase and catalase within red blood cells, because H2O2 is membrane permeable
  • The data are consistent with the hypothesis that ascorbate in pharmacologic concentrations is a pro-drug for H2O2 generation in the extracellular milieu but not in blood.
  • The occurrence of one predicted complication, oxalate kidney stones, is controversial
  • In patients with glucose-6-phosphate dehydrogenase deficiency, i.v. ascorbate is contraindicated because it causes intravascular hemolysis
  • ascorbate at pharmacologic concentrations in blood is a pro-drug for H2O2 delivery to tissues.
  • ascorbate, an electron-donor in such reactions, ironically initiates pro-oxidant chemistry and H2O2 formation
  • data here showed that ascorbate initiated H2O2 formation extracellularly, but H2O2 targets could be either intracellular or extracellular, because H2O2 is membrane permeant
    • Nathan Goodyear
       
      the conversion of ascorbate to H2O2 occurs extracellular
  • More than 100 patients have been described, presumably without glucose-6-phosphate dehydrogenase deficiency, who received 10 g or more of i.v. ascorbate with no reported adverse effects other than tumor lysis
  •  
    IV vitamin C benefits cancer patients
wheelchairindia9

Shower Wheelchair - 0 views

  •  
    Commode chairs are portable toilets, designed to be placed at the bedside of a disabled individual whose activity is very limited. It is typically consist of a frame and a waste receptacle that can be easily removed and emptied. Having such a device close at hand is especially helpful for those too debilitated to make the trip to the bathroom. So, if someone close to needs the support and convenience that commodes can offer, the right place. Adapted and assisted toileting systems help provide independence while being designed to be practical, versatile and comfortable, as well as, easy to clean. These adjustable toilets and commodes can be used as a freestanding commode chair, over the toilet, on the toilet, or as a shower chair. Commode Wheelchair Rainbow 6 Features: Frame Material : M.S.Chrome Plated. Single Seat with center cut commode. Both Option Available In Single Seat. Plastic Commode Seat With Pot. Cushioned Top Cover. Square Pan Commode Pan . Removable Pan. Commode Wheelchair Rainbow 6 Measurements: Frame Style : Foldable Open Position Wheel To Wheel Width In : 26" (Inches) Seat Width : 18" (Inches) Total Width in Closing Position : 11" (Inches) Rear Wheel Size : 24" (Inches) Front Wheel Size : 8" (Inches) Seat to Floor Height : 19" (Inches) Seat Depth : 18" (Inches) Total Height : 34" (Inches) Max User Weight Capacity : 110 (kgs) Net Weight : 19.5 (kgs) Armrest : Fixed Footrest : Fixed Wheel Quality : Rear Tyre Solid Tube Less Rear Wheel Lock : Yes Hand Brakes : No Drop Back Handle : No Providing a wide range of commode wheelchairs which are specially designed for aged and physically challenged people. These wheelchairs can be used for indoor toilet purposes. Fabricated using quality raw material, these wheelchairs are suitable for western as well as Indian toilets. This advanced technology involved wheelchair has a comfortable seat and made of a strong steel frame. This chair is very durable
Nathan Goodyear

Testosterone deficiency and cardiovascular mortality Morgentaler A, - Asian J Androl - 0 views

  • overall mortality and CV mortality were inversely associated with serum T concentrations.
  • men with low serum T, defined as < 8.7 nmol l−1 (250 ng dl−1 ), demonstrated significantly greater all-cause mortality than men with higher serum T (hazard ratio [HR]: 2.24; 95% CI: 1.41-3.57), as well as greater CV mortality
  • lower T levels were significantly associated with the presence of any CV disease
  • ...19 more annotations...
  • more than 30 years of studies suggesting that low levels of T represent an increased risk for CV and overall mortality,
  • lower serum T concentrations also are associated with CV disease, including incident coronary artery disease [17],[18],[19] and atherosclerosis,
  • the actual rate of adverse events was only half as great in the T group (123 events in 1223 men at risk = 10.1%) as in the untreated group (1587 events in 7486 men = 21.2%)
  • The study by Vigen et al. [7] has already undergone two published corrections,
  • 29 medical societies have called for retraction of the article, asserting "gross data mismanagement and contamination," that rendered the study "no longer credible
  • Mortality in T-treated men was reduced by approximately half in treated men compared with untreated men, at 10.3% versus 20.7%, respectively
  • The mortality rate for men who received TTh was 3.4 deaths per 100 person-years, and 5.7 deaths per 100 person-years in untreated men
  • HR of 0.61 (95%CI: 0.42-0.88; P = 0.008), indicating a significant reduction in mortality with TTh
  • men in the highest prognostic MI risk quartile, treatment with TTh was associated with reduced risk
  • tripling in T prescriptions in the US over the last decade
  • a majority of observational studies have found that low endogenous serum T levels are associated with increased mortality.
  • Men who received TTh were able to exercise significantly longer without ischemia compared with men who received placebo
  • In men with congestive heart failure, those who received T demonstrated greater walking distance and other functional endpoints compared with those who received placebo
  • TTh has been shown uniformly and repeatedly to improve several known CV risk factors, including reduced fat mass, body fat percent, and waist circumference, and increased lean mass
  • improved glycemic control
  • reductions in insulin resistance.
  • the evidence strongly points to improved CV status with normal serum T or treatment with TTh in men with TD
  • analysis of health insurance claims data that reported a 36% increased rate of nonfatal MI in the 90d following receipt of a T prescription compared with the 12 prior months.
  • Comparison with men who received a prescription for a phosphodiesterase type 5 inhibitor (PDE5i) revealed no increased rate of MI following the prescription
  •  
    Great review by Morgentaler of Testosterone and CVD.  He highlights the significant flaws in the JAMA and the NEJM articles of Testosterone therapy risks.  Morgentaler highlights the significant evidence that points to low T and increased risk of CVD. On contention I have, is Morgantaler seems to flip aside the massive uptick of Testosterone use in the US as compared to other countries.  The evidence definitely points to Testosterone therapy as being safe in those with low T, but there is definitely a problem of significant Testosterone doping that is taking place as well.
wheelchairindia9

Wrist and Forearm Splints Causes and Recovery Period | Health | Article Point - 0 views

  •  
    Wrist and forearm splints may be suggested for people with weak wrists or for those that have been previously injured, for tendonitis wrist support and even as a preventative for those who awaken in the morning with pain or numbness after sleeping on their hands at night. The best orthopedic wrist braces for carpal tunnel syndrome, occupational stabilization and relief from the pain of wrist strains and sprains. This Right hand wrist and forearm splint from tynor is meant to be used among patients suffering from any injury or sprain in these regions. The splint is meant to provide controlled compression in various orthopaedic conditions. The splint immobilizes the area that helps in a speedier recovery. It has anatomical thumb opening that allows free movement of the thumb. It provides a lot of comfort and is easily breathable. Forearm splint is the term used to describe the forearm pain similarly the pain of lower leg over the shin is known as shin splints. Forearm splint describes the painful disease of elbow or wrist joint. Continuous pain in forearm is often caused by tendonitis, joint injury or hairline fracture of forearm bones (proximal radius or ulna near elbow joint). Overstretching of the elbow joint often causes forearm injury. Symptoms consist of a dull pain in the forearm. Pain is minor initially but increases as activity continues. Often pin-pointed to the dorsal or back of the hand side of the forearm, mid-way between the wrist and elbow. The patient may experience weakness in the wrist extensor muscles and tenderness deep in the forearm. Pain may be reproduced by attempting to bend the wrist backwards against resistance. They provided wrist splints are used in different medical institutions and hospitals for management of hand fractures. Our offered wrist splints are manufactured by skilled professionals using optimum quality basic material and advanced technology as per the set norms of market. As well, these wrist splints can be availed in v
fitspresso

https://www.sightcare-co.com/ - 0 views

  •  
    Sight Care | Official Site sightcare-co.com · by Sight Care Sight Care Only $49/Bottle Limited Time Offer! Sight Care Special Deal + Special 67% Discount Save $600 + 180 Days Money Back Guarantee #1.The Sight Care vision supplement is a dietary supplement for helping you improve your vision and brain health. Sight Care eye supplements are formulated to provide a synergistic blend of vitamins, minerals, antioxidants, and other bioactive compounds that are essential for maintaining healthy vision Regular Price: 147/per bottle Only for: $49/per bottle What Is Sight Care? This powerful vision support supplement is made with a unique blend of natural ingredients and plant extracts that work together synergistically to deliver numerous benefits for your brain and eye health. With Sight Care, you can expect to experience increased energy levels, improved eyesight, and an overall revitalized sense of well-being. Taking care of your vision health is not just about seeing clearly; it's also about maintaining your overall brain health. As we age, our vision deteriorates, and our eyes and brain can experience a decline in function, but there are steps you can take to support your visual and cognitive health. Regular eye exams are crucial for detecting and treating vision problems early on, and making healthy choices such as eating a nutritious diet and exercising regularly can also help. However, with busy schedules, it can be difficult to find the time to devote to a healthy lifestyle. This is where the Sight Care supplement comes in. It's designed to support both vision and brain health with its blend of natural ingredients that have been shown to promote healthy vision and cognitive function You must not compromise your eye health for momentary exhilaration. If you are glued to digital screens day and night, you must take measures to prevent eye diseases like age-related macular degeneration. The SightCare vision supplement has been made using 100% natura
wheelchairindia9

Recliner Wheelchair - 0 views

  •  
    Reclining wheelchairs, since the product class is built around one key feature: the capability to adjust the backrest and/or footrest into a reclined position. This feature is especially important to users who find it difficult or impossible to sit in a fully upright position, and users who sleep in their chairs frequently. For those that are looking for a more portable chair. When compared with a similar, non-reclining chair, a reclining wheelchair tends to weigh more and - unlike other manual models - manual wheelchairs that recline typically aren't foldable. reclining wheelchair compensates mechanically for body positioning by automatically readjusting armrests and lateral supports.

    Recliner wheelchair is low profile allowing to comfortably fit under tables and desks. Enjoy numerous activities with increased comfort such as stretching, napping and watching television. The ability to recline also improves circulation and the ability for sore spots to heal.

    Karma Reclining Wheelchair KM 5000:
    The karma reclining wheelchair km-5000 Transport Wheelchair is an ultra lightweight folding aluminum reclining wheelchair. With full length padded armrests, an adjustable height head pillow, and more this wheelchair has added comfort for any user. This chair also features swing-away elevating footrests and adjustable length leg supports and footplates. With a weight of 33 Lbs this chair can be transported with ease.

    Karma Reclining Wheelchair KM 5000 Features:
    Folding 6061 T-6 Aircraft-grade aluminum frame in black
    powder coat finish
    Backrest Reclines 90°~163° and includes anti-tippers
    Full length padded detachable armrests with side panels
    Swing-away detachable elevating footrests
    Adjustable length leg supports & footplates
    Adjustable-height head pillow
    14" Mag wheels with flat free polyurethane tires
    7" x 1" Flat free front polyurethane casters
    Adjustab
Nathan Goodyear

Oncotarget | Vitamin C and Doxycycline: A synthetic lethal combination therapy targetin... - 0 views

  • These eight distinct cancer types included: DCIS, breast (ER(+) and ER(-)), ovarian, prostate, lung, and pancreatic carcinomas, as well as melanoma and glioblastoma. Doxycycline was also effective in halting the propagation of primary cultures of CSCs from breast cancer patients, with advanced metastatic disease (isolated from ascites fluid and/or pleural effusions)
  • Doxycycline behaves as a strong radio-sensitizer, successfully overcoming radio-resistance in breast CSCs
  • cancer cells can indeed escape the effects of Doxycycline, by reverting to a purely glycolytic phenotype. Fortunately, the metabolic inflexibility conferred by this escape mechanism allows Doxycycline-resistant (DoxyR) CSCs to be more effectively targeted with many other metabolic inhibitors, including Vitamin C, which functionally blocks aerobic glycolysis
  • ...36 more annotations...
  • Vitamin C inhibits GAPDH (a glycolytic enzyme) and depletes the cellular pool of glutathione, resulting in high ROS production and oxidative stress
  • DoxyR CSCs are between 4- to 10-fold more susceptible to the effects of Vitamin C
  • Doxycycline and Vitamin C may represent a new synthetic lethal drug combination for eradicating CSCs, by ultimately targeting both mitochondrial and glycolytic metabolism
  • inhibiting their propagation in the range of 100 to 250 µM
  • metabolic flexibility in cancer cells allows them to escape therapeutic eradication, leading to chemo- and radio-resistance
  • used doxycycline to pharmacologically induce metabolic inflexibility in CSCs, by chronically inhibiting mitochondrial biogenesis
  • This treatment resulted in a purely glycolytic population of surviving cancer cells
  • DoxyR cells are mainly glycolytic
  • MCF7 cells survive and develop Doxycycline-resistance, by adopting a purely glycolytic phenotype
  • Cancer stem cells (CSCs) are thought to be the “root cause” of tumor recurrence, distant metastasis and therapy-resistance
  • the conserved evolutionary similarities between aerobic bacteria and mitochondria, certain classes of antibiotics inhibit mitochondrial protein translation, as an off-target side-effect
  • Vitamin C was more potent than 2-DG; it inhibited DoxyR CSC propagation by > 90% at 250 µM and 100% at 500 µM
  • IC-50
  • DoxyR CSCs are between 4- to 10-fold more sensitive to Vitamin C than control MCF7 CSCs
  • Berberine, which is a naturally occurring antibiotic that also behaves as an OXPHOS inhibitor
  • treatment with Berberine effectively inhibited the propagation of the DoxyR CSCs by > 50% at 1 µM and > 80% at 10 µM.
  • Doxycycline, a clinically approved antibiotic, induces metabolic stress in cancer cells. This allows the remaining cancer cells to be synchronized towards a purely glycolytic phenotype, driving a form of metabolic inflexibility
  • Doxycycline-driven aerobic glycolysis
  • new synthetic lethal strategy for eradicating CSCs, by employing i) Doxycycline (to target mitochondria) and ii) Vitamin C (to target glycolysis)
  • Doxycycline inhibits mitochondrial biogenesis and OXPHOS,
  • hibits glycolytic metabolism by targeting and inhibiting the enzyme GAPDH
  • CSCs act as the main promoter of tumor recurrence and patient relapse
  • a metabolic shift from oxidative to glycolytic metabolism represents an escape mechanism for breast cancer cells chronically-treated with a mitochondrial stressor like Doxycycline, as mitochondrial dys-function leads to a stronger dependence on glucose
  • Vitamin C has been demonstrated to selectively kill cancer cells in vitro and to inhibit tumor growth in experimental mouse models
  • many of these actions have been attributed to the ability of Vitamin C to act as a glycolysis inhibitor, by targeting GAPDH and depleting the NAD pool
  • here we show that DoxyR CSCs are more vulnerable to the inhibitory effects of Vitamin C, at 4- to 10-fold lower concentrations, between 100 to 250 μM
  • concurrent use of Vitamin C, with standard chemotherapy, reduces tumor recurrence and patient mortality
  • after oral administration, Vitamin C plasma levels reach concentrations of ~70-220 μM
  • intravenous administration results in 30- to 70- fold higher plasma concentrations of Vitamin C
  • pro-oxidant activity results from Vitamin C’s action on metal ions, which generates free radicals and hydrogen peroxide, and is associated with cell toxicity
  • it has been shown that high-dose Vitamin C is more cytotoxic to cancer cells than to normal cells
  • This selectivity appears to be due to the higher catalase content observed in normal cells (~10-100 fold greater), as compared to tumor cells. Hence, Vitamin C may be regarded as a safe agent that selectively targets cancer cells
  • the concurrent use of Doxycycline and Vitamin C, in the context of this infectious disease, appeared to be highly synergistic in patients
  • Goc et al., 2016, showed that Doxycycline is synergistic in vitro with certain phytochemicals and micronutrients, including Vitamin C, in the in vitro killing of the vegetative spirochete form of Borrelia spp., the causative agent underlying Lyme disease
  • Doxycycline, an FDA-approved antibiotic, behaves as an inhibitor of mitochondrial protein translation
  • CSCs successfully escape from the anti-mitochondrial effects of Doxycycline, by assuming a purely glycolytic phenotype. Therefore, DoxyR CSCs are then more susceptible to other metabolic perturbations, because of their metabolic inflexibility
  •  
    Not especially new, but IV vitamin C + daily doxycycline found to kill cancer stem cells.
Nathan Goodyear

Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde... - 0 views

  • Hydroxyl radicals cause oxidative damage to cells because they unspecifically attack biomolecules [22] located less than a few nanometres from its site of generation and are involved in cellular disorders such as neurodegeneration [23, 24], cardiovascular disease [25], and cancer [26, 27].
  • It is generally assumed that in biological systems is formed through redox cycling by Fenton reaction, where free iron (Fe2+) reacts with hydrogen peroxide (H2O2) and the Haber-Weiss reaction that results in the production of Fe2+ when superoxide reacts with ferric iron (Fe3+)
  • other transition-metal including Cu, Ni, Co, and V can be responsible for formation in living cells
  • ...20 more annotations...
  • The hydroperoxyl radical () plays an important role in the chemistry of lipid peroxidation
  • The is a much stronger oxidant than superoxide anion-radical
  • Lipid peroxidation can be described generally as a process under which oxidants such as free radicals or nonradical species attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs) that involve hydrogen abstraction from a carbon, with oxygen insertion resulting in lipid peroxyl radicals and hydroperoxides as described previously
  • under medium or high lipid peroxidation rates (toxic conditions) the extent of oxidative damage overwhelms repair capacity, and the cells induce apoptosis or necrosis programmed cell death
  • The overall process of lipid peroxidation consists of three steps: initiation, propagation, and termination
  • Once lipid peroxidation is initiated, a propagation of chain reactions will take place until termination products are produced.
  • The main primary products of lipid peroxidation are lipid hydroperoxides (LOOH)
  • Among the many different aldehydes which can be formed as secondary products during lipid peroxidation, malondialdehyde (MDA), propanal, hexanal, and 4-hydroxynonenal (4-HNE) have been extensively studied
  • MDA has been widely used for many years as a convenient biomarker for lipid peroxidation of omega-3 and omega-6 fatty acids because of its facile reaction with thiobarbituric acid (TBA)
  • MDA is one of the most popular and reliable markers that determine oxidative stress in clinical situations [53], and due to MDA’s high reactivity and toxicity underlying the fact that this molecule is very relevant to biomedical research community
  • 4-HNE is considered as “second toxic messengers of free radicals,” and also as “one of the most physiologically active lipid peroxides,” “one of major generators of oxidative stress,” “a chemotactic aldehydic end-product of lipid peroxidation,” and a “major lipid peroxidation product”
  • MDA is an end-product generated by decomposition of arachidonic acid and larger PUFAs
  • Identifying in vivo MDA production and its role in biology is important as indicated by the extensive literature on the compound (over 15 800 articles in the PubMed database using the keyword “malondialdehyde lipid peroxidation” in December 2013)
  • MDA reactivity is pH-dependent
  • When pH decreases MDA exists as beta-hydroxyacrolein and its reactivity increases
  • MAA adducts are shown to be highly immunogenic [177–181]. MDA adducts are biologically important because they can participate in secondary deleterious reactions (e.g., crosslinking) by promoting intramolecular or intermolecular protein/DNA crosslinking that may induce profound alteration in the biochemical properties of biomolecules and accumulate during aging and in chronic diseases
  • MDA is an important contributor to DNA damage and mutation
  • This MDA-induced DNA alteration may contribute significantly to cancer and other genetic diseases.
  • Dietary intake of certain antioxidants such as vitamins was associated with reduced levels of markers of DNA oxidation (M1dG and 8-oxodG) measured in peripheral white blood cells of healthy subjects, which could contribute to the protective role of vitamins on cancer risk
  • 4-HNE is an extraordinarily reactive compound
  •  
    Great review of lipid peroxidation
1 - 20 of 1891 Next › Last »
Showing 20 items per page