Skip to main content

Home/ Dr. Goodyear/ Group items tagged 'lactate

Rss Feed Group items tagged

Nathan Goodyear

Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer... - 0 views

  • More than half of cancer patients are treated with IR at some point during their treatment
  • fractionation schedule is the delivery of 1.8–2.0 Gy per day, five days per week
  • Nuclear DNA is the primary target of IR; it causes DNA damage (genotoxic stress) by direct DNA ionization
  • ...121 more annotations...
  • IR also indirectly induces DNA damage by stimulating reactive oxygen species (ROS) production
  • IR is known to induce EMT in vitro
  • p53 is activated in response to IR-induced DNA damage
  • IR paradoxically also promotes tumour recurrence and metastasis
  • DNA double-strand breaks (DSBs)
  • cancer cells undergoing EMT acquire invasive and metastatic properties
  • changes in the tumour microenvironment (TME)
  • IR seems to induce EMT and CSC phenotypes by regulating cellular metabolism
  • EMT, stemness, and oncogenic metabolism are known to be associated with resistance to radiotherapy and chemotherapy
  • Hanahan and Weinberg proposed ten hallmarks of cancer that alter cell physiology to enhance malignant growth: 1) sustained proliferation, 2) evasion of growth suppression, 3) cell death resistance, 4) replicative immortality, 5) evasion of immune destruction, 6) tumour-promoting inflammation, 7) activation of invasion and metastasis, 8) induction of angiogenesis, 9) genome instability, and 10) alteration of metabolism
  • EMT is a developmental process that plays critical roles in embryogenesis, wound healing, and organ fibrosis
  • IR is known to induce stemness and metabolic alterations in cancer cells
  • transforming growth factor-β [TGF-β], epidermal growth factor [EGF]) and their associated signalling proteins (Wnt, Notch, Hedgehog, nuclear-factor kappa B [NF-κB], extracellular signal-regulated kinase [ERK], and phosphatidylinositol 3-kinase [PI3K]/Akt
  • activate EMT-inducing transcription factors, including Snail/Slug, ZEB1/δEF1, ZEB2/SIP1, Twist1/2, and E12/E47
  • Loss of E-cadherin is considered a hallmark of EMT
  • IR has been shown to induce EMT to enhance the motility and invasiveness of several cancer cells, including those of breast, lung, and liver cancer, and glioma cells
  • IR may increase metastasis in both the primary tumour site and in normal tissues under some circumstance
  • sublethal doses of IR have been shown to enhance the migratory and invasive behaviours of glioma cells
  • ROS are known to play an important role in IR-induced EMT
  • High levels of ROS trigger cell death by causing irreversible damage to cellular components such as proteins, nucleic acids, and lipids, whereas low levels of ROS have been shown to promote tumour progression—including tumour growth, invasion, and metastasis
  • hypoxia-inducible factor-1 (HIF-1) is involved in IR-induced EMT
  • Treatment with the N-acetylcysteine (NAC), a general ROS scavenger, prevents IR-induced EMT, adhesive affinity, and invasion of breast cancer cells
    • Nathan Goodyear
       
      NAC for all patients receiving radiation therapy
  • Snail has been shown to play a crucial role in IR-induced EMT, migration, and invasion
  • IR activates the p38 MAPK pathway, which contributes to the induction of Snail expression to promote EMT and invasion
  • NF-κB signalling that promotes cell migration
  • ROS promote EMT to allow cancer cells to avoid hostile environments
  • HIF-1 is a heterodimer composed of an oxygen-sensitive α subunit and a constitutively expressed β subunit.
  • Under normoxia, HIF-1α is rapidly degraded, whereas hypoxia induces stabilisation and accumulation of HIF-1α
  • levels of HIF-1α mRNA are enhanced by activation of the PI3K/Akt/mammalian target of rapamycin (mTOR)
  • IR is known to increase stabilisation and nuclear accumulation of HIF-1α, since hypoxia is a major condition for HIF-1 activation
  • IR induces vascular damage that causes hypoxia
  • ROS is implicated in IR-induced HIF-1 activation
  • IR causes the reoxygenation of hypoxic cancer cells to increase ROS production, which leads to the stabilisation and nuclear accumulation of HIF-1
  • IR increases glucose availability under reoxygenated conditions that promote HIF-1α translation by activating the Akt/mTOR pathway
  • The stabilised HIF-1α then translocates to the nucleus, dimerizes with HIF-1β, and increases gene expression— including the expression of essential EMT regulators such as Snail—to induce EMT, migration, and invasion
  • TGF-β signalling has been shown to play a crucial role in IR-induced EMT
  • AP-1 transcription factor is involved in IR-induced TGF-β1 expression
  • Wnt/β-catenin signalling is also implicated in IR-induced EMT
  • Notch signalling is known to be involved in IR-induced EMT
  • IR also increases Notch-1 expression [99]. Notch-1 is known to induce EMT by upregulating Snail
  • PAI-1 signalling is also implicated in IR-induced Akt activation that increases Snail levels to induce EMT
  • EGFR activation is known to be associated with IR-induced EMT, cell migration, and invasion by activating two downstream pathways: PI3K/Akt and Raf/MEK/ERK
  • ROS and RNS are also implicated in IR-induced EGFR activation
  • IR has also been shown to activate Hedgehog (Hh) signalling to induce EMT
  • IR has been shown to induce Akt activation through several signalling pathways (EGFR, C-X-C chemokine receptor type 4 [CXCR4]/C-X-C motif chemokine 12 [CXCL12], plasminogen activator inhibitor 1 [PAI-1]) and upstream regulators (Bmi1, PTEN) that promote EMT and invasion
  • CSCs possess a capacity for self-renewal, and they can persistently proliferate to initiate tumours upon serial transplantation, thus enabling them to maintain the whole tumour
  • Conventional cancer treatments kill most cancer cells, but CSCs survive due to their resistance to therapy, eventually leading to tumour relapse and metastasis
  • identification of CSCs, three types of markers are utilised: cell surface molecules, transcription factors, and signalling pathway molecules
  • CSCs express distinct and specific surface markers; commonly used ones are CD24, CD34, CD38, CD44, CD90, CD133, and ALDH
  • Transcription factors, including Oct4, Sox2, Nanog, c-Myc, and Klf4,
  • signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, platelet-derived growth factor receptor (PDGFR), and JAK/STAT
  • microRNAs (miRNAs), including let-7, miR-22, miR-34a, miR-128, the miR-200 family, and miR-451
  • Non-CSCs can be reprogrammed to become CSCs by epigenetic and genetic changes
  • EMT-inducing transcription factors, such as Snail, ZEB1, and Twist1, are known to confer CSC properties
  • Signalling pathways involved in EMT, including those of TGF-β, Wnt, and Notch, have been shown to play important roles in inducing the CSC phenotype
  • TGF-β1 not only increases EMT markers (Slug, Twist1, β-catenin, N-cadherin), but also upregulates CSC markers (Oct4, Sox2, Nanog, Klf4) in breast and lung cancer cells
  • some CSC subpopulations arise independently of EMT
  • IR has been shown to induce the CSC phenotype in many cancers, including breast, lung, and prostate cancers, as well as melanoma
  • Genotoxic stress due to IR or chemotherapy promotes a CSC-like phenotype by increasing ROS production
  • IR has been shown to induce reprogramming of differentiated cancer cells into CSCs
  • In prostate cancer patients, radiotherapy increases the CD44+ cell population that exhibit CSC properties
  • IR also induces the re-expression of stem cell regulators, such as Sox2, Oct4, Nanog, and Klf4, to promote stemness in cancer cells
  • EMT-inducing transcription factors and signalling pathways, including Snail, STAT3, Notch signalling, the PI3K/Akt pathway, and the MAPK cascade, have been shown to play important roles in IR-induced CSC properties
  • STAT3 directly binds to the Snail promoter and increases Snail transcription, which induces the EMT and CSC phenotypes, in cisplatin-selected resistant cells
  • Other oncogenic metabolic pathways, including glutamine metabolism, the pentose phosphate pathway (PPP), and synthesis of fatty acids and cholesterol, are also enhanced in many cancers
  • metabolic reprogramming
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • metabolic reprogramming
  • tumour cells exhibit high mitochondrial metabolism as well as aerobic glycolysis
  • occurring within the same tumour
  • CSCs can be highly glycolytic-dependent or oxidative phosphorylation (OXPHOS)-dependen
  • mitochondrial function is crucial for maintaining CSC functionality
  • cancer cells depend on mitochondrial metabolism and increase mitochondrial production of ROS that cause pseudo-hypoxia
  • HIF-1 then enhances glycolysis
  • CAFs have defective mitochondria that lead to the cells exhibiting the Warburg effect; the cells take up glucose, and then secrete lactate to 'feed' adjacent cancer cells
  • lactate transporter, monocarboxylate transporter (MCT)
  • nutrient microenvironment
  • Epithelial cancer cells express MCT1, while CAFs express MCT4. MCT4-positive, hypoxic CAFs secrete lactate by aerobic glycolysis, and MCT1-expressing epithelial cancer cells then uptake and use that lactate as a substrate for the tricarboxylic acid (TCA) cycle
  • MCT4-positive cancer cells depend on glycolysis and then efflux lactate, while MCT1-positive cells uptake lactate and rely on OXPHOS
  • metabolic heterogeneity induces a lactate shuttle between hypoxic/glycolytic cells and oxidative/aerobic tumour cells
  • bulk tumour cells exhibit a glycolytic phenotype, with increased conversion of glucose to lactate (and enhanced lactate efflux through MCT4), CSC subsets depend on oxidative phosphorylation; most of the glucose entering the cells is converted to pyruvate to fuel the TCA cycle and the electron transport chain (ETC), thereby increasing mitochondrial ROS production
  • the major fraction of glucose is directed into the pentose phosphate pathway, to produce redox power through the generation of NADPH and ROS scavengers
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • regulatory molecules involved in EMT and CSCs, including Snail, Dlx-2, HIF-1, STAT3, TGF-β, Wnt, and Akt, are implicated in the metabolic reprogramming of cancer cells
  • HIF-1 induces the expression of glycolytic enzymes, including the glucose transporter GLUT, hexokinase, lactate dehydrogenase (LDH), and MCT, resulting in the glycolytic switch
  • HIF-1 represses the expression of pyruvate dehydrogenase kinase (PDK), which inhibits pyruvate dehydrogenase (PDH), thereby inhibiting mitochondrial activity
  • STAT3 has been implicated in EMT-induced metabolic changes as well
  • TGF-β and Wnt play important roles in the metabolic alteration of cancer cells
  • Akt is also implicated in the glycolytic switch and in promoting cancer cell invasiveness
  • EMT, invasion, metastasis, and stemness
  • pyruvate kinase M2 (PKM2), LDH, and pyruvate carboxylase (PC), are implicated in the induction of the EMT and CSC phenotypes
  • decreased activity of PKM2 is known to promote an overall shift in metabolism to aerobic glycolysis
  • LDH catalyses the bidirectional conversion of lactate to pyruvate
  • High levels of LDHA are positively correlated with the expression of EMT and CSC markers
  • IR has been shown to induce metabolic changes in cancer cells
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR also elevates MCT1 expression that exports lactate into the extracellular environment, leading to acidification of the tumour microenvironment
  • IR increases intracellular glucose, glucose 6-phosphate, fructose, and products of pyruvate (lactate and alanine), suggesting a role for IR in the upregulation of cytosolic aerobic glycolysis
  • Lactate can activate latent TGF-
  • lactate stimulates cell migration and enhances secretion of hyaluronan from CAF that promote tumour metastasis
  • promote tumour survival, growth, invasion, and metastasis; enhance the stiffness of the ECM; contribute to angiogenesis; and induce inflammation by releasing several growth factors and cytokines (TGF-β, VEGF, hepatocyte growth factor [HGF], PDGF, and stromal cell-derived factor 1 [SDF1]), as well as MMP
  • tumours recruit the host tissue’s blood vessel network to perform four mechanisms: angiogenesis (formation of new vessels), vasculogenesis (de novo formation of blood vessels from endothelial precursor cells), co-option, and modification of existing vessels within tissues.
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • intrinsic immunogenicity or induce tolerance
  • cancer immunoediting’
  • three phases: 1) elimination, 2) equilibrium, and 3) escape.
  • The third phase, tumour escape, is mediated by antigen loss, immunosuppressive cells (TAM, MDSCs, and regulatory T cells), and immunosuppressive cytokines (TGF-β and IL-10).
  • IR can elicit various changes in the TME, such as CAF activity-mediated ECM remodelling and fibrosis, cycling hypoxia, and an inflammatory response
  • IR activates CAFs to promote the release of growth factors and ECM modulators, including TGF-β and MMP
  • TGF-β directly influences tumour cells and CAFs, promotes tumour immune escape, and activates HIF-1 signalling
    • Nathan Goodyear
       
      And now the receipts
  • MMPs degrade ECM that facilitates angiogenesis, tumour cell invasion, and metastasis
    • Nathan Goodyear
       
      Receipts and mechanisms
  • IR also promotes MMP-2/9 activation in cancer cells to promote EMT, invasion, and metastasis
  • IR-induced Snail increases MMP-2 expression to promote EMT
  • Radiotherapy has the paradoxical side-effect of increasing tumour aggressiveness
  • IR promotes ROS production in cancer cells, which may induce the activation of oncogenes and the inactivation of tumour suppressors, which further promote oncogenic metabolism
  • Metabolic alterations
  • oncogenic metabolism
  • elicit various changes in the TME
  • Although IR activates an antitumour immune response, this signalling is frequently suppressed by tumour escape mechanisms
  •  
    Important review article.
Nathan Goodyear

BMC Cancer | Full text | A lactate shuttle system between tumour and stromal cells is a... - 0 views

  • Under hypoxic conditions, tumour cells primarily use glycolysis for energy, producing lactate, which is expelled to the tumour microenvironment, allowing tumours to continue their glycolytic activity
  • Sonveaux et al. showed that lactate, which is generally considered a waste product, is preferred over glucose by oxidative tumour cells as their primary energy source
  • MCT4 is a low-affinity transporter, which is abundant in highly glycolytic muscle cells and is one of the many target genes of hypoxia-inducible factor 1 alpha (HIF-1α)
  • ...8 more annotations...
  • Other targets of HIF-1α include glucose transporter-1 (GLUT-1), the main transporter involved in glucose uptake [9,10]; lactate dehydrogenase V (LDHV), which is responsible for the conversion of pyruvate into lactate; pyruvate dehydrogenase kinase isozyme 1 (PDK1), which is responsible for the phosphorylation and consequent inactivation of pyruvate dehydrogenase (PDH); and carbonic anhydrase IX (CAIX), a hypoxia-related protein involved in pH regulation [11]. Alpha-methylacyl-CoA racemase (AMACR), pristanoyl-CoA oxidase (ACOX-3) and D-bifunctional protein (DBP), are also important fatty acid oxidation-related proteins in prostate cancer
  • the essential role played by the cross-talk between stroma and epithelium in carcinogenesis and prostate cancer progression has been increasingly recognised
  • strong membranous expression of MCT1 was consistently observed in cancer cells, suggesting a role for MCT1 in the transport of lactate into tumour cells from the acidic extracellular matrix, suggesting that lactate might be used as a fuel by oxidative cancer cells.
  • Our hypothesis is in agreement with those of Fiaschi et al.[17], who describe the metabolic reprogramming of CAFs towards the Warburg phenotype as a result of contact with prostate cancer cells
  • Using in vitro studies, they showed lactate production and efflux by de novo expressed MCT4 in CAFs and also demonstrated that, upon contact with CAFs, prostate cancer cells were reprogrammed towards aerobic metabolism, with an increase in lactate uptake via the lactate transporter MCT1.
  • pharmacological inhibition of MCT1-mediated lactate uptake dramatically affected PCa cell survival and tumour outgrowth
  • In this model, “energy transfer” or “metabolic coupling” between the tumour stroma and epithelial cancer cells fuels tumour growth and metastasis via oxidative mitochondrial metabolism in anabolic cancer cells
  • the concomitant expression of MCT1 in tumour cells and MCT4 in fibroblasts in the same tissue is clinically significant, and associated with poor prognosis.
  •  
    Study confirms the importance of the crosstalk between cancer cells and CAFs via MCTs in prostate cancer.
Nathan Goodyear

Toxicity of the spike protein of COVID-19 is a redox shift phenomenon: A novel therapeu... - 0 views

  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • ...88 more annotations...
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • most diseases display a form of anabolism due to mitochondrial impairment
  • most diseases display a form of anabolism due to mitochondrial impairment
  • most diseases display a form of anabolism due to mitochondrial impairment
  • infection by Covid-19 follows a similar pattern
  • chronic inflammation
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • infection by Covid-19 follows a similar pattern
  • unrelenting anabolism leads to the cytokine storm,
  • unrelenting anabolism leads to the cytokine storm,
  • unrelenting anabolism leads to the cytokine storm,
  • chronic inflammation
  • chronic inflammation
  • infection by Covid-19 follows a similar pattern
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • direct consequence of redox iMeBalance, itself a consequence of decreased energy yield by the mitochondria
  • direct consequence of redox iMeBalance, itself a consequence of decreased energy yield by the mitochondria
  • mitochondrial dysfunction and increased levels of lactate, which are important characteristics of metabolic shift and Warburg effect in many diseases
  • mitochondrial dysfunction and increased levels of lactate, which are important characteristics of metabolic shift and Warburg effect in many diseases
  • increased lactate dehydrogenase activity (LDH) was observed in COVID-19 patients
  • increased lactate dehydrogenase activity (LDH) was observed in COVID-19 patients
  • almost every disease presents an increased anabolism
  • almost every disease presents an increased anabolism
  • cell division is the most sophisticated way to release entropy
  • cell division is the most sophisticated way to release entropy
    • Nathan Goodyear
       
      Wow
    • Nathan Goodyear
       
      Wow
  • transition from catabolism to anabolism is driven by a redox shift
  • transition from catabolism to anabolism is driven by a redox shift
  • viral spike protein binds to ACE2 receptor of the host cell [22,23].
  • redox signaling plays an important role in regulating immune function and inflammation, and disruptions in this signaling can lead to excessive cytokine production and immune system activation
  • Aging is associated with a poor control of the redox balance
  • thiol/disulfide homeostasis
  • reduced extracellular environment in the elderly and the increased susceptibility to Covid-19 infection
  • reduced extracellular environment in the elderly and the increased susceptibility to Covid-19 infection
  • Redox signaling tightly modulates the inflammatory response and oxidative stress has been reported in acute Covid-19
  • People at high risk are the elderly, patients suffering from metabolic syndrome such as obesity, or those suffering from chronic diseases such as cancer or inflammation
  • COVID-19 patients with severe disease have higher levels of oxidative stress markers and lower antioxidant levels
  • oxidative stress can activate the NLRP3 inflammasome, which is a protein complex that plays a key role in the cytokine storm
  • inflammation leads to the formation of ROS and RNS, while redox iMeBalance results in cellular damage, which in turn triggers an inflammatory response
  • persistently elevated mtROS triggers endothelial dysfunction and inflammation, which results in a vicious loop involving ROS, inflammation, and mitochondrial dysfunction
  • Damaged mitochondria releasing ROS induce inflammation via the NLRP3 inflammasome
  • Damaged mitochondria releasing ROS induce inflammation via the NLRP3 inflammasome
  • reduced environment during the cytokine storm
  • IL-2 is highly up-regulated in Covid-19 patients [37], and IL-2 is known to significantly stimulate the generation of NO in patients
  • Nitric acid is also the key mediator of IL-2-induced hypotension and vascular leak syndrome
  • mitochondrial dysfunction has been linked to the pathogenesis of Covid-19
  • mitochondrial dysfunction triggered by SARS-CoV-2 leads to damage to the mitochondria
  • mitochondrial dysfunction triggered by SARS-CoV-2 leads to damage to the mitochondria
  • As catabolism is decreased, entropy is released through anabolism
  • Elevated levels of lactate, a characteristic of the Warburg effect, were also reported in the high-risk Covid-19
  • elevated levels of ventricular lactic acid consistent with oxidative stress
  • A decrease of ΔΨm is implicated in several inflammation-related diseases
  • decrease in ΔΨm in leucocytes from Covid-19 patients
  • vaccinated with RNA or DNA vaccines triggering the synthesis of the viral spike protein in human cells
  • viral reactivation in varicella-zoster virus [55] or hepatitis [56], coagulopathy and resulting stroke and myocarditis following both DNA-based vaccines [57] and RNA-based vaccines
  • Covid-19, mitochondrial impairment
  • characteristic of the Warburg effect is present in almost every disease and appears to be a central feature in most of the hallmarks of cancer
  • inflammation, mitochondrial dysfunction and increased lactate concentrations in the extracellular fluid
  • In Covid-19, like any inflammation, there is a metabolic rewiring where cells rely on glycolysis
  • As the mitochondria are impaired, the infected cell cannot catabolize efficiently. It will release lactic acid in the blood stream
    • Nathan Goodyear
       
      Mitochondrial impairment
  • Striking similarities are seen between cancer, Alzheimer's disease and Covid-19, all related to the Warburg effect
  • Cancer, inflammation, Alzheimer's, and Parkinson's diseases share a common peculiarity, the inability of the cell to export entropy outside the body in the harmless form of heat
    • Nathan Goodyear
       
      Entropy: lack of order or predictability; gradual decline into disorder.
  • MEB relieves the Warburg effect [87], improves memory [77], is active in the treatment of depressive episodes [79,80] and reduces the importance of ischemic strokes
  • MEB relieves the Warburg effect [87], improves memory [77], is active in the treatment of depressive episodes [79,80] and reduces the importance of ischemic strokes
  • MEB has been shown to inhibit SARS-Cov-2 replication in vitro
  • MEB has been shown to inhibit SARS-Cov-2 replication in vitro
  • It has been shown that Covid-19-patients treated with MEB, have a significant reduction in hospital stay duration and mortality
  • MeB is an acceptor-donor molecule
  • MeB + can take a pair of electrons (of H atoms) and MeBH can release this pair easily, so that MeB is partially recycled like a catalyst
  • MeB acts as an electron bridge between a donor (FADH2, FMNH, NADH) and an acceptor (complex IV of ETC or oxygen itself)
  • As a coenzyme of pyruvate dehydrogenase (PDH), alpha-lipoic acid (ALA) initiates the formation of acetyl-CoA to feed the TCA cycle
  • ALA enhances the catabolism of carbon. cycle and therefore may reduce the Warburg effect and consequently, lactate production
  • Methylene Blue plays a similar role after the TCA cycle, by carrying electrons to complex IV of the electron transport chain
  • Drugs such as lipoic acid and MeB, which target the metabolism, decrease the redox shift by increasing catabolism
Nathan Goodyear

Mitochondrial Fission Induces Glycolytic Reprogramming in Cancer-Associated Myofibrobla... - 0 views

  • L-lactate functions as an onco-metabolite, stimulating mitochondrial biogenesis and OXPHOS in adjacent cancer cells, directly providing energy for tumor growth
  • Oxidative stress in stromal fibroblasts then induces their metabolic conversion into cancer-associated fibroblasts. Such oxidative stress drives the onset of autophagy, mitophagy, and aerobic glycolysis in fibroblasts, resulting in the local production of high-energy mitochondrial fuels (such as L-lactate, ketone bodies, and glutamine). These recycled nutrients are then transferred to cancer cells, where they are efficiently burned via oxidative mitochondrial metabolism (OXPHOS)
  • stromal L-lactate serves as a high-energy mitochondrial “fuel” for cancer cells. We have termed this new model of cancer metabolism “Two-Compartment Tumor Metabolism”, where two opposing metabolic compartments co-exist, side-by-side, with stromal glycolysis fueling OXPHOS in cancer cells
  • ...10 more annotations...
  • Two-Compartment Tumor Metabolism
  • Reverse Warburg Effect”, is that catabolic fibroblasts should promote tumor growth, without any increases in angiogenesis
  • when cancer cells use L-lactate as a mitochondrial fuel source, this metabolic phenotype is a predictor of lethal cancer metabolism
  • tumor microenvironment is intimately involved in tumor development and progression
  • mitochondrial dysregulation is likely the “root cause” of several human disease(s), and especially epithelial cancers
  • Both in vitro and in vivo studies have now provided convincing evidence that “activated” stromal fibroblasts, a.k.a., myofibroblasts, may play a critical role in initiating tumor recurrence, via paracrine interactions with adjacent tumor epithelial cells
  • A new hypothesis is that cancer is not a cell autonomous disease, but rather a disease of the tumor microenvironment
  • cancer cells behave as metabolic parasites, by inducing oxidative stress in adjacent normal fibroblasts
  • recent experimental evidence indicates that cancer-associated fibroblasts have a catabolic phenotype, and undergo autophagy and mitophagy, resulting in the onset of glycolytic metabolism, driving L-lactate production, and its release into the tumor microenvironment
  • oncogenic mutations in cancer cells lead to ROS production and the “secretion” of hydrogen peroxide species
  •  
    A good discussion of what is proposed the Reverse Warburg effect.  A process by which the local environment dictates tumor progression.  The cancer cells release ROS primarily in the form of H2O2 and this leads to Cancer Associated Fibroblasts (CAFs) in the stroma.  The altered stromal environment increases ROS further and promotes ocogenic metabolites through the classic Warburg effect.  This high lactate production from the CAFs then is used by the cancer cells via classic oxidative phosphorylation.  Complex, beautiful and still an the understanding is a work in progress.   This study/article points to the importance of oxidative stress in some cancer development through CAFs.
Nathan Goodyear

Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxid... - 0 views

  • reducing oxidative stress with powerful antioxidants, is an important strategy for cancer prevention, as it would suppress one of the key early initiating steps where DNA damage and tumor-stroma metabolic-coupling begins. This would prevent cancer cells from acting as metabolic “parasites
  • Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the “reverse Warburg effect.
  • Then, oxidative stress, in cancer-associated fibroblasts, triggers the activation of two main transcription factors, NFκB and HIF-1α, leading to the onset of inflammation, autophagy, mitophagy and aerobic glycolysis in the tumor microenvironment
  • ...38 more annotations...
  • oxidative stress and ROS, produced in cancer-associated fibroblasts, has a “bystander effect” on adjacent cancer cells, leading to DNA damage, genomic instability and aneuploidy, which appears to be driving tumor-stroma co-evolution
  • tumor cells produce and secrete hydrogen peroxide, thereby “fertilizing” the tumor microenvironment and driving the “reverse Warburg effect.”
  • This type of stromal metabolism then produces high-energy nutrients (lactate, ketones and glutamine), as well as recycled chemical building blocks (nucleotides, amino acids, fatty acids), to literally “feed” cancer cells
  • loss of stromal caveolin (Cav-1) is sufficient to drive mitochondrial dysfunction with increased glucose uptake in fibroblasts, mimicking the glycolytic phenotype of cancer-associated fibroblasts.
  • oxidative stress initiated in tumor cells is transferred to cancer-associated fibroblasts.
  • Then, cancer-associated fibroblasts show quantitative reductions in mitochondrial activity and compensatory increases in glucose uptake, as well as high ROS production
  • These findings may explain the prognostic value of a loss of stromal Cav-1 as a marker of a “lethal” tumor microenvironment
  • aerobic glycolysis takes place in cancer-associated fibroblasts, rather than in tumor cells, as previously suspected.
  • our results may also explain the “field effect” in cancer biology,5 as hydrogen peroxide secreted by cancer cells, and the propagation of ROS production, from cancer cells to fibroblasts, would create an increasing “mutagenic field” of ROS production, due to the resulting DNA damage
  • Interruption of this process, by addition of catalase (an enzyme that detoxifies hydrogen peroxide) to the tissue culture media, blocks ROS activity in cancer cells and leads to apoptotic cell death in cancer cells
  • In this new paradigm, cancer cells induce oxidative stress in neighboring cancer-associated fibroblasts
  • cancer-associated fibroblasts have the largest increases in glucose uptake
  • cancer cells secrete hydrogen peroxide, which induces ROS production in cancer-associated fibroblasts
  • Then, oxidative stress in cancer-associated fibroblast leads to decreases in functional mitochondrial activity, and a corresponding increase in glucose uptake, to fuel aerobic glycolysis
  • cancer cells show significant increases in mitochondrial activity, and decreases in glucose uptake
  • fibroblasts and cancer cells in co-culture become metabolically coupled, resulting in the development of a “symbiotic” or “parasitic” relationship.
  • cancer-associated fibroblasts undergo aerobic glycolysis (producing lactate), while cancer cells use oxidative mitochondrial metabolism.
  • We have previously shown that oxidative stress in cancer-associated fibroblasts drives a loss of stromal Cav-1, due to its destruction via autophagy/lysosomal degradation
  • a loss of stromal Cav-1 is sufficient to induce further oxidative stress, DNA damage and autophagy, essentially mimicking pseudo-hypoxia and driving mitochondrial dysfunction
  • loss of stromal Cav-1 is a powerful biomarker for identifying breast cancer patients with early tumor recurrence, lymph-node metastasis, drug-resistance and poor clinical outcome
  • this type of metabolism (aerobic glycolysis and autophagy in the tumor stroma) is characteristic of a lethal tumor micro-environment, as it fuels anabolic growth in cancer cells, via the production of high-energy nutrients (such as lactate, ketones and glutamine) and other chemical building blocks
  • the upstream tumor-initiating event appears to be the secretion of hydrogen peroxide
  • one such enzymatically-active protein anti-oxidant that may be of therapeutic use is catalase, as it detoxifies hydrogen peroxide to water
  • numerous studies show that “catalase therapy” in pre-clinical animal models is indeed sufficient to almost completely block tumor recurrence and metastasis
  • by eliminating oxidative stress in cancer cells and the tumor microenvironment,55 we may be able to effectively cut off the tumor's fuel supply, by blocking stromal autophagy and aerobic glycolysis
  • breast cancer patients show systemic evidence of increased oxidative stress and a decreased anti-oxidant defense, which increases with aging and tumor progression.68–70 Chemotherapy and radiation therapy then promote further oxidative stress.69 Unfortunately, “sub-lethal” doses of oxidative stress during cancer therapy may contribute to tumor recurrence and metastasis, via the activation of myofibroblasts.
  • a loss of stromal Cav-1 is associated with the increased expression of gene profiles associated with normal aging, oxidative stress, DNA damage, HIF1/hypoxia, NFκB/inflammation, glycolysis and mitochondrial dysfunction
  • cancer-associated fibroblasts show the largest increases in glucose uptake, while cancer cells show corresponding decreases in glucose uptake, under identical co-culture conditions
  • Thus, increased PET glucose avidity may actually be a surrogate marker for a loss of stromal Cav-1 in human tumors, allowing the rapid detection of a lethal tumor microenvironment.
  • it appears that astrocytes are actually the cell type responsible for the glucose avidity.
  • In the brain, astrocytes are glycolytic and undergo aerobic glycolysis. Thus, astrocytes take up and metabolically process glucose to lactate.7
  • Then, lactate is secreted via a mono-carboxylate transporter, namely MCT4. As a consequence, neurons use lactate as their preferred energy substrate
  • both astrocytes and cancer-associated fibroblasts express MCT4 (which extrudes lactate) and MCT4 is upregulated by oxidative stress in stromal fibroblasts.34
  • In accordance with the idea that cancer-associated fibroblasts take up the bulk of glucose, PET glucose avidity is also now routinely used to measure the extent of fibrosis in a number of human diseases, including interstitial pulmonary fibrosis, postsurgical scars, keloids, arthritis and a variety of collagen-vascular diseases.
  • PET glucose avidity and elevated serum inflammatory markers both correlate with poor prognosis in breast cancers.
  • PET signal over-estimates the actual anatomical size of the tumor, consistent with the idea that PET glucose avidity is really measuring fibrosis and inflammation in the tumor microenvironment.
  • human breast and lung cancer patients can be positively identified by examining their exhaled breath for the presence of hydrogen peroxide.
  • tumor cell production of hydrogen peroxide drives NFκB-activation in adjacent normal cells in culture6 and during metastasis,103 directly implicating the use of antioxidants, NFκB-inhibitors and anti-inflammatory agents, in the treatment of aggressive human cancers.
  •  
    Good description of the communication between cancer cells and fibroblasts.  This theory is termed the "reverse Warburg effect".
Nathan Goodyear

Lactate threshold training - 0 views

  •  
    Great discussion and review of the lactate threshold and how to exercise to the lactate threshold.
Nathan Goodyear

LACTATE KINETICS AFTER INTERMITTENT AND CONTINUOUS EXERCISE TRAINING, JSSM-2008, Vol.7,... - 0 views

  •  
    interesting study on what training techniques improve maximal aerobic speed and maximizes lactate metabolism and removal.
Nathan Goodyear

Lactate metabolism in human lung tumors - 0 views

  •  
    Cancer can uptake and use Lactate
Nathan Goodyear

Decline of lactate in tumor tissue after ketogen... [Nutr Cancer. 2013] - PubMed - NCBI - 0 views

  •  
    Small study specifically looked at Head and Neck Cancer.  The study found a reduction in lactate in tumor tissue after just 3 days of ketogenic diet.
Nathan Goodyear

New clinical criteria for septic shock: serum lactate level as new emerging vital sign - 0 views

  •  
    serum lactate to evaluate septic shock.
Nathan Goodyear

Overall survival of cancer patients with serum lactate dehydrogenase greater ... - 0 views

  • catalyzes the interconversion of pyruvate and lactate during glycolysis and gluconeogenesis
  • It has long been known that many human cancers have higher LDH levels than normal tissues
  • It has long been appreciated that LDH is a prognostic factor for survival
  • ...9 more annotations...
  • The serum level of LDH correlated with tumor burden and was thought to reflect the tumor’s growth and invasive potential
  • the majority of patients with advanced or metastatic disease could be detected to have extremely high serum level of LDH
  • strong evidence to support effective chemotherapy of full dose even in patients with high LDH level
  • LDH is a key enzyme in the process of energy production in cancer cells, it catalyzes the conversion of pyruvate to lactate in hypoxic conditions
  • its function in anaerobic metabolism, cancer cells grow even after their rapid proliferation that leads to low-oxygen conditions in the tumor microenvironment
  • LDH plays an important role in tumor progression and maintenance
  • inhibition of LDH inhibits tumor progression and has been considered for the therapeutic target of cancer energy metabolism
  • LDH levels are increased in response to tissue injury or during disease states
  • LDH could be a marker of tumor burden for advanced cancer patients
  •  
    High LDH, defined as >1,000, found to be maker for very poor overall survival in retrospective study.
Nathan Goodyear

Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/... - 0 views

  •  
    Lactate stimulates M2 macrophage polarization in the TME via ERK/STAT3 activation.
Nathan Goodyear

Effect of Cs-4® (Cordyceps sinensis) on Exercise Performance in Healthy Older... - 0 views

  • the metabolic threshold (above which lactate accumulates) increased by 10.5%
  • he ventilatory threshold (above which unbuffered H+ stimulates ventilation) increased by 8.5%
  • upplementation with Cs-4 (Cordyceps sinensis) improves exercise performance and might contribute to wellness in healthy older subjects
  •  
    cordyceps sinensis and lactate
Nathan Goodyear

The role of lactate in the exercise-induced human growth hormone response: evidence fro... - 0 views

  •  
    passing lactate threshold in exercise stimulates HGH release Evidence supported by following people with McArdle disease
Nathan Goodyear

PRECLINICAL STUDY: Changes in central dopaminergic systems and morphine reward by prena... - 0 views

  •  
    great study that shows how BPA exposure has its largest impact on the mesolimbic/dopamine system during organogenesis and lactation periods.
Nathan Goodyear

The endurance triathlon: metabolic changes after each event and dur... - PubMed - NCBI - 0 views

  •  
    Serum lactate elevates early in triathlon.  The greatest increase is associated with the swim event.  Muscle damage progressed through the 3 events (creatine phosphokinase and LDH).  Uric acid levels increased.  Recovery was seen out to 6 days post event.
Nathan Goodyear

Comparisons of normal saline and lactated Ringer's resuscitation on hemodynamics, metab... - 0 views

  • NS contains 154 mM Na+ and Cl-, with an average pH of 5.0 and osmolarity of 308 mOsm/L.
  • LR solution has an average pH of 6.5, is hypo-osmolar (272 mOsm/L), and has similar electrolytes (130 mM Na+, 109 mM Cl-, 28 mM lactate, etc.) to plasma
  • hyperchloremic acidosis
  • ...26 more annotations...
  • LR’s acid base balance is superior to that of NS’s
  • There were no significant differences between LR and NS groups in fibrinogen concentrations or platelet count
  • Total protein dropped
  • no significant differences in Hct (Table  1) or total protein between LR and NS groups
  • Bicarbonate HCO3- levels were decreased by hemorrhage but returned to pre-hemorrhage values by 3 h after LR resuscitation, whereas no return was observed with NS resuscitation
  • Na+ was increased after NS resuscitation
  • No changes in Na+ or K+ were observed
  • K+ did not change initially after NS resuscitation but was elevated at 6 h afterwards
  • Ca++ was similarly decreased
  • Cl- was elevated for 6 h after NS resuscitation, with no changes shown after LR resuscitation
  • PT was similarly prolonged by resuscitation with LR (from 11.2 ± 0.2 sec at baseline to 12.1 ± 0.2 sec at 6 h) and NS
  • Plasma aPTT was also similarly prolonged by resuscitation with LR (from 17.1 ± 0.5 sec baseline to 20.1 ± 1.2 sec at 6 h) or NS
  • NS resuscitation resulted in better oxygen delivery and oxygen delivery-to-oxygen demand ratio as an index of oxygen debt
  • NS had better tissue perfusion and oxygen metabolism than LR
  • LR resuscitation returned BE and bicarbonate to pre-hemorrhage levels within 3 h, but no return of BE or bicarbonate was observed for 6 hr with NS resuscitation
  • current blood bank guidelines state that LR should not be mixed with blood to prevent the risk of clot formation from calcium included in LR
  • LR resuscitation should not be given with blood through the same iv-line and crystalloids should be avoided in patients with blood transfusion
  • PT and aPTT were prolonged for 6 h after hemorrhage and resuscitation, suggesting a hypocoagulable states
  • potential thrombotic risk from LR resuscitation is unlikely.
  • we suspected that the blood pressure after NS resuscitation would be lower than that of LR due to its vasodilator effects
  • NS required a larger resuscitation volume and was associated with poor acid base status and elevated serum potassium in this model
  • NS required 50% more volume and was associated with a higher cardiac output and lower peripheral resistance, as compared to LR resuscitation
  • These differences are possibly due to the vasodilator effects from NS
  • an elevation of K+ was observed at 6 h post NS resuscitation, while no change of K+ was observed after LR resuscitation
  • The mechanism for the increase of K+ from NS is not fully known
  • NS is associated with vasodilator effects and the risks of metabolic acidosis and hyperkalemia
  •  
    LR vs NS crystalloid.
Nathan Goodyear

Inborn-like errors of metabolism are determinants of breast cancer risk, clinical respo... - 0 views

  • We now recognize that human cancers evolve in an environment of metabolic stress. Rapidly proliferating tumor cells deprived of adequate oxygen, nutrients, hormones and growth factors up-regulate pathways that address these deficiencies to overcome hypoxia (HIF), vascular insufficiency (VEGF), growth factor deprivation (EGFR, HER2) and the loss of hormonal support (ER, PR, AR) all to enhance survival and proliferation
  • RAS, PI3K, TP53 and MYC
  • The results suggest that breast cancer could be preceded by systemic subclinical disturbances in glucose-insulin homeostasis characterized by mild, likely asymptomatic, IEM-like biochemical changes
  • ...16 more annotations...
  • The process would include variable periods of hyperinsulinemia with the consequent systemic MYC activation of glycolysis, glutaminolysis, structural lipidogenesis and further exacerbation of hypoglycemia, the result of MYC's known role as an inhibitor of liver gluconeogenesis
  • The metabolic changes we describe in breast cancer arise in concert with IEM-like changes in oxidative phosphorylation as detected by increased values of the ratio lactate/pyruvate (Supplementary Table 2A, 2B) characteristic of Ox/Phos deficiency [25]. In our study, 76% (70/92) of the European breast cancer patients had lactate/pyruvate ratios values higher than the normal value of 25.8
  • four-fold higher frequency of cancer (including breast) in patients with energy metabolism disorders
  • growing recognition that cancer cells differ from their normal counterparts in their use of nutrients, synthesis of biomolecules and generation of energy
  • glutamine concentrations in the cancer patients were reduced to nearly 1/8 of the levels observed in the normal population
  • blood concentrations of aspartate (p = 1.7e-67, FDR = 8.3e-67) (Figure ​(Figure1E)1E) and glutamate (p = 6.4e-96, FDR = 6.2e-95) (Figure ​(Figure1F)1F) were nearly 10 fold higher than the normal ranges of 0–5 μM/L and 40 μM/L, respectively
  • glutamine consumption associated with parallel increases in glutamate and aspartate (Figure ​(Figure1A1A red arrows) is considered a hallmark of MYC-driven “glutaminolysis”
  • Gln/Glu ratio inversely correlates with i- late stage metabolic syndrome and with ii- increased chance of death
  • changes in glutamine consumption, reflected by the Gln/Glu ratio could provide a metabolic link between breast cancer initiation and diabetes, reflective of a systemic metabolic reprogramming from glucose to glutamine as the preferred source of precursors for biosynthetic reactions and cellular energy
  • lower Gln/Glu ratios inversely correlated with insulin resistance and the risk of diabetes
  • the metabolic dependencies of cancer characterized by excessive glycolysis, glutaminolysis and malignant lipidogenesis, previously considered a consequence of local tumor DNA aberration [23] could, instead, represent a systemic biochemical aberration that predates and very likely promotes tumorigenesis
  • these metabolic disturbances would be expected to remain extant after therapeutic interventions
  • accumulation of very long chain acylcarnitines such as C14:1-OH (p = 0.0, FDR = 0.0), C16 (p = 0.0, FDR = 0.0), C18 (p = 0.0, FDR = 0.0) and C18:1 (p = 1.73e-322, FDR = 1.16-321) and lipids containing VLCFA (lysoPC a C28:0) (p = 1.14-e95, FDR = 1.65e-95) in the blood of breast and colon cancer patients
  • Among the most powerful metabolic equations for MYC-activation is that which links the widely used MYC-driven desaturation marker ratio of SFA/MUFA to the MYC glutaminolysis-associated ratio of (Asp/Gln)
  • liver dysfunction shares many features with both IEM and cancer suggesting a role for hepatic dysfunction in carcinogenesis
  • cancer “conscripts” the human genome to meet its needs under conditions of systemic metabolic stress
  •  
    Breast cancer is a metabolic disease.  Now, where have I heard that cancer is a metabolic disease?
1 - 20 of 60 Next › Last »
Showing 20 items per page