Skip to main content

Home/ About The Indian Ocean/ Group items tagged Ocean Explorer

Rss Feed Group items tagged

Jérôme OLLIER

Spatio-Temporal Distribution of Juvenile Oceanic Whitetip Shark Incidental Catch in the... - 0 views

  •  
    Oceanic whitetip shark (Carcharhinus longimanus) is an important top predator in pelagic ecosystems currently classified as globally Critically Endangered by the International Union for the Conservation of Nature. This species is incidentally caught by fisheries targeting highly migratory tunas and billfishes throughout the Indian Ocean. Understanding the temporal, spatial and environmental factors influencing the capture of this species is essential to reduce incidental catches. In this study, we used generalized additive models to analyze the spatio-temporal distributions of the juvenile oceanic whitetip shark catches and the environmental conditions in the western Indian Ocean using observer data from 2010 to 2020 of the European Union and associated flags purse seine fishery. We found sea surface temperature and nitrate concentration to be the most important environmental variables predicting the probability of catching an oceanic whitetip shark. A higher probability of capture was predicted in areas where sea surface temperature was below 24°C and with low nitrate concentrations close to zero and intermediate values (1.5-2.5 mmol.m-3). We also found a higher probability of capture in sets on fish aggregating devices than in sets on free schools of tuna. The Kenya and Somalia basin was identified to have higher probabilities of capture during the summer monsoon (June to September) when upwelling of deep cold waters occurs. We provide the first prediction maps of capture probabilities and insights into the environmental preferences of oceanic whitetip shark in the western Indian Ocean. However, the causal mechanisms behind these insights should be explored in future studies before they can be used to design spatial management and conservation strategies, such as time-area closures, for bycatch avoidance.
Jérôme OLLIER

Influence of Indo-Pacific ocean currents on the distribution and demographic patterns o... - 0 views

  •  
    Long-distance drifting of seaweeds driven by ocean currents is an ideal model for exploring population-level genetic connectivity and phylogeographic structure. In the Indo-Pacific convergence region, we integrated phylogeographic and ocean current data and Lagrangian particle simulations to explore how the ocean currents contributed to the biogeographical patterns and population genetic connectivity of Sargassum polycystum. The oceanographic transport and direction of gene flow was in line with contemporary ocean currents. The S. polycystum geographical dispersal from glacial refugia homogenized the footprint of genetic divergence. The multidisciplinary intersection provides insights into the evolutionary history and biogeographic conservation of tropical seaweeds in the Indo-Pacific convergence region.
Jérôme OLLIER

Via @NOCmarinePhys Effect of Tides on the Indonesian Seas Circulation and Their Role on... - 0 views

  •  
    The effect of tides on the Indonesian Throughflow (ITF) is explored in a regional ocean model of South East Asia. Our model simulations, with and without tidal forcing, reveal that tides drive only a modest increase in the ITF volume, heat and salt transports toward the Indian Ocean. However, tides drive large regional changes in these transports through Lombok Strait, Ombai Strait and the Timor Sea, and regulate the partitioning of the ITF amongst them. The effect of tidal mixing on the salinity and temperature profiles within the Indonesian Seas drives a small decrease in the heat and salt transports toward the Indian Ocean in all three exit passages. In contrast, the tidal residual circulation due to the interaction between the tides and the topography and stratification (including the effects of tidal mixing on the circulation) leads to a large decrease in the transports toward the Indian Ocean through the Lombok and Ombai straits, but a large increase through the Timor Sea. Hence, the small net contribution from tides to the ITF's volume, heat and salt transports is due to a compensation between large, but opposing tidal residual transports at the combined Lombok and Ombai straits and in the Timor Sea. Our results indicate that explicit representation of tides, often missing in Earth system models, is necessary to accurately capture the ITF's pathway and so the tracer transport from the Pacific into the Indian Ocean.
Jérôme OLLIER

Environment variables affect CPUE and spatial distribution of fishing grounds on the li... - 0 views

  •  
    To better develop and protect the pelagic fishery in the northwest Indian Ocean, China's fishing enterprises have been producing pelagic fisheries in the said area for a long time. Based on the fishing log data of light falling gear in the northwest Indian Ocean from 2016 to 2020, this study analyzed the impact of different time scales on the catch rate and fishing ground center of gravity of light falling gear fishing grounds. We also explored the relationship between different time scales and catch per unit effort (CPUE) by using the fishing ground center of gravity, the Random Forest model (RF), and the generalized additive model (GAM). The results were shown as follows: (1) From 2016 to 2020, 76,576 t were captured, and 16,496 nets were operated; (2) The gravity center of fishing ground in the Northwest Indian Ocean moved to the northeast as a whole, and the monthly fishing ground gravity center changed first to the Southern and then to the northern; (3) RF model (R² = 0.709, RMSE = 0.2034, and prediction accuracy is 55.8%), which is better than the GAM model (R² = 0.632, RMSE = 0.2242, and prediction accuracy is 37.3%). In the RF model, the importance of time variables on CPUE was in the order of week, year, operation time, and lunar phase; in the GAM model, it was week, year, lunar phase, and operation time. On the whole, the importance of the long time scale (year, week) is greater than that of the short time scale (lunar phase and operation time). (4) The RF model and GAM model show that the most critical environmental variables were SST, DO, SSS, and Chla, and the least important were SSH, Δ50, and CV50. SST, Chla, and DO significantly impact pelagic fishing and CPUE and are critical reference indexes for predicting the Northwest Indian Ocean light falling gear fishing ground. (5) The 95% confidence interval showed that the suitable interval of time, space, and environmental variables in the RF model was much smaller than in the GAM model.
Jérôme OLLIER

Decadal variability of sea surface salinity in the Southeastern Indian Ocean: Roles of ... - 0 views

  •  
    The southeastern Indian Ocean (SEIO) exhibits prominent decadal variability in sea surface salinity (SSS), showing salinity decreases during 1995-2000 and 2005-2011 and increases during 2000-2005 and after 2011. These salinity changes are linked to the Indo-Pacific climate and have impacts on the regional marine environment. Yet, the underlying mechanism has not been firmly established. In this study, decadal SSS variability of the SEIO is successfully simulated by a high-resolution regional ocean model, and the mechanism is explored through a series of sensitivity experiments. The results suggest that freshwater transport of the Indonesian throughflow (ITF) and local precipitation are two major drivers for the SSS decadal variability. They mutually cause most of the variability, with a generally larger contribution of precipitation. Other processes, such as evaporation and advection driven by local winds, play a minor role. Further analysis shows that the decadal precipitation in the SEIO is mainly associated with the decadal variability of Ningaloo Niño. Ocean dynamic processes significantly modify the relationship between SSS and precipitation, greatly shortening their lag time. The changes in both volume transport and salinity of the ITF water can cause large salinity changes in the SEIO region. Although local wind forcing gives rise to considerable changes in evaporation rate and ocean current advection, its overall contribution to decadal SSS variability is small compared to local precipitation and the ITF.
Jérôme OLLIER

Four mysteries of the Indian Ocean - CSIRO - 0 views

  •  
    Despite being the third largest ocean in the world, the Indian Ocean is one of the least explored marine environments. Covering around 20 per cent of the Earth's surface and spanning more than 73 million square kilometres, it's an important channel for over half the world's shipping.
Jérôme OLLIER

Uncharted waters: Scientists to explore Indian Ocean depths - @AP via @YahooNews - 0 views

  •  
    Uncharted waters: Scientists to explore Indian Ocean depths.
Jérôme OLLIER

Explorers to send 1st live video broadcast from ocean depths - @AP via @physorg_com - 0 views

  •  
    Explorers to send 1st live video broadcast from ocean depths.
Jérôme OLLIER

Scientists begin quest to explore Indian Ocean depths - @AP via @physorg_com - 0 views

  •  
    Scientists begin quest to explore Indian Ocean depths.
Jérôme OLLIER

Active hydrothermal vent ecosystems in the Indian Ocean are in need of protection - @F... - 0 views

  •  
    Deep-sea hydrothermal vent fields are among the most pristine and remarkable ecosystems on Earth. They are fueled by microbial chemosynthesis, harbor unique life and can be sources of precipitated mineral deposits. As the global demand for mineral resources rises, vent fields have been investigated for polymetallic sulfides (PMS) and biological resources. The International Seabed Authority (ISA) has issued 7 contracts for PMS exploration, including 4 licenses for vent fields in the Indian Ocean. Here, we provide a summary of the available ecological knowledge of Indian vent communities and we assess their vulnerability, sensitivity, ecological and biological significance. We combine and apply scientific criteria for Vulnerable Marine Ecosystems (VMEs) by FAO, Particular Sensitive Sea Areas (PSSAs) by IMO, and Ecologically or Biologically Significant Areas (EBSAs) by CBD. Our scientific assessment shows that all active vent fields in the Indian Ocean appear to meet all scientific criteria for protection, and both the high degree of uniqueness and fragility of these ecosystems stand out.
Jérôme OLLIER

Similarity of the turbulent kinetic energy dissipation rate distribution in the upper m... - 0 views

  •  
    Turbulence within the upper ocean mixed layer plays a key role in various physical, biological, and chemical processes. Between September and November 2011, a dataset of 570 vertical profiles of the turbulent kinetic energy (TKE) dissipation rate, as well as conventional hydrological and meteorological data, were collected in the upper layer of the tropical Indian Ocean. These data were used to statistically analyze the vertical distribution of the TKE dissipation rate in the mixed layer. The arithmetic-mean method made the statistical TKE dissipation rate profile more scattered than the median and geometric-mean methods. The statistical TKE dissipation rate were respectively scaled by the surface buoyancy flux and the TKE dissipation rate at the mixed-layer base. It was found that the TKE dissipation rate scaled by that at the mixed-layer base exhibited better similarity characteristics than that scaled by the surface buoyancy flux, whether the stability parameter D/|LMO| was greater or less than 10, indicating that the TKE dissipation rate at the mixed-layer base is a better characteristic scaling parameter for reflecting the intrinsic structure of the TKE dissipation rate in the mixed layer, where D and LMO are respectively the mixed-layer thickness and the Monin-Obukhov length scale. The parameterization of the TKE dissipation rate at the mixed-layer base on the shear-driven dissipation rate and the surface buoyancy flux was further explored. It was found that the TKE dissipation rate at the mixed-layer base could be well fitted by a linear combination of three terms: the wind-shear-driven dissipation rate, the surface buoyancy flux, and a simple nonlinear coupling term of these two .
Jérôme OLLIER

Dropping a line in the Indian Ocean - CSIROscope - 0 views

  •  
    Around 60 years ago, marine scientists on an armada of ships from 14 countries combined their efforts to explore the largest unknown area of earth, the deep waters and seafloor of the Indian Ocean.
Jérôme OLLIER

Mission to explore genomic diversity of Indian Ocean - @CSIRNIOGoa - 0 views

  •  
    Twenty three scientists set sail on a research vessel off the eastern coast of India (14 March 2021) on a three-month-long quest to map the genomic and proteomic diversity of the Indian Ocean.
Jérôme OLLIER

Distribution Pattern of the Benthic Meiofaunal Community Along the Depth Gradient of th... - 0 views

  •  
    The continental margin harbors a variety of habitats that support incredible biodiversity and the function of their oceans' ecosystems. The meiofauna is considered a significant component of the benthic faunal community from the polar to the tropical regions. The meiofaunal community in the deep Indian Ocean, especially along the depth gradient, is poorly investigated. The present study aims to explore the benthic meiofaunal community structure along the depth gradients and its associated environment in the western Indian continental margin (WICM) and abyssal plain in the eastern Arabian Sea. Sediment samples were collected from seven different depths (111-3,918 m) along the WICM including the oxygen minimum zone (OMZ) and abyssal plain. A total of 22 taxa (groups) were encountered along the WICM. The nematodes (85%) were the most dominant taxa in all the depths, followed by copepods (11%), nauplii (5%), and polychaetes (1.36%). Our results suggest that (a) the organic matter has accumulated in OMZ sites; (b) a high amount of total organic carbon did not influence the meiofaunal density or biomass; (c) oxygen and depth gradients were significant drivers of the meiofaunal community, low levels of oxygen contributed to lower taxa diversity and density at 485 and 724 m depths; (d) a significant relationship of meiofaunal density and biomass with chloroplastic pigment equivalent (CPE) values indicates pelagic-benthic coupling. Copepods, nauplii, tanaidaceans, isopods, kinorhynchs, and cumaceans were affected by the low-oxygen conditions at the OMZ sites. Enhanced meiofaunal diversity, density, and biomass at deeper sites (non-OMZ-D) was attributed to increased abundance of copepods, nauplii, tanaidaceans, isopods, kinorhynchs, and cumaceans and were mostly concentrated on the surface sediment (0-4 cm) triggered by enhanced bottom-water oxygen and freshness of available food outside the OMZ except 3,918 m. Therefore, the present study showed the meiofaunal community
Jérôme OLLIER

#coronavirus - Aerosol Induced Changes in Sea Surface Temperature Over the Bay of Benga... - 0 views

  •  
    The role of COVID-19 pandemic lockdown in improving air quality was reported extensively for land regions globally. However, limited studies have explored these over oceanic areas close to high anthropogenic activities and emissions. The Bay of Bengal (BoB) basin is one such region adjacent to the highly populated South Asian region. We find that Aerosol Optical Depth (AOD) over the BoB declined by as much as 0.1 or 30% during the peak lockdown of April 2020 compared to long-term climatology during 2003-2019. Simultaneously, the sea surface temperature (SST) rose by 0.5-1.5°C over the central and north-western parts of the BoB with an average increase of 0.83°C. We show that up to 30% of this observed warming is attributable to reduced atmospheric aerosols. The study highlights the importance of anthropogenic emissions reduction due to COVID lockdown on short-term changes to SST over ocean basins with implications to regional weather.
Jérôme OLLIER

Water sources of the Lombok, Ombai and Timor outflows of the Indonesian throughflow - @... - 0 views

  •  
    The Lombok Strait (LS), Ombai Strait (OS), and Timor Passage (TP) are three major outlets of the Indonesian Throughflow to the Indian Ocean. Here, sources and pathways of the LS, OS, and TP outflows are explored by a Lagrangian particle tracking analysis based on a ~3 km regional ocean model simulation. The Makassar Strait transport contributes to ~80%, ~75%, and ~45% of the LS, OS, and TP outflows, respectively. However, ~41% and ~19% of the TP and OS outflows stem from the Lifamatola Passage, which largely feeds the upper and intermediate layers of the outflows. The role of Karimata Strait is quite limited and restricted to the upper layer. It takes 1-2 years and 2-6 years for the Makassar Strait water to reach the OS and TP, respectively, whereas the Lifamatola Passage water passes through the OS (2-6 years) and TP (3-9 years) on a prolonged transit time. In the Banda Sea, the western boundary current is the main pathway toward the OS, while the waters to the TP tend to take a basin interior route.
Jérôme OLLIER

Bad weather changes course of Indian Ocean exploration trip - @AP - 0 views

  •  
    Bad weather changes course of Indian Ocean exploration trip.
Jérôme OLLIER

Indian Ocean science mission recovers key underwater drone - @AP via @physorg_com - 0 views

  •  
    Indian Ocean science mission recovers key underwater drone.
1 - 20 of 37 Next ›
Showing 20 items per page