Skip to main content

Home/ About The Indian Ocean/ Group items tagged volume

Rss Feed Group items tagged

Jérôme OLLIER

Via @NOCmarinePhys Effect of Tides on the Indonesian Seas Circulation and Their Role on... - 0 views

  •  
    The effect of tides on the Indonesian Throughflow (ITF) is explored in a regional ocean model of South East Asia. Our model simulations, with and without tidal forcing, reveal that tides drive only a modest increase in the ITF volume, heat and salt transports toward the Indian Ocean. However, tides drive large regional changes in these transports through Lombok Strait, Ombai Strait and the Timor Sea, and regulate the partitioning of the ITF amongst them. The effect of tidal mixing on the salinity and temperature profiles within the Indonesian Seas drives a small decrease in the heat and salt transports toward the Indian Ocean in all three exit passages. In contrast, the tidal residual circulation due to the interaction between the tides and the topography and stratification (including the effects of tidal mixing on the circulation) leads to a large decrease in the transports toward the Indian Ocean through the Lombok and Ombai straits, but a large increase through the Timor Sea. Hence, the small net contribution from tides to the ITF's volume, heat and salt transports is due to a compensation between large, but opposing tidal residual transports at the combined Lombok and Ombai straits and in the Timor Sea. Our results indicate that explicit representation of tides, often missing in Earth system models, is necessary to accurately capture the ITF's pathway and so the tracer transport from the Pacific into the Indian Ocean.
Jérôme OLLIER

Coral reef island shoreline change and the dynamic response of the freshwater lens, Huv... - 0 views

  •  
    Low-lying coral reef islands have been projected to become uninhabitable by the end of the century due to sea level rise, but such projections of vulnerability assume that reef islands are static landforms that flood incrementally with sea level rise. In fact, GIS-based reef island shoreline analyses have demonstrated that reef islands are highly dynamic landforms that may adjust their shorelines in response to changing environmental conditions. However, the vast majority of reef island shoreline analyses have been undertaken in the Pacific Ocean, leaving our understanding of changes in the Indian Ocean more limited. Further, our knowledge of how island dynamics can impact groundwater resources is restricted due to the assumption that islands will exhibit purely erosional responses to sea level rise. Here, we analyse shoreline evolution on 49 reef islands over a 50-year timeframe in Huvadhoo Atoll, Maldives. Additionally, rates of shoreline change were used to undertake numerical modelling of shifts in freshwater lens volume in 2030, 2050 and 2100 in response to changes in recharge. Despite sea level rising at 4.24 mm/year (1969-2019), accretion was prevalent on 53% of islands, with the remaining islands eroding (25%) or remaining stable (22%). Average net shoreline movement was 4.13 m, ranging from -17.51 to 65.73 m; and the average rate of shoreline change (weighted linear regression) was 0.13 m/year, ranging from -0.07 to 2.65 m/year. The magnitudes and rates of reef island evolution were found to be highly site-specific, with island type found to be the only significant predictor of either net shoreline movement or weighted linear regression. Results suggest that freshwater lens volume was substantially impacted by shoreline change compared to changes in recharge whereby accretion and erosion led to large increases (up to 65.05%) decreases (up to -50.4%) in les volume, respectively. We suggest that the capacity of reef islands to both (1) adjust their shorelines
Jérôme OLLIER

Shoreline Variability at a Reef-Fringed Pocket Beach - @FrontMarineSci - 0 views

  •  
    Pocket beaches bound by headlands or other geologic features are common worldwide and experience constrained alongshore transport that influences their morphological changes. Pocket beaches fringed by shallow reefs have not been well-studied, yet can be commonly found throughout temperate and tropical regions. The presence of a reef is expected to drive distinct hydrodynamic processes and shoreline responses to offshore waves and water levels, which is investigated in this study. To examine the drivers of shoreline variability, a 20-month field study was conducted on a reef-fringed pocket beach in southwestern Australia (Gnarabup Beach), using a series of in situ wave and water level observations, topographic surveys, as well as video shoreline monitoring. The results indicate that the beach as a whole (alongshore averaged) was in a mostly stable state. However, we observed substantial spatial variability of the local shorelines in response to offshore wave and water levels across a range of time-scales (from individual storms to the seasonal cycle). We observed local regions of beach rotation within cells that were partitioned by the headlands and offshore reefs. The shoreline response was also dictated by the combination of offshore waves and water level which varied seasonally, with the shoreline generally eroding with lower water levels for the same wave height. Despite the contrasting responses in different alongshore locations of the beach, the overall beach volume of the pocket beach was largely conserved.
Jérôme OLLIER

Massive Nitrogen Loss Over the Western Indian Continental Shelf During Seasonal Anoxia:... - 0 views

  •  
    The western Indian continental shelf houses the world's largest naturally formed coastal low-oxygen zone that develops seasonally during the summer monsoon. We investigated multiple reductive nitrogen transformation pathways and quantified their rates in this system through anaerobic incubations with additions of 15N-labeled substrates during the anoxic period for three consecutive years (2008-2010). Addition of 15N labeled ammonium (15NH4+) resulted in low to moderate anaerobic ammonia oxidation (Anammox) rates in about half of our incubations from the oxygen depleted waters. In contrast, incubations with labeled nitrite (15NO2-) led to large production of 30N2 over 29N2 in all incubation experiments, indicating denitrification to be the dominant N-loss pathway. Rates of dissimilatory nitrate/nitrite reduction to ammonium (DNRA) were found to be highly variable and were lower by an order of magnitude than the denitrification rates. Extrapolation of average rates over the sampling periods and volume of anoxic waters showed large nitrogen removal (3.70-11.1 Tg year-1) which is about three times as high as the previously reported estimate (1.3-3.8 Tg year-1). Despite the small area it occupies, this shallow seasonal anoxic zone may account for as much as 20-60% the of the total annual fixed nitrogen loss in the perennial oxygen minimum zone of the Arabian Sea.
Jérôme OLLIER

Hydrodynamic Drivers and Morphological Responses on Small Coral Islands-The Thoondu Spi... - 0 views

  •  
    Assessing the resilience of islands toward altered ocean climate pressures and providing robust adaptation measures requires an understanding of the interaction between morphological processes and the underlying hydrodynamic drivers. In this sense, this study presents changing sediment volumes on various temporal scales for the fringing reef island Fuvahmulah. Based on three field campaigns, conducted over 2 years, aerial imagery provides information on marine aggregates of the island's beaches. In addition, high resolution climate reanalysis data serves as input into an empirical and a numerical approach. Together, both approaches describe the driving processes behind volumetric seasonal and interannual changes: On the one hand, the empirical method quantifies sediment transport rates for calcareous sediments over the whole time span of the data set by considering wind and swell waves from multiple directions. On the other hand, the numerical method gives insights into the complexity of currents induced by dominant wave components. Combining these methods facilitates hindcasting and predicting morphological changes under varying wave climate, assessing sediment pathways over the whole reef, and describing the seasonal and interannual evolution of the sand spit Thoondu. As a result, this study reveals sediment distribution on different spatio-temporal scales and elucidates their significance in the design of conventional and alternative low-regret coastal adaptation.
Jérôme OLLIER

Estimating Fishing Effort and Spatio-Temporal Distribution of Longline Vessels in the I... - 0 views

  •  
    Protein from fish is essential for feeding the world's population and is increasingly recognized as critical for food security. To ensure that fisheries resources can be sustainably maintained, fisheries management must be appropriately implemented. When logbook and landing records data are not complete or are incorrect, it is challenging to have an accurate understanding of catch volume. Focusing on Indonesian longline vessels operating in the Indian Ocean from 2012-2019 (n = 1124 vessels), our aims were to (1) assess compliance through identification of landing sites and potentially illicit behavior inferred by interruptions in VMS transmission, and (2) understand how the fishery operates along with quantifying the spatio-temporal distribution of fishing intensity by applying a Hidden Markov Model, which automatically classified each VMS position as fishing, steaming and anchoring. We found vessel compliance gaps in 90% of vessels in the dataset. Compliance was questionable due both to the widespread occurrence of long intermissions in relaying VMS positions (mean = 17.8 h, n = 973 vessels) and the use of unauthorized landing sites. We also observed substantial changes in fishing effort locations among years. The introduction of regulatory measures during the study period banning transshipment and foreign vessels may be responsible for the spatial shift in fishing activity we observed, from encompassing nearly the whole Indian Ocean to more recent intense efforts off western Sumatra and northern Australia.
Jérôme OLLIER

Reconstruction of dissolved oxygen in the Indian Ocean from 1980 to 2019 based on machi... - 0 views

  •  
    Oceanic dissolved oxygen (DO) decline in the Indian Ocean has profound implications for Earth's climate and human habitation in Eurasia and Africa. Owing to sparse observations, there is little research on DO variations, regional comparisons, and its relationship with marine environmental changes in the entire Indian Ocean. In this study, we applied different machine learning algorithms to fit regression models between measured DO, ocean reanalysis physical variables, and spatiotemporal variables. We utilized the Extremely Randomized Trees (ERT) model with the best performance, inputting complete reanalysis data and spatiotemporal information to reconstruct a four-dimensional DO dataset of the Indian Ocean during 1980-2019. The evaluation results showed that the ERT-based DO dataset was superior to the DO simulations in Earth System Models across different time and space. Furthermore, we assessed the spatiotemporal variations in reconstructed DO dataset. DO decline and oxygen-minimum zone (OMZ) expansion were prominent in the Arabian Sea, Bay of Bengal, and Equatorial Indian Ocean. Through correlation analysis, we found that temperature and salinity changes related to solubility primarily control the oxygen decrease in the middle and deep sea. However, the complicated factors with solubility change, vertical mixing, and circulation govern the oxygen increase in the upper and middle sea. Finally, we conducted a volume integral to estimate the oxygen content in the Indian Ocean. Overall, a deoxygenation trend of −141.5 ± 15.1 Tmol dec−1 was estimated over four decades, with a slowdown trend of −68.9 ± 31.3 Tmol dec−1 after 2000. Under global warming and climate change, OMZ expanding and deoxygenation in the Indian Ocean are gradually mitigating. This study enhances our understanding of DO dynamics of the Indian Ocean in response to deoxygenation.
Jérôme OLLIER

Sea level anomalies in the southeastern tropical Indian Ocean as a potential ... - 0 views

  •  
    Most climate forecast agencies failed to make successful predictions of the strong 2020/2021 La Niña event before May 2020. The western equatorial Pacific warm water volume (WWV) before the 2020 spring failed to predict this La Niña event because of the near neutral state of the equatorial Pacific Ocean in the year before. A strong Indian Ocean Dipole (IOD) event took place in the fall of 2019, which is used as a precursor for the La Niña prediction in this study. We used observational data to construct the precursory relationship between negative sea level anomalies (SLA) in the southeastern tropical Indian Ocean (SETIO) in boreal fall and negative Niño 3.4 sea surface temperature anomalies index one year later. The application of the above relation to the prediction of the 2020/2021 La Niña was a great success. The dynamics behind are the Indo-Pacific "oceanic channel" connection via the Indian Ocean Kelvin wave propagation through the Indonesian seas, with the atmospheric bridge playing a secondary role. The high predictability of La Niña across the spring barrier if a positive IOD should occur in the previous year suggests that the negative SETIO SLA in fall is a much better and longer predictor for this type of La Niña prediction than the WWV. In comparison, positive SETIO SLA lead either El Niño or La Niña by one year, suggesting uncertainty of El Niño predictions.
Jérôme OLLIER

Decadal variability of sea surface salinity in the Southeastern Indian Ocean: Roles of ... - 0 views

  •  
    The southeastern Indian Ocean (SEIO) exhibits prominent decadal variability in sea surface salinity (SSS), showing salinity decreases during 1995-2000 and 2005-2011 and increases during 2000-2005 and after 2011. These salinity changes are linked to the Indo-Pacific climate and have impacts on the regional marine environment. Yet, the underlying mechanism has not been firmly established. In this study, decadal SSS variability of the SEIO is successfully simulated by a high-resolution regional ocean model, and the mechanism is explored through a series of sensitivity experiments. The results suggest that freshwater transport of the Indonesian throughflow (ITF) and local precipitation are two major drivers for the SSS decadal variability. They mutually cause most of the variability, with a generally larger contribution of precipitation. Other processes, such as evaporation and advection driven by local winds, play a minor role. Further analysis shows that the decadal precipitation in the SEIO is mainly associated with the decadal variability of Ningaloo Niño. Ocean dynamic processes significantly modify the relationship between SSS and precipitation, greatly shortening their lag time. The changes in both volume transport and salinity of the ITF water can cause large salinity changes in the SEIO region. Although local wind forcing gives rise to considerable changes in evaporation rate and ocean current advection, its overall contribution to decadal SSS variability is small compared to local precipitation and the ITF.
1 - 11 of 11
Showing 20 items per page